
Efficient Threshold Detection in a Distributed Environment

Yuval Emek ∗ Amos Korman †

Abstract

Consider a distributed network in which events occur at arbitrary nodes and at unpredicted times. An
event occurring at node u is sensed only by u which in turn may invoke a communication protocol that
allows nodes to exchange messages with their neighbors. We are interested in the following threshold

detection (TD) problem inherent to distributed computing: Given some threshold k, the goal of a TD
protocol is to broadcast a termination signal when at least k events have occurred (throughout the network).

In this paper we develop a randomized TD protocol that may fail with negligible probability but which
significantly improves previous results in terms of the message complexity, namely, the total number of
messages sent by all participating nodes. With the right choice of parameters our randomized protocol
turns into a deterministic one that guarantees low communication burden for any node. This is a principal
complexity measure in many applications of wireless networks and which, to the best of our knowledge,
has not been bounded before in the context of such problems.

∗Microsoft Israel R&D Center, Herzelia, Israel and School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel. E-mail:
yuvale@eng.tau.ac.il.

†CNRS and Université Paris Diderot - Paris 7, France. E-mail: amos.korman@gmail.com. Supported in part by the ANR
project ALADDIN, by the INRIA project GANG, and by COST Action 295 DYNAMO.

1 Introduction

The problem. Consider a distributed network modeled as an undirected graph in which nodes are allowed to
exchange messages with their neighbors. Events may occur at arbitrary nodes and at unpredicted times. It is
assumed that an event occurring at node u is sensed only by u, however, other nodes may learn of this event
via messages sent from u. Let κ be a (global) variable denoting the number of events that occurred throughout
the network. Given some threshold k, we wish to know when κ reaches k. More formally, a protocol for the
threshold detection (TD) problem satisfies the following requirements: (1) if κ ≥ k, then a termination signal
will be broadcast within finite time; and (2) if a termination signal was broadcast, then κ ≥ k.

We also consider a randomized variant of the TD problem that tolerates a small (one-sided) failure proba-
bility q. Formally, given some threshold k, a protocol for the randomized TD problem satisfies the following
two requirements: (1) if κ ≥ k, then with probability at least 1 − q, a termination signal will be broadcast
within finite time; and (2) if a termination signal was broadcast, then κ ≥ k. Note that the probability in
requirement (1) is taken over the coin tosses of the randomized protocol; we do not make any assumptions
on the distribution of the input. In fact, in this paper it is assumed that the input is constructed by an adaptive
adversary whose decisions may depend on previous coin tosses of the randomized protocol (but not on future
ones).

The TD problem finds applications in various contexts of distributed computing. As an example, consider
a sensor network designed for detecting a flood. The sensors (nodes) of the network are spread over some
terrain; each sensor measures the local amount of rain-fall (measuring one unit of rain-fall corresponds to an
event occurring at the node). Clearly, a single unit of rain-fall measured at some sensor does not indicate that
a flood is imminent. However, if many (say, k) units of rain-fall are measured across the terrain, then a flood
warning (corresponding to the termination signal) should be broadcast.

From a theoretical point of view, the TD problem combines an online flavor with a distributed one. Specif-
ically, the problem aims at capturing an inherent difficulty of distributed computing: the high cost of knowing
what happened in remote places. Indeed, the current paper focuses on this difficulty and aspires to the con-
structions of TD protocols incurring low communication costs.

Communication models. We consider two different communication models. The first one is the standard
message passing model [14] in which node u can send a message to node v if v is a neighbor of u in the
network. The complexity measure we focus on under this model is the message complexity defined as the
total number of messages sent by all participating nodes throughout the execution of the protocol (i.e., until
the termination signal reaches all nodes). Actually, it will be more convenient to consider the average message

complexity defined as the ratio of the message complexity to the number of nodes in the network. This captures
the amount of work exerted by a node for communication purposes on average.

In the second communication model we assume that if a node transmits some message, then this message
is delivered to all its neighbors in the network. We refer to this communication model as the transmissions

model. The complexity measure we focus on under this model is the maximum transmission complexity

defined as the maximum number of transmissions made by any single node. This captures the amount of
work exerted by a node for communication purposes in the worst case. We assume that both the message
passing and transmissions models operate in an asynchronous environment, which means that the delivery of
each message may incur an arbitrary, yet finite, delay.

The transmissions model reflects the behavior of wireless networks, where messages are not delivered
via physical links, but rather transmitted in the open air and received by all neighbors of the transmitting
node. We would like to point out that many works on wireless networks take into consideration the issue
of colliding transmissions which may prevent the successful decoding of a message received by some node.

1

We abstract away this issue. Such an abstraction can be justified by assuming that a designated feature
that handles collisions is constructed in a preprocessing stage1. Note that in many applications of wireless
networks the energy resources of the nodes are limited and in particular, the amount of energy spent by any
node for communication purposes should be minimized. Therefore the maximum transmissions complexity
seems to be the “right” complexity measure under the transmissions model.

Previous work. There is a long history of research studying various related problems under the message
passing model [6, 4, 8, 2, 9, 3, 13, 1, 11, 12, 10, 5]. Among these problems, the token collection problem
introduced in [2] is probably the closest one to threshold detection. This problem was subsequently general-
ized in [1] to introduce the controller problem. Indeed, the current state of the art TD protocols are the ones
derived from the controllers presented in [1, 10, 5]. Specifically, the average message complexity of the TD
protocols derived from [1, 10] is O(log k log2

n), where n denotes the number of nodes in the network. For
small values of k, this bound was improved to O(log k log2

k) in [5]. It is also (implicitly) shown in [5] that
any TD protocol must have average message complexity of Ω(log k). This lower bound also holds for the
maximum transmission complexity.

To the best of our knowledge, there is no non-trivial upper bound on the maximum transmission com-
plexity of the TD problem under the transmissions model. The techniques in [1, 10, 5] can be used to derive
TD protocols that operate under the transmissions model2, however, an Ω(min{k, n}) factor is inherent to the
resulting transmission complexity.

