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Abstract

A central theme in distributed network algorithms concerns understanding and coping with
the issue of locality. Yet despite considerable progress, research efforts in this direction have
not yet resulted in a solid basis in the form of a fundamental computational complexity theory
for locality. Inspired by sequential complexity theory, we focus on a complexity theory for
distributed decision problems. In the context of locality, solving a decision problem requires
the processors to independently inspect their local neighborhoods and then collectively decide
whether a given global input instance belongs to some specified language.

We consider the standard LOCALmodel of computation and define LD(t) (for local decision)
as the class of decision problems that can be solved in t communication rounds. We first study the
intriguing question of whether randomization helps in local distributed computing, and to what
extent. Specifically, we define the corresponding randomized class BPLD(t, p, q), containing all
languages for which there exists a randomized algorithm that runs in t rounds, accepts correct
instances with probability at least p, and rejects incorrect ones with probability at least q. We
show that p2+q = 1 is a threshold for the containment of LD(t) in BPLD(t, p, q). More precisely,
we show that there exists a language that does not belong to LD(t) for any t = o(n) but does
belong to BPLD(0, p, q) for any p, q ∈ (0, 1] such that p2 + q ≤ 1. On the other hand, we show
that, restricted to hereditary languages, BPLD(t, p, q) = LD(O(t)), for any function t, and any
p, q ∈ (0, 1] such that p2 + q > 1.

In addition, we investigate the impact of nondeterminism on local decision, and establish
several structural results inspired by classical computational complexity theory. Specifically,
we show that nondeterminism does help, but that this help is limited, as there exist languages
that cannot be decided locally nondeterministically. Perhaps surprisingly, it turns out that it
is the combination of randomization with nondeterminism that enables to decide all languages
in constant time. Finally, we introduce the notion of local reduction, and establish a couple of
completeness results.
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1 Introduction

1.1 Motivation and Objective

Distributed computing concerns a collection of processors that collaborate in order to achieve
some global task. From a certain perspective, two main disciplines have evolved in the theory
of distributed computing. One discipline deals with timing issues, namely, uncertainties due to
asynchrony (the fact that processors run at their own speed, and possibly crash), and the other
concerns topology issues, namely, uncertainties due to locality constraints (the lack of knowledge
about far away processors)1. Studies carried out by the distributed computing community within
these two disciplines were to a large extent problem-driven. Indeed, several major problems con-
sidered in the literature concern coping with one of the two uncertainties. For instance, in the
asynchrony discipline, Fischer, Lynch and Paterson [17] proved that consensus cannot be achieved
in the asynchronous model, even in the presence of a single fault, and in the locality discipline,
Linial [42] proved that (∆ + 1)-coloring cannot be achieved locally (i.e., in a constant number of
communication rounds) in networks of maximum degree ∆, even in the ring network.

One of the significant achievements of the asynchrony discipline was its success in establishing
several theories in the flavor of computational complexity theory. Some central examples of such
theories are failure detectors [9, 10] and the wait-free hierarchy (including Herlihy’s hierarchy) [30].
Yet despite considerable progress, we are still far from the development of a unified complexity
theory for the asynchrony discipline. The situation is even worse for the locality discipline, which
still suffers from the absence of any basis in the form of a fundamental computational complexity
theory.2

Inspired by sequential complexity theory, we focus on decision problems [11, 25, 29, 32, 35], in
which one is aiming at deciding whether a given global input instance belongs to some specified
language. In the context of local computing, each processor must produce a boolean output, and
the decision is defined by the conjunction of the processors’ outputs, i.e., if the instance belongs
to the language, then all processors must output “yes”, and otherwise, at least one processor must
output “no”. Decision problems provide a framework for developing a complexity theory for local
distributed computing. Indeed, as shown later, one can define local reductions in the framework
of decision problems, thus enabling the introduction of complexity classes, and defining notions of
completeness. In addition, decision problems have several other appealing features, including the
following.

• First, decision problems provide a natural framework for tackling fault-tolerance: the pro-
cessors have to collectively check whether the network is fault-free, and a node detecting a
fault raises an alarm. In fact, this connection between decision problems and fault-tolerance
is one of the pillars enabling the design of efficient self-stabilizing protocols (see, e.g., [34])
where: (1) the presence of some inconsistency in the system should lead some node(s) to

1Note that this dichotomy is not related to the relationships between shared-memory and message-passing. In
fact, these two latter settings have been shown to be essentially the same computationally [4].

2Obviously, defining some common cost measures (e.g., time, message, memory, etc.) enables us to compare
problems in terms of their relative costs. Still, from a computational complexity point of view, it is not clear how to
relate the difficulty of problems in the locality discipline. Specifically, if two problems have different kinds of outputs,
it is not clear how to reduce one to the other, even if they cost the same.
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automatically launch a recovery procedure, but (2) the absence of inconsistencies should not
allow the recovery procedure to run (so that to avoid overloading the system with useless
computations).

• Decision problems are also connected to (fault-free) construction problems. In the former,
one aims at checking whether some instance satisfy some property, while in the latter, one
aims at constructing an instance satisfying that property. Similarly to the sequential setting,
constructing does not necessarily reduce to deciding also in the distributed setting. While
the connection between construction and decision appears to be looser in the distributed
setting compared to the sequential setting, one can still identify cases in which decision helps
construction in the distributed setting. This is for instance the case with various kinds of
randomized iterative distributed algorithms, in the spirit of Luby’s algorithm for MIS or
coloring [45, 49]. The design of such an algorithm relies on the ability of each node to guess a
solution (e.g., a color), and to decide locally whether this choice is valid. Proving that, for a
given problem, the validity of a solution cannot be checked locally implies that this problem
cannot be solved by a randomized algorithm that iteratively guesses solutions. In addition,
some variation of decision algorithms (referred to as pruning algorithms in [36]), have been
shown to be useful for generalizing construction algorithms, by removing dependancies on
global knowledge assumptions [36].

