An equivalence of multistatistics on permutations

Arthur Nunge

Laboratoire IGM

April 2016
The PASEP (Partialy ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.
The PASEP (Partially ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.
The PASEP (Partially ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

\[\alpha \quad \bullet \quad \bigcirc \quad \bigcirc \quad \bullet \quad \bullet \quad \beta \]
The PASEP (Partialy ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

\[\begin{align*} &\alpha \\
&\overset{1}{\circ} \\
&\circ \\
&\circ \\
&\bullet \\
&\beta \end{align*} \]
The PASEP (Partially ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

\[
\begin{array}{c}
\alpha \quad q \quad 1 \quad \beta \\
\end{array}
\]
The PASEP (Partially ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

\[
\alpha \quad q \quad 1 \quad q \quad \beta
\]
The PASEP (Partially ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

We associate the composition \((2, 3, 1, 1)\) to the above step of the PASEP.
The PASEP (Partially ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

We associate the composition (2, 3, 1, 1) to the above step of the PASEP.
PASEP

The PASEP (Partially ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

![PASEP Step](image)

We associate the composition $(2, 3, 1, 1)$ to the above step of the PASEP.

Combinatorial study of the PASEP

The PASEP is closely related with permutations. Let λ be a composition associated to a state of the PASEP, the steady-state probability of this state is given by $\sum_{\text{GC}(\sigma) = \lambda} q^{\text{tot}(\sigma)}$ renormalized to make it a probability.

- $\text{GC}(\sigma)$ (*Genocchi composition*) is the descent composition of the values of σ
- $\text{tot}(\sigma)$ is the number of 31-2 patterns in σ.

Arthur Nunge

An equivalence of multistatistics on permutations
Tevlin’s basis (2007)

Tevlin defined a “monomial basis” L_I of the non commutative symmetric functions algebra (NCSF). He conjectured that the expansion of the ribbon basis on the L_I has nonnegative integer coefficients.
Tevlin’s basis (2007)

Tevlin defined a “monomial basis” L_I of the non commutative symmetric functions algebra (NCSF). He conjectured that the expansion of the ribbon basis on the L_I has nonnegative integer coefficients.

Combinatorial interpretation of Tevlin’s basis

<table>
<thead>
<tr>
<th>GC \ Rec</th>
<th>4</th>
<th>31</th>
<th>22</th>
<th>211</th>
<th>13</th>
<th>121</th>
<th>112</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>1243, 1423</td>
<td>1342</td>
<td>3412</td>
<td>2341</td>
<td>2413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>1324, 3124</td>
<td></td>
<td>2314</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td></td>
<td>3142, 1432, 4132</td>
<td></td>
<td>2431, 4231</td>
<td>3241</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2134</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2143, 4213</td>
<td>3421</td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4214</td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4321</td>
</tr>
</tbody>
</table>

Theorem (Hivert, Novelli, Tevlin, Thibon, 2009)

For I *a composition of* n, *we have* $R_I = \sum_J G_{IJ}L_J$ *where* G_{IJ} *is equal to the number of permutations* σ *satisfying* $\text{Rec}(\sigma) = I$ *and* $\text{GC}(\sigma) = J$.
Novelli, Thibon, and Williams defined a q-analog of NCSF where the transition matrix from $L_I(q)$ to $R_J(q)$ is given by the following matrix:

\[
\begin{pmatrix}
1 & . & . & . \\
. & 1+q & 1 & . \\
. & . & 1 & . \\
. & . & . & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & . & . & . & . & . & . & . & . & . \\
. & 1+q + q^2 & 1+q & . & 1 & q & . & . & . & . \\
. & . & 1+q & 1+q & . & 1 & . & . & . & . \\
. & . & . & q & 1+q + q^2 & 1+q & 1 & . & . & . \\
. & . & . & . & 1 & . & . & . & . & . \\
. & . & . & . & . & 1+q & 1 & . & . & . \\
. & . & . & . & . & . & 1 & . & . & . \\
. & . & . & . & . & . & . & 1 & . & . \\
. & . & . & . & . & . & . & . & 1 & . \\
. & . & . & . & . & . & . & . & . & 1
\end{pmatrix}
\]
q-analog of Tevlin’s basis (2010)