Our contribution. We begin by observing a very simple Ω(log k) lower bound on the expected values
of both the average message complexity (under the message passing model) and the maximum transmission
complexity (under the transmissions model) of any randomized TD protocol with constant failure probability.
Our main contribution, however, is the construction of a generic randomized TD protocol that can be adapted
to both the message passing and transmissions communication models.

Under the message passing model, the protocol guarantees a negligible (that is, smaller than the recipro-
cal of any polynomial in n) failure probability and an average message complexity of O(log k log2 log n) on
expectation. In comparison, the rather trivial randomized TD protocol that is based on tossing a biased coin
on each event and checking all nodes if this coin turns head must have message complexity ω(log k log n)
in order to guarantee a negligible failure probability. Thus, factoring away the inherent O(log k) factor of
the message complexity, our randomized protocol incurs an exponential improvement over the known deter-
ministic protocols and the trivial randomized one. Under the transmissions model, the internal parameters of
our randomized protocol can be set to obtain a deterministic protocol with maximum transmission complex-
ity of O(log2

k log2
n). This again implies an exponential improvement over the simple linear solutions. A

summary of the results is presented in Table 1.

2 Preliminaries

Let n denote the number of nodes in the network. For either one of the above two models of communication,
we assume that each message is encoded using logO(1)(n) bits. As commonly assumed in this context (e.g.,

1 In fact, such a feature is typically implemented in (real-world) wireless networks by the MAC layer. For example, the currently
implemented MAC protocols (e.g., WiFi) use carrier-sensing (a node first listens whether someone else is talking, and only if no one
is talking, it is allowed to talk) and backoffs (if someone else is talking, one goes into an exponential backoff before attempting to
transmit again) to ensure fair and efficient medium access.

2 To obtain a protocol that operates under the transmissions model from a protocol that operates under the message passing model,
simply attach to each message from u to v the identity of the destination node v. When v receives this message it continues its actions
accordingly and every other neighbor of u ignores the message.

2

Previously known New

Average message
complexity

(deterministic) O(log k log2
n) [1, 10] randomized O(log k log2 log n) with

negligible failure probability

Ω(log k) for any (deterministic) TD
protocol [5]

Ω(log k) for any randomized TD pro-
tocol with constant failure probability

Maximum transmis-
sion complexity

Õ(min{k, n}) (trivial) (deterministic) O(log2
k log2

n)

Ω(log k) for any (deterministic) TD
protocol [5]

Ω(log k) for any randomized TD pro-
tocol with constant failure probability

Table 1: A summary of the results.

[1, 5, 10]), we too assume that when the protocol starts, a spanning tree T is already constructed over the
network and the protocol’s communication is restricted to the links of T . Actually, in what follows we assume
that the network itself is the tree T .

3 Lower bounds

As a warm-up, we start with simple lower bounds. Consider the message passing model. In this section
we establish an Ω(log k) lower bound on the expected average message complexity of any randomized TD
protocol designed for any constant failure probability 0 ≤ q < 1. An almost identical proof can be used for
bounding the maximum transmission complexity in the transmissions model.

Let P be an n-node path. Consider some randomized TD protocol on P designed for an integer k and
some constant failure probability 0 ≤ q < 1. Our goal is to find a scenario Γ of events for which Ψ sends
Ω(n log k) messages on expectation. For simplicity, we assume that n is even and k + 1 is a power of 2.

Let l and r be the leftmost and rightmost nodes in P , respectively. Each event in Γ is presented either
at l or at r. The scenario Γ is a concatenation of λ = log k − 1 subscenarios, namely, Γ = γ1 · · · γλ. For
1 ≤ i ≤ λ, the ith subscenario γi consists of (k + 1)/2i events, all of them are presented at the same node
(either l or r). The scenario Γ is designed so that in response to γi, the randomized controller Ψ sends Ω(n)
messages on expectation.

The subscenarios γi are defined by induction on i. Let γ0 be the empty scenario (no messages are sent).
Given 0 < i ≤ λ such that the scenario Γi−1 = γ0 · γ1 · · · γi−1 is already defined, we define the subscenario
γi as follows. Let γi(l) (respectively, γi(r)) be a scenario of (k + 1)/2i events presented at l (resp., at r). Let
Ai(l) (respectively, Ai(r)) denote the probabilistic event that Ψ sends at least n/2 messages in response to the
suffix γi(l) (resp., the suffix γi(r)) of the scenario Γi(l) = Γi−1·γi(l) (resp., the scenario Γi(r) = Γi−1·γi(r)).
If P[Ai(l)] ≥ (1− q)/2, then we fix Γi = Γi(l); otherwise, we fix Γi = Γi(r).

Assume by way of contradiction that P[Ai(l)] < (1 − q)/2 and P[Ai(r)] < (1 − q)/2. Observe first
that the number of events in Γi is |Γi| =

�
i

j=1
k+1
2i = (k + 1)(1 − 1/2i) . Since i < log k, it follows that

|Γi| < k. Therefore Ψ cannot signal termination in response to Γi. Now consider the scenario Γi(l, r) =
Γi−1 · γi(l) · γi(r) and let Bi denote the probabilistic event that Ψ sends less than n/2 messages in response
to the subscenario γi(l) and less than n/2 messages in response to the subscenario γi(r) in Γi(l, r).

3

We argue that Bi occurs with probability greater than q. This is justified as every sequence of coin tosses
that resulted in the probabilistic event ¬Ai(l) (in the scenario Γi(l)) and in the probabilistic event ¬Ai(r)
(in the scenario Γi(r)), must have resulted in the probabilistic event Bi (in the scenario Γi(l, r)). By a union
bound argument on P[Ai(l) ∨Ai(r)], we conclude that P[Bi] ≥ P[¬Ai(l) ∧ ¬Ai(r)] > q.

Now, if Bi occurs, then no node in the left side of the path can distinguish the scenario Γi(l, r) from
the scenario Γi(l) and no node in the right side of the path can distinguish the scenario Γi(l, r) from the
scenario Γi(r), hence termination is not signaled. On the other hand, the number of events in Γi(l, r) is
|Γi(l, r)| = (k + 1)(1 − 1/2i−1) + 2(k + 1)/2i = k + 1 and Ψ should have signaled termination, in
contradiction to the assumption that Ψ fails with probability at most q. It follows that Ψ sends Ω(n) messages
in response to the ith subscenario in Γ with probability at least (1 − q)/2 for every 1 ≤ i ≤ λ. Assuming
that (1 − q)/2 = Ω(1), this sums up to an expected message complexity of Ω(n log k) as promised, i.e., the
expected average message complexity is Ω(log k). This establishes the following theorems.

Theorem 3.1. Consider the message passing model. Every randomized TD protocol that fails with probability

less than a constant incurs Ω(log k) average message complexity on expectation.

Theorem 3.2. Consider the transmissions model. Every randomized TD protocol that fails with probability

less than a constant incurs Ω(log k) maximum transmission complexity on expectation.

4 A level-h separator decomposition

We now turn to describe our constructions. Before dwelling into their details, let us consider first the trans-
missions model. As mentioned earlier, an Ω(min{k, n}) factor is inherent to the transmission complexity of
the protocols in [1, 5, 10]. In particular, this happens in [1] because the behavior of a node does not depend
on the number of events it ‘saw’ but rather on the depth of the node in T . In fact, whenever an event occurs at
a node of odd depth, the node sends a message to its parent. Thus, if all k events occur at a single node of odd
depth, this node will transmit k times. A similar phenomena occurs also in the protocol of [10], where each
event causes Ω(1) transmissions, even if all events occur at a single node.

The protocol of [5] is first designed assuming the tree is a path, and builds an implicit binary tree over
the path. This implicit binary tree is used to aggregate information to the root in a gradual manner. Then, [5]
shows how to reduce the problem from a tree to a path. In the transmissions model, their protocol on the path
can be modified to have low transmission complexity, however, given a tree, when simulating the protocol
on the path using the reduction from tree to path, the protocol may incur linear number of transmissions at a
node. For this reason, we avoid the tree-to-path reduction described in [5], and instead construct the following
separator decomposition, over which we shall aggregate the information.

A separator of a tree T is a node whose removal (together with its incident edges) breaks T into discon-
nected subtrees, each of size at most |T |/2. It is well known that each tree has a separator. Let T be a tree
of size n, and let h be a positive integer. Below we define a recursive decomposition of the tree T called a
level-h separator decomposition.

We describe a level of the recursive procedure operating on a tree T (that may be a subtree of the original
tree input to the top recursive level). The procedure on T is composed of at most two stages. At the first stage
a separator s of T is selected to be the representative of T . The removal of s breaks T into disconnected
subtrees T1, . . . , Tl, each of size at most |T |/2. Assume without loss of generality that |T1| ≥ · · · ≥ |Tl|.
If |Tl| > n/2h−1, then we continue recursively to the next level by decomposing T1, . . . , Tl−1 and T �

l
=

T − (T1 ∪ · · · ∪ Tl−1), that is, the original subtrees T1, . . . , Tl−1 and the subtree T �
l

obtained from Tl by
augmenting s to it. Otherwise, we continue to the second stage, described below.

4

Let l� ≤ l be the smallest index such that |Tl� | ≤ n/2h−1. (This is well defined as |Tl| ≤ n/2h−1.) We
group the subtrees Tl� , Tl�+1, . . . , Tl in forests F1, . . . , Ft, where for each j < t, |Fj | ∈ [n/2h−1, n/2h), and
|Ft| ≤ n/2h−1. (This grouping is possible since for each i such that l� ≤ i ≤ l, we have |Ti| ≤ n/2h−1.) In
addition, we let s be the representative of each of the forests F1, . . . , Ft. Next, we continue recursively to the
next level by decomposing T1, T2, . . . , Tl�−1 and T �

l� , where T �
l� is obtained by attaching s to Tl� .

The above completes the description of one level of the recursion operating on the subtree T . Recall that
the representative of T is its separator s. Note that if the second stage is not applied, then T is partitioned into
the subtrees T1, . . . , Tl−1 and T �

l
, and each of these components is assigned a representative in the next level

of the recursion. If, on the other hand, the second stage is applied, then T is partitioned into the components:
T1, . . . , Tl�−1, T

�
l� and F1, . . . , Ft. The separator s is assigned as the representative of each of the forests

F1, . . . , Ft, whereas the subtrees T1, . . . , Tl�−1 and T �
l� are assigned a representative in the next level of the

recursion. Note that the recursion must stop after at most h − 1 levels.

The first stage of our protocol (for both models of communication) is the construction of the above level-h
separator decomposition over T , for a value h defined later. We refer to this stage as the preprocessing stage.
Note that if we do not restrict the message size, then such a decomposition can be constructed in a total of
O(n) messages (respectively, transmissions), i.e., O(1) average message (resp., transmission) complexity, by
aggregating the structure of T to the root, calculating the decomposition at the root, and broadcasting the
decomposition to all nodes. Moreover, one can easily see that even if the sizes of messages are restricted
to O(log n) bits, such a decomposition can be constructed with O(h) average message (resp., transmission)
complexity. As shown later, given the level-h separator decomposition, the expected average message com-
plexity of our randomized protocol in the message passing model is O(h2 log k). The same bound holds also
for the transmission complexity of our deterministic protocol in the transmissions model (though for a dif-
ferent value of h). Thus, the construction of the separator decomposition in the preprocessing stage does not
influence the asymptotic complexities of our protocols.