Novelli, Thibon, and Williams defined a q-analog of NCSF where the transition matrix from $L_I(q)$ to $R_J(q)$ is given by the following matrix:

$$
\begin{pmatrix}
1 & 1+q & 1 \\
1 & 1+q & 1 \\
& 1 & 1 \\
\end{pmatrix}
$$

$$
\begin{pmatrix}
1 & 1+q+q^2 & 1+q & 1+q & 1+q & 1+q \\
1 & 1+q & 1+q & 1 & 1 & 1 \\
& 1 & 1+q & 1+q & 1 \\
& & 1 & 1+q & 1 \\
& & & 1 & 1 \\
& & & & 1 \\
\end{pmatrix}
$$

Theorem (Novelli, Thibon, Williams, 2010)

For I a composition of n, we have $R_I(q) = \sum_J F_{IJ}(q)L_J(q)$ where:

$$F_{IJ}(q) = \sum_{\text{Rec}(\sigma)=I, \text{LC}(\sigma)=J} q^{\alpha(\sigma)}$$
Remark

PASEP theory implies that the previous matrix should also be described with the statistics Rec, GC, and tot.

Two ways of grouping the permutations

Conjecture (Novelli, Thibon, Williams, 2010)

Sending permutations of the left table to $q^{\alpha(\sigma)}$ *gives the same matrix than sending the permutations of the right table to* $q^{\text{tot}(\sigma)}$.
Involved combinatorial objects

- Permutations;
- Weighted Dyck Paths;
- Subexceedent Functions;
- Decreasing Weighted Subexceedent Functions.

Steps of the bijection

\[P \leftrightarrow \phi \leftrightarrow FV \leftrightarrow WDP \leftrightarrow \psi \leftrightarrow WDP \leftrightarrow DWSF \leftrightarrow SF \leftrightarrow Lh \leftrightarrow P \]

An equivalence of multistatistics on permutations
Sketch of proof: let’s make some bijections

Involved combinatorial objects

- Permutations;
- Weighted Dyck Paths;
- Subexceedent Functions;
- Decreasing Weighted Subexceedent Functions.

Steps of the bijection

\[P \xleftarrow{\phi_{FV}} WDP \xrightarrow{\psi_1} DWSF \xrightarrow{\psi_2} SF \xrightarrow{Lh} R \xrightarrow{\phi_{FV}^{-1}} P \]

Catalan
Sketch of proof: let’s make some bijections

Involved combinatorial objects
- Permutations;
- Weighted Dyck Paths;
- Subexceedent Functions;
- Decreasing Weighted Subexceedent Functions.

Steps of the bijection
\[
P \xleftrightarrow{\phi_F} \text{WDP} \xleftrightarrow{\phi_1} \text{WDP}
\]
- Catalan
- Catalan

Arthur Nunge
An equivalence of multistatistics on permutations
Sketch of proof: let's make some bijections

Involved combinatorial objects
- Permutations;
- Weighted Dyck Paths;
- Subexceedent Functions;
- Decreasing Weighted Subexceedent Functions.

Steps of the bijection

<table>
<thead>
<tr>
<th>P $\leftrightarrow_{\phi_{FV}}$ WDP \leftrightarrow_{ϕ_1} WDP</th>
<th>SF \leftrightarrow_{Lh} P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalan</td>
<td>Catalan</td>
</tr>
</tbody>
</table>
Sketch of proof: let’s make some bijections

Involved combinatorial objects
- Permutations;
- Weighted Dyck Paths;
- Subexceedent Functions;
- Decreasing Weighted Subexceedent Functions.

Steps of the bijection

\[P \overset{\phi_{FV}}{\leftrightarrow} WDP \overset{\phi_1}{\leftrightarrow} WDP \overset{\psi_1}{\leftrightarrow} DWSF \overset{Lh}{\leftrightarrow} P \]

Catalan \quad Catalan \quad Catalan
Sketch of proof: let’s make some bijections

Involved combinatorial objects
- Permutations;
- Weighted Dyck Paths;
- Subexceedent Functions;
- Decreasing Weighted Subexceedent Functions.

Steps of the bijection
\[P \xleftarrow{\phi_{FV}} WDP \xleftarrow{\phi_1} WDP \xrightarrow{\psi_2} DWSF \xrightarrow{\psi_1} SF \xleftarrow{Lh} P \]

\[\text{Catalan} \quad \text{Catalan} \quad \text{Catalan} \]
Weighted Dyck paths

A weight for a Dyck path is a word w satisfying for all i, $w_i \leq (h_i - 1)/2$ where h_i is the height of the Dyck path between the $(2i - 1)$-th and $2i$-th steps.
The Françon-Viennot bijection: $P \rightarrow WDP$

Let $\sigma \in S_n$ we construct $\psi_{FV}(\sigma)$ as follows:

- The $(2k - 1)$-th is $/$ iff $k = \sigma_i < \sigma_{i+1}$,
- The $(2k)$-th is $/$ iff $\sigma_{i-1} > \sigma_i = k$.

Moreover, w_k is equal to the number of 31-2 patterns such that k plays the rôle of 2.

Example

$$\phi_{FV}(0.528713649.\infty) =$$
The Françon-Viennot bijection: $P \rightarrow WDP$

Let $\sigma \in \mathcal{S}_n$ we construct $\psi_{FV}(\sigma)$ as follows:

- The $(2k - 1)$-th is $/$ iff $k = \sigma_i < \sigma_{i+1}$,
- The $(2k)$-th is $/$ iff $\sigma_{i-1} > \sigma_i = k$.

Moreover, w_k is equal to the number of 31-2 patterns such that k plays the rôle of 2.

Example

$$\phi_{FV}(0.528713649.\infty) =$$
The Françon-Viennot bijection: $P \rightarrow \text{WDP}$

Let $\sigma \in \mathcal{S}_n$ we construct $\psi_{FV}(\sigma)$ as follows:

- The $(2k-1)$-th is / iff $k = \sigma_i < \sigma_{i+1}$,
- The $(2k)$-th is / iff $\sigma_{i-1} > \sigma_i = k$.

Moreover, w_k is equal to the number of 31-2 patterns such that k plays the rôle of 2.

Example

\[\phi_{FV}(0.528713649.\infty) = \]
The Françon-Viennot bijection: $P \rightarrow WDP$

Let $\sigma \in \mathfrak{S}_n$ we construct $\psi_{FV}(\sigma)$ as follows:

- The $(2k - 1)$-th is / iff $k = \sigma_i < \sigma_{i+1}$,
- The $(2k)$-th is / iff $\sigma_{i-1} > \sigma_i = k$.

Moreover, w_k is equal to the number of 31-2 patterns such that k plays the rôle of 2.

Example

$$\phi_{FV}(0.528713649.\infty) =$$
The Françon-Viennot bijection: $P \rightarrow WDP$

Let $\sigma \in S_n$ we construct $\psi_{FV}(\sigma)$ as follows:

- The $(2k - 1)$-th is / iff $k = \sigma_i < \sigma_{i+1}$,
- The $(2k)$-th is / iff $\sigma_{i-1} > \sigma_i = k$.

Moreover, w_k is equal to the number of 31-2 patterns such that k plays the rôle of 2.

Example

$$\phi_{FV}(0.528713649.\infty) =$$

![Diagram showing an example of the bijection](image)
The Françon-Viennot bijection: $P \rightarrow WDP$

Let $\sigma \in S_n$ we construct $\psi_{FV}(\sigma)$ as follows:

- The $(2k - 1)$-th is / iff $k = \sigma_i < \sigma_{i+1}$,
- The $(2k)$-th is / iff $\sigma_{i-1} > \sigma_i = k$.

Moreover, w_k is equal to the number of 31-2 patterns such that k plays the rôle of 2.

Example

$$\phi_{FV}(0.528713649.\infty) =$$

![Diagram showing the Françon-Viennot bijection]
The Françon-Viennot bijection: P → WDP

Let $\sigma \in S_n$ we construct $\psi_{FV}(\sigma)$ as follows:

- The $(2k - 1)$-th is / iff $k = \sigma_i < \sigma_{i+1}$,
- The $(2k)$-th is / iff $\sigma_{i-1} > \sigma_i = k$.

Moreover, w_k is equal to the number of 31-2 patterns such that k plays the rôle of 2.

Example

$$\phi_{FV}(0.528713649.\infty) = \text{Diagram}$$
The Françon-Viennot bijection: $P \rightarrow WDP$

Let $\sigma \in S_n$ we construct $\psi_{FV}(\sigma)$ as follows:

- The $(2k - 1)$-th is / iff $k = \sigma_i < \sigma_{i+1}$,
- The $(2k)$-th is / iff $\sigma_{i-1} > \sigma_i = k$.