The hierarchy of components. A level-h separator decomposition induces an implicit component tree de-
noted CT , representing the hierarchy between the decomposed components of T . To avoid confusion, we
refer to the basic elements of CT as vertices, rather than nodes which correspond to the basic elements of
T . We build CT by following the recursive decomposition and letting each vertex in CT correspond to a
decomposed component of T as follows. The root of CT corresponds to the whole tree T . Given some vertex
x in CT that corresponds to a subtree T � which is partitioned by the recursive procedure into components
C1, . . . , Cr, we let y1, . . . , yr be the children of x in CT , and for each 1 ≤ j ≤ r, we let yj correspond to Cj .
Note that if T � is partitioned during the first stage only, then the components are all subtrees, and otherwise,
the components include both subtrees and forests.

The component of T corresponding to a vertex x ∈ CT is denoted by C(x), and we say that the nodes in
C(x) are assigned to x. Thus, in particular, if x is a child of y in CT , then C(x) ⊆ C(y). Let Rep(x) denote
the representative of C(x). Note that if x is a leaf vertex then Rep(x) does not necessarily belong to C(x).
Note also that the components that correspond to leaves of CT induce a partition of T . For every node u ∈ T ,
let �(u) denote the leaf that u is assigned to.

Define the height h(v) of a vertex v ∈ CT recursively as follows. The height of the root vertex is h-1, and
the height of a non-root vertex v with parent u is h(v) = h(u)− 1. Observe that the height of a leaf is at least
zero.

Observation 4.1. The level-h separator decomposition satisfies:

(1) For every vertex x ∈ CT of height i, |C(x)| = O(n/2h−i); if x is a leaf then |C(x)| = O(n/2h) (even if

the height of x is larger than 0).

(2) For every vertex x in CT with parent y, the distance in T between Rep(x) and Rep(y) is at most |C(x)|;

5

the distance in T between any node u and Rep(�(u)) is at most |C(�(u))| = O(n/2h).
(3) At most 2h−1

leaves � of CT satisfy |C(�)| < n/2h−1
. (This holds because every internal vertex of CT

has at most one such leaf child.)

(4) CT has at most 2h
leaves.

For simplicity of presentation, in the following description of the protocol, some actions are described as
actions taken by the vertices of CT . These actions are actually simulated by the corresponding representatives.
E,g., when we say that a vertex x ∈ CT sends a message to its parent y in CT , we actually mean that Rep(x)
delivers a message to Rep(y) along the unique path from Rep(x) to Rep(y).3

5 A randomized TD protocol in the message passing model

In this section we consider the message passing model of communication. Given a tree network T of size n, a
parameter k, and a sufficiently small failure probability q, namely 0 < q < 1/ log k, we construct a random-
ized TD protocol for T that admits O(log k log2 log(1/q)) average message complexity on expectation. We
recall that our randomized protocol operates against an adaptive adversary, in the sense that the adversary’s
decisions may depend on previous coin tosses made by the protocol.

For simplicity of presentation, we avoid concurrency issues and describe our protocol assuming that the
events occur ”one-by-one”, namely, that an event occurs only after the protocol has finished its operations in
response to previous events. The protocol adapts to the general case (in which events may occur very fast or
even simultaneously at different nodes) in a rather standard fashion, using locks and handshake procedures.
However, to describe this adaptation, several technicalities need to be addressed, which make the description
cumbersome and may distract the reader from the main combinatorial ideas. The more detailed description is
thus deferred to the full version of this paper. Let us begin with an overview.

We assume a given level-h separator decomposition, where h is proportional to log log(log k/q). Let
CT be the resulting implicit component tree. Every vertex x at height i in CT tries to maintain a one-sided
(1+O(1/h))i+1-estimation of the number of events that occurred in C(x). Unfortunately, in the randomized
setting, these estimations are not necessarily as claimed at all times. To overcome this obstacle, our analysis
relies on employing Chernoff’s bound on the sum of a carefully chosen set of random variables, for making
sure that the vertices at the higher heights of CT maintain such an estimation with high probability, at least
as long as the number of events that occurred is sufficiently large. In particular, if the number of events
that occurred throughout the tree is close to k, then the root z of CT maintains a constant estimation of this
number with high probability. As explained later in Section 5.2, the specific choice of the (independent)
random variables is one of the most technically challenging issues handles with in the current paper.

To obtain the desired estimations, each node keeps track of the number of events that occurred at itself.
Consider some leaf � in CT . In order to maintain the above mentioned estimations, a new event that occurs at a
node in the component C(�) tosses a biased coin and with probability proportional to 2h/k, counts the number
of events that occurred in C(�). If this number indicates that the estimation criterion at the leaf is violated,
then this triggers a procedure that propagates information up the component tree CT until the first ancestor
x of � in CT is found, whose estimation of the number of events in C(x) does not violate the estimation
criterion. Subsequently, the estimations of all descendants of x in CT are updated appropriately.

The above procedure is the heart of the protocol. Once this is established, we can employ a rather standard
3 The construction of the separator decomposition, which is done in the preprocessing stage, can easily guarantee (cf. [7]) also

that the nodes will have the proper knowledge so that such a message can be delivered in T along the unique path from Rep(x) to
Rep(y).

6

procedure that operates in iterations. In each iteration i ≥ 1, we employ the above procedure with some
parameter ki (for the first iteration, we have k1 = k). During iteration i, when the root z finds out that
sufficiently many events have occurred (a constant fraction of k), it signals all nodes to start the next iteration
with a new parameter ki+1 ← ki − k�, where k� is the number of events that actually occurred in iteration
i. Now, if k events have occurred in the network, then after O(log k) such iterations the root z of CT will
know this fact with high probability, and hence can “safely” signal termination. We now turn to describe the
protocol in detail.

5.1 The randomized protocol

Black and white events. For simplicity of the presentation, we assume that n and k are both powers of 2
(this assumption can be easily removed using standard techniques). Fix h = �log log(log k/q)+ log(1740)−
3 − log log e�. Each node v keeps track of the number of events that occurred at itself. The protocol colors

each event in either black or white. Informally, black events can be thought of as events which were already
“counted” by the protocol while white events are still “unknown”. When a new event occurs it is first colored
white until, after a while, the protocol colors it black. A black event remains black through the end of the
execution.