Moreover, w_k is equal to the number of 31-2 patterns such that k plays the rôle of 2.

Example

$\phi_{FV}(0.528713649.\infty) =$

![Graph of \(\phi_{FV}(0.528713649.\infty) \)]
The Françon-Viennot bijection: $\sigma \rightarrow WDP$

Let $\sigma \in \mathcal{S}_n$ we construct $\psi_{FV}(\sigma)$ as follows:

- The $(2k - 1)$-th is / iff $k = \sigma_i < \sigma_{i+1}$,
- The $(2k)$-th is / iff $\sigma_{i-1} > \sigma_i = k$.

Moreover, w_k is equal to the number of 31-2 patterns such that k plays the rôle of 2.

Example

$$\phi_{FV}(0.528713649.\infty) =$$

![Diagram showing the Françon-Viennot bijection example]
The Françon-Viennot bijection: $P \rightarrow \text{WDP}$

Let $\sigma \in \mathcal{S}_n$ we construct $\psi_{FV}(\sigma)$ as follows:

- The $(2k-1)$-th is $/\text{ iff } k = \sigma_i < \sigma_{i+1}$,
- The $(2k)$-th is $/\text{ iff } \sigma_{i-1} > \sigma_i = k$.

Moreover, w_k is equal to the number of 31-2 patterns such that k plays the rôle of 2.

Example

$$\phi_{FV}(0.528713649.\infty) =$$

![Diagram](attachment:image.png)
\[\phi_1 : \text{WDP} \rightarrow \text{WDP} \]

\(\phi_1 \) is the involution exchanging \(\bigtriangleup \) with \(\bigtriangledown \).

Example

![Example Diagram]
\(\phi_1 : \text{WDP} \rightarrow \text{WDP} \)

\(\phi_1 \) is the involution exchanging \(\rhd \) with \(\rhd \).

Example

\[
\begin{array}{cccccccc}
1 & 2 & 2 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]
\(\phi_1 \): WDP \(\rightarrow \) WDP

\(\phi_1 \) is the involution exchanging \(\uparrow \downarrow \) with \(\downarrow \uparrow \).

Example
Summary

\[P \xrightleftharpoons{\phi_{FV}} WDP \xrightleftharpoons{\phi_1} WDP \xrightleftharpoons{\psi_2} \text{WDSF} \xrightleftharpoons{\psi_1} \text{SF} \xrightleftharpoons{Lh} P \]
Subexceedent functions

A subexceedent function of size n is a word of nonnegative integers f such that for all $i \leq n$, we have $f_i \leq n - i$.
Subexceedent functions

A subexceedent function of size n is a word of nonnegative integers f such that for all $i \leq n$, we have $f_i \leq n - i$.

Bijection with permutations

We use the Lehmer code of the inverse of a permutation σ to construct a subexceedent function f as follows: $f_{\sigma_j} = \#\{i < j|\sigma_i > \sigma_j\}$. For instance,

$$\sigma = 528197634, \ Lh(\sigma) =$$
Subexceedent functions

A subexceedent function of size n is a word of nonnegative integers f such that for all $i \leq n$, we have $f_i \leq n - i$.

Bijection with permutations

We use the Lehmer code of the inverse of a permutation σ to construct a subexceedent function f as follows: $f_{\sigma_j} = \#\{i < j | \sigma_i > \sigma_j\}$. For instance,

$$\sigma = 528197634, \ Lh(\sigma) = 3$$
Subexceedent functions

A subexceedent function of size n is a word of nonnegative integers f such that for all $i \leq n$, we have $f_i \leq n - i$.

Bijection with permutations

We use the Lehmer code of the inverse of a permutation σ to construct a subexceedent function f as follows: $f_{\sigma_j} = \# \{i < j | \sigma_i > \sigma_j \}$. For instance,

$$\sigma = 528197634, \ Lh(\sigma) = 31$$
Subexceedent functions

A subexceedent function of size n is a word of nonnegative integers f such that for all $i \leq n$, we have $f_i \leq n - i$.

Bijection with permutations

We use the Lehmer code of the inverse of a permutation σ to construct a subexceedent function f as follows: $f_{\sigma_j} = \#\{i < j | \sigma_i > \sigma_j\}$. For instance,

$$\sigma = 528197634, \ Lh(\sigma) = 315$$
Subexceedent functions

A subexceedent function of size n is a word of nonnegative integers f such that for all $i \leq n$, we have $f_i \leq n - i$.