Consider some vertex x at height i. Let �B(x) denote the current number of black events that occurred in
the nodes of C(x), and let

��B(x) = max
�

�B(x),
k

2h−i

�
.

The vertex x stores4 a variable η(x) that, as shown later, serves as a one-sided (1 + λ/h)i+1-estimation of
��B(x), where λ is a constant to be determined later on. That is, the variable η(x) satisfies the inequalities

b�B(x)
(1+λ/h)i+1 ≤ η(x) ≤ ��B(x). Initially, the variable η(x) is set to k

2h−i . (Note that if x is the root then η(x) is
initially set to k/2.)

In addition, each internal vertex x with children w1, w2, · · · , wt keeps a copy of the variable η(wi), for
each 1 ≤ i ≤ t, and sets η̃(x) =

�
t

i=1 η(wi). (Informally, η̃(x) is the sum of estimates of x’s children,
and thus may be a slightly more updated estimate of ��B(x) than η(x); a large ratio between η̃(x) and η(x)
indicates that many events occurred in C(x) since the last time η(x) was updated, and thus a new update
procedure is required.) The variable η̃(�) for a leaf � is initially set to η̃(�) = η(�).

The Count&Color subroutine. A basic ingredient of the protocol is a simple subroutine called
Count&Color. When initiated at some vertex x, the subroutine invokes broadcast and upcast operations in
C(x) (cf. [14]); the broadcast operation colors black all the events it encounters (that way, upon the com-
pletion of the broadcast, it is guaranteed that all the events in C(x) that occurred prior to the initiation of
the procedure are colored black) and the upcast operation counts the number of black events it ‘sees’ and
informs this number to x. Thus, upon the termination of Count&Color, vertex x knows the precise number
of events that occurred in C(x); since at that time all these events are colored black, this number is precisely
�B(x).

The Ignition procedure. Consider some leaf � in CT . The nodes assigned to � (recall that every node
is assigned to some leaf) are involved in the following probabilistic process. Each new event occurring at
a node u in C(�) (which is colored white) invokes procedure Ignition that works as follows. Node u

tosses a biased coin and with probability π = ln(30)2h+7/k sends an Ignition signal to � (again, the signal
4Recall that, in fact, it is the node Rep(x) in T that actually stores the variable η(x).

7

is actually sent to Rep(�)) instructing it to invoke Count&Color. Subsequently, when Count&Color is
completed, � sets η̃(�) = ��B(�). This is referred to as an ignition of that event at leaf �.

The Find Pivot procedure. For every internal vertex x, fix τ(x) = η(x) · (1 + λ/h). Find Pivot is
invoked at x whenever η̃(x) > τ(x). Informally, the role of the procedure is to correct the estimation of��B(x)
stored in the variable η(x) of x, if this estimation violates the proper estimation criterion.

Consider an invocation of Find Pivot at vertex x of height i. The procedure first invokes Procedure
Update Estimations (to be described soon) at x. In particular, Update Estimations updates η(x)
to be precisely ��B(x). If x is not the root, then Find Pivot continues by informing x’s parent y about the
new estimation η(x). (Recall that to implement the signal delivery from x to y, a signal in T is delivered from
Rep(x) to Rep(y). If x is of height i, then the distance between x and y is at most |C(x)| = O(n/2h−i).) In
turn, when the parent y receives this signal it updates its own copy of that η(x) variable. This update incurs
also an update to η̃(y) which may trigger the invocation of Find Pivot at y.

Now suppose that x is the root of CT . As before, Update Estimations is invoked at x, but this time
if η(x) > k/2 (which means that at least k/2 events occurred), then a new iteration of the protocol starts by
invoking Restart (to be described soon) at x.

The Update Estimations procedure. When invoked at vertex x, Procedure Update Estimations
first invokes Count&Color and then, as its name implies, updates the estimations of x and all its descen-
dants. More precisely, if w is either x or one of its descendants in CT , then the variable η(w) is updated so
that η(w) = ��B(w). These updates can be implemented using a broadcast and upcast operations in which the
number of events in each component C(w) is collected at w (note that at this time, all these events are black).

The Restart procedure. Recall that Restart is invoked at the root z only when η(z) = ��B(x) is
calculated and satisfies ��B(x) > k/2. First, if ��B(x) actually satisfies ��B(x) ≥ k, then a termination signal is
broadcast throughout T . Otherwise, we set k ← k−��B(x) and restart the protocol with the new parameter k.
(For that, we do not need to build a new component tree, however we do need to inform all nodes of the new
parameter k, and instruct them to initialize their estimations and ignore previous events.)

5.2 Success probability

Note that by the description of the protocol, termination is not signaled unless the number of events κ exceeds
k. Our goal now is to prove that with probability at least 1− q, if κ ≥ k, then within finite time, a termination
signal is broadcast. A time t is called quiet if all actions of the protocol in response to previous events have
been completed. (Recall that in this extended abstract we assume that a quiet time must exist between the
occurrences of any two consecutive events.)

We now show that at any quiet time, η(x) serves as a one-sided (1 + λ/h)i+1-estimation of ��B(x) for
every vertex x of height i in CT . Initially, before any event occurs, we have η(x) = ��B(x) = k

2h−i . Note that
a variable η(x) may change only when Update Estimations is invoked at x or at one of its ancestors in
CT . When such a procedure is completed, we have η(x) = ��B(x), and therefore η(x) ≤ ��B(x) at all times.
On the other hand, observe that at any quiet time, we have ��B(�) = η̃(�) ≤ τ(�) = η(�)(1 + λ/h), for any
leaf �. Assume now, by induction on i, that for every internal vertex x at height i with children w1, . . . , wt,
we have at any quiet time, for every 1 ≤ j ≤ t, ��B(wj)/(1 + λ/h)i ≤ η(wj). Therefore at any quiet time,

��B(x)/(1 + λ/h)i =
t�

j=1

��B(wj)/(1 + λ/h)i ≤
t�

j=1

η(wj) = η̃(x) ≤ τ(x) = η(x)(1 + λ/h) .

It follows that at any quiet time, η(x) serves as a one-sided (1+λ/h)i+1-estimation of ��B(x) for every vertex

8

x of height i in CT . Taking λ ≤ ln(3/2)
1+1/h establishes the following.

Observation 5.1. At any quiet time, the root r admits a one-sided (3/2)-estimation of��B(r). Thus, if �B(r) ≥
k/2, then the root admits a one-sided (3/2)-estimation of �B(r) (which is the number of black events in T).

By the definition of Find Pivot, procedure Restart is not invoked unless the number of (black)
events that occurred in the tree is at least k/2. Fix ξ = k/2h+3. For any choice of r ∈ Z≥0, we would like
to bound the probability that the protocol did not invoke Restart after any of the first k + rξ new-coming
events. (Taking r = 0 would suffice for the purposes of proving an upper bound on the failure probability
of the protocol; however, we aim towards a more general claim which will be used to bound the expected
average message complexity.) Observation 5.1 guarantees that as long as the root did not invoke Restart,
the number of black events that occurred in T is (strictly) smaller than 3

2 · k

2 = 3k/4. Therefore for the sake
of analysis, we shall ignore the invocations of Restart on behalf of the protocol and bound the probability
that k + rξ events occurred throughout T and yet, less than 3k/4 of them are black.

To avoid dealing with the exact manner in which the protocol colors the events, we consider a slightly
more general framework. An adversary inserts k + rξ balls (corresponding to new-coming white events)
into ν bins (corresponding to the ν ≤ 2h leaves of the component tree — see Observation 4.1) denoted by
�1, . . . , �ν . From time to time, the content of one of the bins is emptied into a pool (this corresponds to
coloring the nodes black). The act of emptying a bin into the pool is triggered in one of two ways: (i) a new
ball inserted into bin � ignites with probability π = ln(30)2h+7/k, in that case it causes � to be emptied ; or
(ii) the adversary may empty a bin, whenever it wishes to do so. Our goal is to bound the probability that less
than 3k/4 balls end up in the pool. Recall, the adversary is adaptive in the sense that its next decisions may
depend on previous coin tosses (that determined which of the previous balls ignited).

Fix some bin � and consider a sequence of ξ = k/2h+3 balls inserted into � one after the other. Let A be
the event that at least one of the last ξ/16 balls ignited (once again, ξ/16 is a power of 2). Clearly, if A occurs,
then more than 15ξ/16 balls of the sequence end up in the pool. Let mj be the total number of balls that were
inserted into bin �j throughout the adversarial scenario. Assume first that the adversary is obliged to ensure
that mj = 0 mod ξ for every 1 ≤ j ≤ 2h . Under this assumption, we shall partition the balls inserted into
bin �j to ξ-sequences and consider each ξ-sequence separately. If event A does not occur for some ξ-sequence
in bin �, then we will not count its balls in the pool even if some ball in a later sequence ignites and they do
end up in the pool. Moreover, when calculating the number of balls that end up in the pool, we do not count
any of the last ξ/16 balls in a sequence. Obviously, our account for the number of balls in the pool, referred
to as the conservative account, is dominated by the actual number of balls in the pool.

Let Bs be the event that subject to the conservative account, less than s balls end up in the pool. Our goal
now is to prove that P[B3k/4+2hξ] < (q/ log k) · exp(−Ω(r)), under the assumption that mj = 0 mod ξ for
every 1 ≤ j ≤ ν.

Let S and S� be two different ξ-sequences (not necessarily in the same bin). We say that S precedes S� if
the adversary inserted the first ball of S into its bin before it did so with the first ball of S�. By defining the
precedence operator, we impose a total order on the ρ = k+rξ

ξ
= 2h+3 + r ξ-sequences in the scenario. Let

S1, . . . , Sρ be the ξ-sequences ordered in accordance to the precedence operator. For i = 1, . . . , ρ, define the
indicator random variable Xi so that Xi = 1 if event A occurs for sequence Si; Xi = 0 otherwise. (Recall
that A is the event that at least one of the last ξ/16 balls of the ξ-sequence ignited.) Let X =

�ρ

i=1 Xi.

A key observation in our analysis is that the random variables X1, . . . ,Xρ are independent5 and identically
distributed with P[Xi = 1] = 1 − (1 − π)ξ/16 = 1 − (1 − ln(30)2h+7/k)k/2h+7 ≥ 29/30. Each ξ-

5 It is interesting to point out that if the precedence operator is not defined with respect to the first ball in the ξ-sequence, but rather,
say, with respect to the last ball, then we cannot guarantee that the random variables X1, . . . , Xρ are independent. The same can be

9

sequence for which event A occurs contributes exactly 15ξ/16 balls to the conservative account. Therefore
if less than 3k/4 + 2hξ balls end up in the pool, then X <

3k/4+2hξ

15ξ/16 = 14 · 2h+3/15. On the other hand,
µ = E[X] ≥ 29 · (2h+3 + r)/30.

Recall that Chernoff’s bound states that P[X < (1 − δ)µ] < exp(−µδ2/2) for every 0 < δ < 1.
Since the event that less than 3k/4 + 2hξ balls end up in the pool implies that X is (strictly) smaller than
(1 − 1/29)µ, we may fix δ = 1/29 and deduce that P[B3k/4+2hξ] < exp

�
−(2h+3 + r)/1740

�
. Since

h ≥ log log(log k/q) + log(1740)− 3− log log e, we obtain P[B3k/4+2hξ] < (q/ log k) · exp(−Ω(r)).

Now, consider the real adversarial scenario in which the mj = 0 mod ξ assumption does not necessarily
hold. For the sake of the analysis, upon completion of the real scenario, we force the adversary to insert
additional dj imaginary balls into bin �j , where dj = min{d ≥ 0 | mj + d = 0 mod ξ}, for every
1 ≤ j ≤ ν. Clearly, the assumption that mj = 0 mod ξ for every 1 ≤ j ≤ ν holds in the resulting
imaginary scenario. However, some imaginary balls may ignite and end up in the pool together with some
real balls that were not suppose to end up in the pool according to the real scenario. To tackle this obstacle,
note that every bin contributes at most ξ more balls (imaginary and real) to the conservative account, thus
if B3n/4 occurs in the real scenario, then B3n/4+2hξ occurs in the imaginary scenario (recall that ν ≤ 2h).
Therefore P[B3k/4] < (q/ log k) · exp(−Ω(r)) in any adversarial scenario.