Bijection with permutations

We use the Lehmer code of the inverse of a permutation σ to construct a subexceedent function f as follows: $f_{\sigma_j} = \# \{ i < j | \sigma_i > \sigma_j \}$. For instance,

$$\sigma = 528197634, \quad Lh(\sigma) = 315503200$$
Subexceedent functions

A subexceedent function of size n is a word of nonnegative integers f such that for all $i \leq n$, we have $f_i \leq n - i$.

Bijection with permutations

We use the Lehmer code of the inverse of a permutation σ to construct a subexceedent function f as follows: $f_{\sigma_j} = \# \{ i < j \mid \sigma_i > \sigma_j \}$. For instance,

$$\sigma = 528197634, \quad \text{Lh}(\sigma) = 315503200$$

Decreasing subexceedent functions

A subexceedent function is decreasing if the word obtained by removing all the zeros is strictly decreasing.
For example, $L = 540300200$.
ψ_1: SF \rightarrow DWSF

- $L = 315503200$, $P = 000000000$
$\psi_1: \text{SF} \rightarrow \text{DWSF}$

- $L = 315503200, P = 000000000$, then \textit{pivot} = 5;
\[\psi_1 : \text{SF} \rightarrow \text{DWSF} \]

- \(L = 315503200, P = 000000000, \) then \(\text{pivot} = 5; \)
- \(L = 314503200, P = 000000000 \)
\(\psi_1 : \text{SF} \rightarrow \text{DWSF} \)

- \(L = 315503200, P = 000000000, \text{then pivot} = 5; \)
- \(L = 314503200, P = 000000000, \)
 \(L = 315403200, P = 000000000 \)
\(\psi_1: \text{SF} \rightarrow \text{DWSF} \)

- \(L = 315503200, P = 000000000, \text{then pivot} = 5; \)
- \(L = 314503200, P = 000000000, \)
- \(L = 315403200, P = 000000000, \)
- \(L = 315403200, P = 000100000 \)
\[\psi_1 : SF \rightarrow DWSF \]

- \(L = 315503200, P = 000000000, \text{ then } pivot = 5; \)
- \(L = 315403200, P = 000100000 \)
\(\psi_1: \text{SF} \rightarrow \text{DWSF} \)

- \(L = 315503200, \ P = 000000000, \) then \(\text{pivot} = 5; \)
- \(L = 315403200, \ P = 000100000, \) then \(\text{pivot} = 5; \)

Arthur Nunge
An equivalence of multistatistics on permutations
\(\psi_1 : \text{SF} \to \text{DWSF} \)

- \(L = 315503200, P = 000000000, \) then \(\text{pivot} = 5; \)
- \(L = 315403200, P = 000100000, \) then \(\text{pivot} = 5; \)
- \(L = 512403200, P = 001100000 \)
\(\psi_1: \text{SF} \to \text{DWSF} \)

- \(L = 315503200, \ P = 000000000, \) then pivot = 5;
- \(L = 315403200, \ P = 000100000, \) then pivot = 5;
- \(L = 512403200, \ P = 001100000, \) then pivot = 4;
\[\psi_1 : \text{SF} \rightarrow \text{DWSF} \]

- \(L = 315503200, P = 000000000, \text{then } \text{pivot} = 5; \)
- \(L = 315403200, P = 000100000, \text{then } \text{pivot} = 5; \)
- \(L = 512403200, P = 001100000, \text{then } \text{pivot} = 4; \)
- \(L = 514103200, P = 001200000 \)
<table>
<thead>
<tr>
<th>Function</th>
<th>SF</th>
<th>DWSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\psi_1): SF \rightarrow DWSF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L = 315503200, P = 000000000,) then pivot = 5;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L = 315403200, P = 000100000,) then pivot = 5;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L = 512403200, P = 001100000,) then pivot = 4;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L = 514103200, P = 001200000,) then pivot = 4;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\(\phi_1: \text{SF} \rightarrow \text{DWSF} \)