Recall that Restart is not invoked unless at least k/2 occurred. The above inequality asserts that if the
number of events exceeds k/2 then the probability that Restart is not invoked after finite time is at most
(q/ log k) · exp(−Ω(r)). Note that when Restart is invoked the number of events M is calculated at the
root z. If M ≥ k, then termination is signaled and otherwise, the protocol sets k� ← k − M and a new
iteration of the protocol starts with the new parameter k�. It follows using union bound that if the number
of events exceeds k then the probability that termination is not signaled after at most log k applications of
Restart is at most q · exp(−Ω(r)). We thus obtain the following lemma.

Lemma 5.2. (1) If the protocol signals termination, then the number of events that occurred in T is at least

k; and (2) for every r ∈ Z≥0, the probability that more than k + rξ events occurred and yet the protocol did

not signal termination after finite time is at most q · exp(−Ω(r)).

5.3 The average message complexity

We now analyze the expected average message complexity of our randomized protocol. Specifically,
we prove that the expected number of messages sent (by all nodes) during the whole execution is
O(n log k log2 log(1/q)), i.e., the expected average message complexity is O(log k log2 log(1/q)).

We divide the execution of the protocol to iterations as follows. The first iteration is defined as the time
period from the first time an event occurs until the first application of Restart is completed, and for i > 1,
the ith iteration is defined as the time period between the completions times of the ith and i + 1st iterations.
Since there are at most log k iterations, it remains to show that each iteration of the protocol admits total
message complexity O(n log2 log(1/q)) on expectation.

Consider now an iteration of the protocol. Note that an application of Restart consists of a simple
broadcast operation on T and thus incurs O(n) messages. Apart from that, the messages involved are di-
vided to two types: (a) messages sent during the execution of Ignition; and (b) messages sent during the
execution of Find Pivot.

said if the mj = 0 mod ξ assumption is violated and residual balls are ignored. In fact, in both “alternative” analysis approaches, a
clever adversary may abuse the fact that some of the coin tosses are revealed before the corresponding balls are assigned to a specific
ξ-sequence Si (and hence to a specific random variable Xi).

10

Let us first bound the expected number of messages of the first type, namely the messages resulted from the
different applications of Ignition. Each such application is invoked when a new (white) event is presented
at some node u. Let � denote the leaf such that u is assigned to, i.e., such that u ∈ C(�). In each such
application, a biased coin is tossed and with probability ∼ 2h/k, a signal is delivered from u to Rep(�), and
subsequently, Count&Color is invoked at Rep(�). By Observation 4.1, these operations consist of sending
O(n/2h) messages. Therefore, given that tk events occurred before termination was signaled, we know that
the expected number of messages triggered by all applications of Ignition is O(tn). Let Y be a random
variable denoting the total number of messages triggered by all applications of Ignition throughout the
execution. Let Z be a random variable denoting the number of events that occurred before termination was
signaled. We have

E[Y] =
∞�

j=1

E[Y | Z = j] · P[Z = j] ≤
∞�

t=1

E[Y | Z = tk] · P[(t− 1)k < Z ≤ tk]

≤
∞�

t=1

O(tn) · P[Z > (t− 1)k] = O(n) +
∞�

t=2

O(tn) · P[Z > tk] = O(n) ,

where the last equation follows from Lemma 5.2.

We now turn to bound the number of messages of type (b). Note that each application of Find Pivot
at vertex x of height i consists of invoking Update Estimations at x and then sending a signal from
x to its parent y in CT . An application of Update Estimations at x consists of two broadcast and
upcast operations (one for implementing Count&Color and one for updating the estimates in C(x)). Both
operations are initiated at Rep(x). By observation 4.1, we get that each such application can be implemented
using O(|C(x)|) = O(n/2h−i) messages. In addition, by Observation 4.1, the signal delivery from x to its
parent in CT also consists of sending O(n/2h−i) messages. If follows that the number of messages sent by
an application of Find Pivot at vertex x of height i is O(n/2h−i).

Recall that Find Pivot is invoked at vertex x of height i only when η̃(x) > τ(x) = η(x)(1 + λ/h).
Since η(x) ≥ k/2h−i, we obtain the following.

Observation 5.3. Consider an invocation of Find Pivot at some vertex x of height i. The number of new

events which occurred at C(x) since the last invocation of Find Pivot was completed at x or at one of x’s

ancestors in CT (or since the beginning of the execution if we consider the first invocation of Find Pivot
at x) is Ω

�
k

h2h−i

�
. (Note that all these events are now colored black.)

Since the number of black events is always at most 3k/4, Observation 5.3 implies that the number of
invocations of Find Pivot at vertices of height i is O(h2h−i) for each i. Each such invocation incurs
O(n/2h−i) messages. Therefore, the average number of messages (per node) resulted from the invocations
of Find Pivot at height i vertices is O(h) for each i. Summing over all heights, we conclude that the
average number of messages resulted from all invocations of Find Pivot is O(h2). By the choice of h =
O(log log(log k/q)), we conclude that during each iteration, our protocol admits expected average message
complexity O(log2 log(log k/q)). Since q < 1/ log k, we obtain the following.

Theorem 5.4. Given the parameter k and failure probability 0 < q < 1/ log k, there exists a randomized TD

protocol on an n-node tree with expected average message complexity O(log k log2 log(1/q)).

By setting q = 2− logc
n for any constant c > 1, we get the following.

Corollary 5.5. Given the parameter k, there exists a randomized TD protocol on an n-node tree that fails

with negligible probability (i.e., asymptotically smaller than the reciprocal of any polynomial in n) and incurs

O(log k log2 log n) expected average message complexity.

11

6 A deterministic TD protocol in the transmissions model

In this section we show how to translate our randomized protocol from the previous section to obtain a deter-
ministic TD protocol that operates in the transmissions model of communication and admits O(log2

n log2
k)

maximum transmission complexity.

Consider the randomized protocol given by Theorem 5.4. Observe that by choosing π = 1 we get that
every new-coming event ignites (with probability 1) and the protocol becomes deterministic. Also note that
by choosing h = log n+1 we get that |C(�)| = 1 for every leaf � ∈ CT . Therefore Ignition does not incur
any communication even though each event ignites. Moreover, we get that for every vertex x, Rep(x) ∈ C(x).

We now give a simple method for transforming this deterministic protocol to operate under the trans-
missions model. Note that the communication between nodes is done by three basic sub-protocols, namely,
broadcast and upcast sub-protocols performed on some component, and a signal delivery sub-protocol that
delivers a signal between two designated nodes (along the shortest path). Observe that for every vertex x,
a broadcast operation invoked at x is actually initiated at the representative Rep(x) ∈ C(x) of C(x). To
implement this broadcast in the transmissions model, Rep(x) simply attaches the identity of C(x) to the
broadcast message, and then only nodes that belong to C(x) and hear this message for the first time continue
their corresponding actions in this broadcast operation. Similarly, note that in the message passing model,
the upcast operation on C(x) consists of sending at most one message M(u) from each node u in C(x) to
one of its neighbors v. To translate this sub-protocol to the transmissions model, node u simply attaches the
identity of v to M(u) and transmits this new combined message; when v hears this message it continues
accordingly, while every other neighbor of u ignores it. This method also explains how to adapt the signal
delivery sub-protocol to the transmissions model.

We now turn to analyze the maximum transmission complexity of our new deterministic protocol. Simi-
larly to the analysis in Section 5.3, we divide the execution of the protocol to at most log k iterations. We show
that each iteration of the protocol admits O(log2

n log k) maximum transmission complexity. Consider now
an iteration of the protocol. Note that an application of Restart consists of a simple broadcast operation
on T and thus incurs at most one transmission per node. As mentioned, the applications of Ignition do
not contribute anything to the maximum transmission complexity. It is therefore left to bound the maximum
transmission complexity resulted from applying Find Pivot.

The number of times a node u transmits as a result of applying Find Pivot is asymptotically bounded
from above by the number of times Find Pivot is applied at a vertex x such that u ∈ C(x). Fix height i

and consider some vertex x at height i such that u ∈ C(x). Let t < t� be the two times when two consecutive
applications of Find Pivot at x were completed. Similarly to the proof of Observation 5.3, it follows from
the description of Find Pivot that the number of (black) events in C(x) increased from time t to time t�

by a factor of at least 1 + λ/h . Since the total number of (black) events in the iteration never exceeds 3k/4,
we get that the number of times Find Pivot is invoked at x is O(log1+λ/h k) = O(h log k). Summing
over all heights i, we get that the total number of times Find Pivot is invoked at a vertex x such that
u ∈ C(x) is O(h2 log k) = O(log2

n log k). The maximum transmission complexity in one iteration is thus
O(log2

n log k). The following theorem follows, as there are at most log k iterations.

Theorem 6.1. Consider the transmissions model of communication. Given the parameter k, there exists a

deterministic TD protocol with maximum transmission complexity O(log2
n log2

k).

12

References

[1] Y. Afek, B. Awerbuch, S.A. Plotkin and M. Saks. Local management of a global resource in a commu-
nication network. J. ACM, 43, 1–19, 1996.

[2] Y. Afek and M.E. Saks. Detecting global termination conditions in the face of uncertainty. In Proc. 7th

ACM Symp. on Principles of Distributed Computing, pages 109–124, 1987.

[3] R. Bar-Yehuda and S. Kutten. Fault tolerant distributed majority commitment. J. Algorithms, 9(4), 568–
582, 1988.

[4] G. Bracha and S. Toueg. A distributed algorithm for generalized deadlock detection In 3rd ACM Sym.

on Principles of Distributed Computing, 285–301, 1984.

[5] Y. Emek and A. Korman. New Bounds for the Controller Problem. In Proc. 23rd Int. Symp. on Dis-

tributed Computing, 2009.

[6] E. W. Dijkstra and C. S. Scholten. Termination detection for diffusing computations. Information Pro-

cessing Letters 11(1), 1–4, 1980.

[7] P. Fraigniaud and C. Gavoille. Routing in trees. In Proc. 28th Int. Colloq. on Automata, Languages &

Prog. (ICALP), LNCS 2076, pages 757–772, Springer, 2001.

[8] O. Goldreich and L. Shrira. The effects of link failures on computations in asynchronous rings. In Proc.

5th Annual ACM Symp. on Principles of Distributed Computing, 174–185, 1986.

[9] O. Goldreich and L. Shrira. Electing a leader in a ring with link failures In Acta Informatica 24(1),
79–91, 1987.

[10] A. Korman and S. Kutten. Controller and estimator for dynamic networks. In Proc. 26th ACM SIGACT-

SIGOPS Symp. on Principles of Distributed Computing, pages 175–184, 2007.

[11] A. Korman and D. Peleg. Labeling schemes for weighted dynamic trees. J. Information and Computa-

tion, 205(12), 1721–1740, 2007.

[12] A. Korman and D. Peleg. Dynamic routing schemes for graphs with low local density. ACM Trans. on

Algorithms, 4(4), 2008.

[13] S. Kutten. Optimal fault-tolerant distributed construction of a spanning forest. Inf. Process. Lett., 27(6),
299–307, 1988.

[14] Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia, 2000.

	Introduction
	Preliminaries
	Lower bounds
	A level-h separator decomposition
	A randomized TD protocol in the message passing model
	The randomized protocol
	Success probability
	The average message complexity

	A deterministic TD protocol in the transmissions model