- \(L = 315503200, P = 000000000, \text{then pivot} = 5; \)
- \(L = 315403200, P = 000100000, \text{then pivot} = 5; \)
- \(L = 512403200, P = 001100000, \text{then pivot} = 4; \)
- \(L = 514103200, P = 001200000, \text{then pivot} = 4; \)
- \(L = 540103200, P = 002200000 \)
\(\psi_1 : \text{SF} \rightarrow \text{DWSF} \)

- \(L = 315503200, P = 000000000, \text{then} \ pivot = 5; \)
- \(L = 315403200, P = 000100000, \text{then} \ pivot = 5; \)
- \(L = 512403200, P = 001100000, \text{then} \ pivot = 4; \)
- \(L = 514103200, P = 001200000, \text{then} \ pivot = 4; \)
- \(L = 540103200, P = 002200000, \text{then} \ pivot = 3; \)
Introduction

Permutations to weighted Dyck paths
Subexceedent functions to weighted Dyck paths
Conclusion

$\psi_1: \text{SF} \rightarrow \text{DWSF}$

- $L = 315503200$, $P = 000000000$, then $pivot = 5$;
- $L = 315403200$, $P = 000100000$, then $pivot = 5$;
- $L = 512403200$, $P = 001100000$, then $pivot = 4$;
- $L = 514103200$, $P = 001200000$, then $pivot = 4$;
- $L = 540103200$, $P = 002200000$, then $pivot = 3$;
- $L = 54030200$, $P = 002201000$
The function ψ_1 maps standard set partitions to Dyck words. Let $L = 315503200, P = 000000000$, then $pivot = 5$; let $L = 31\mathbf{54}03200, P = 000\mathbf{1}00000$, then $pivot = 5$; let $L = \mathbf{51}2403200, P = 001100000$, then $pivot = 4$; let $L = 51\mathbf{41}03200, P = 001200000$, then $pivot = 4$; let $L = 5\mathbf{40}103200, P = 002200000$, then $pivot = 3$; let $L = 540\mathbf{30}0200, P = 00220\mathbf{1}000$ the algorithm stops.
Let \(\sigma \in S_n \) we construct \(\psi_{FV}(\sigma) \) as follows:

- The \((2k)\)-th step is \(\backslash \) iff \(n - k \) is a value of \(f \),
- The \((2k + 1)\)-th step is \(\backslash \) iff \(f_k = 0 \).

Example

\[\psi_2(540300200) = \]

\[\]

Arthur Nunge

An equivalence of multistatistics on permutations
\[\psi_2: \text{DSF} \rightarrow \text{DP} \]

Let \(\sigma \in \mathcal{S}_n \) we construct \(\psi_{FV}(\sigma) \) as follows:

- The \((2k)\)-th step is \(\downarrow \) iff \(n - k \) is a value of \(f \),
- The \((2k + 1)\)-th step is \(\downarrow \) iff \(f_k = 0 \).

Example

\[\psi_2(540300200) = \]

![Diagram](image)
\[\psi_2: \text{DSF} \rightarrow \text{DP} \]

Let \(\sigma \in \mathcal{S}_n \) we construct \(\psi_{FV}(\sigma) \) as follows:

- The \((2k)\)-th step is \(\backslash \) iff \(n - k \) is a value of \(f \),
- The \((2k + 1)\)-th step is \(\backslash \) iff \(f_k = 0 \).

Example

\[\psi_2(540300200) = \]
Let $\sigma \in S_n$ we construct $\psi_F(\sigma)$ as follows:

- The $(2k)$-th step is \downarrow iff $n - k$ is a value of f,
- The $(2k+1)$-th step is \uparrow iff $f_k = 0$.

Example

$\psi_2(540300200) =$

![Graph showing the transformed permutation]
Theorem

The map \(\phi = Lh^{-1} \circ \psi_1^{-1} \circ \psi_2^{-1} \circ \phi_1 \circ \phi_{FV} \) is a bijection satisfying

- \(\text{Rec}(\phi(\sigma)) = \text{Rec}(\sigma); \)
- \(\text{LC}(\phi(\sigma)) = \text{GC}(\sigma); \)
- \(\alpha(\phi(\sigma)) = \text{tot}(\sigma). \)
Perspectives

- Generalisation of the bijection for a larger type of PASEP.
- Study of a variant of ϕ_{FV} applied after the involution on weighted Dyck paths implying a third combinatorial interpretation and a new bijection preserving sylvester classes on permutations.
Thank you!