• Last but not least, distributed decision is somewhat related to property-testing [27]. The
objective of the latter is to (sequentially) decide whether a given instance of size n satisfies
some property, or whether it is “far from” satisfying this property, by inspecting o(n) bits of
that instance. Several graph properties, including cycle-freeness [28], can be tested efficiently
based on the ability to query a few random nodes, and inspect their local neighborhood. The
decision is then taken by applying some centralized algorithm over the results of these queries.
So property-testing and distributed decision both rely on the ability to take decisions based
only on a restricted amount of information.

Returning to the setting of this paper, our purpose is to investigate the nature of local distributed
decision problems.

1.2 Framework

We consider the LOCAL model [49], which is a standard distributed computing model capturing
the essence of locality. In this model, processors are woken up simultaneously, and computation
proceeds in fault-free synchronous rounds during which every processor exchanges messages of
unlimited size with its neighbors, and performs arbitrary computations on its data. Informally, for
a function t from the inputs to the integers, let us define LD(t) (for local decision) as the class
of decision problems that can be solved in t communication rounds in the LOCAL model, and
LD(O(t)) =

⋃
c>0 LD(ct). Of special interest is the case where t is constant, namely, the class

LD(O(1)). Nevertheless, in general, we consider any function of the input, i.e., of the graph and
the individual input of each node. Note that in the LOCAL model, every decidable problem can
be solved in a number of rounds equal to the diameter of the input graph.

Some decision problems fall trivially in LD(O(1)) (e.g., “is the given coloring legal?”, “do the
selected nodes form a maximal independent set (MIS)?”, etc.), while some others can easily be
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shown to be outside LD(t) for any t = o(n) (e.g., “is the network planar?”, “is there a unique
leader?”, etc). In contrast to the above examples, there are some languages whose membership in
LD(t) is unclear, even for t = O(1). To elaborate on this, consider the problem where it is required
to decide whether the network belongs to some specified family F of graphs. If this question can
be decided in a constant number of communication rounds, then this means, informally, that the
family F can somehow be characterized by relatively simple (local) conditions. For example, a
family F of graphs that can be characterized as consisting of all graphs having no subgraph from
C, where C is some specified finite set of graphs, is obviously in LD(O(1)). However, the question
of whether a family of graphs can be characterized as above is often nontrivial. For example,
characterizing cographs3 as precisely the graphs with no induced P4 (4-node path), attributed to
Seinsche [53], is not easy, and requires nontrivial usage of modular decomposition.

Moreover, a language not in LD(t) may or may not be decidable locally using randomization. For
example, it is not clear that deciding locally whether a graph is planar can be done probabilistically
in short time. To study such a question, we define, for every p, q ∈ (0, 1], the class BPLD(t, p, q),
as the class of all distributed languages that can be decided by a randomized distributed algorithm
that runs in t communication rounds, and produces correct answers on legal (respectively, illegal)
instances with probability at least p (resp., q). In particular, we study the relationships between
the classes LD and BPLD.

1.3 Our Contributions

We first study the impact of randomization on local decision, and the question we focus on is
whether randomization helps and to what extent. By definition, BPLD(O(t), p, q) ⊇ LD(O(t)) for
every integer function t of the input. We first observe that

p2 + q ≤ 1 =⇒ BPLD(O(t), p, q) 6= LD(O(t))

for every t = o(n). Indeed, for such p and q, there exists a language L∗ ∈ BPLD(0, p, q), such that
L∗ /∈ LD(t), for all t = o(n). It turns out that this choice of p and q is not coincidental. Indeed, we
show that, restricted to hereditary languages, if p2 +q > 1, then BPLD(O(t), p, q) actually collapses
into LD(O(t)), for any function t. That is,

p2 + q > 1 =⇒ BPLD(O(t), p, q) = LD(O(t)).

These results suggest that p2 + q = 1 may well be a sharp threshold for distinguishing the deter-
ministic class from the randomized one.

In the second part of the paper, we investigate the impact of nondeterminism on local decision,
and establish some structural results inspired by classical computational complexity theory. We
start by establishing that nondeterminism does help, but that this help is limited, as there exist
languages that cannot be decided nondeterministically. Specifically, to show that nondeterminism
helps local decision, we prove that the class NLD(t), the nondeterministic version of LD(t), strictly
contains LD(t). More precisely, we prove that

LD(O(t)) 6= NLD(O(t))
3A cograph is a graph that can be generated from one node by complementation (E ←

`
n
2

´
\E) and disjoint union

(G← G1 ∪G2). (For instance, K2 can be obtained by taking the disjoint union of two K1s, complemented).
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for every function t = o(n). This is established by exhibiting a language in NLD(O(1)) that is not
in LD(t) for every t = o(n). On the other hand, we also show that NLD(t) does not capture all
(decidable) languages, for t = o(n). Indeed we prove that there exists a language not in NLD(t) for
every t = o(n). Specifically, this language is GraphSize = {(G, k) s.t. |V (G)| = k}, which requires
the nodes to decide whether the input graph has k nodes, where k is given as input to every node.
Hence

NLD(o(n)) 6= All,

where All is the set of (sequentially decidable) distributed languages.

Perhaps surprisingly, it turns out that it is the combination of randomization with nondetermi-
nism that enables to decide all languages in constant time. To establish this result, we define the
randomized version BPNLD of NLD, in the same way BPLD is defined from LD. Let BPNLD(t) =⋃
p2+q≤1 BPNLD(t, p, q). We prove that BPNLD(O(1)) contains all decidable distributed languages,

i.e.,
BPNLD(O(1)) = All.

Alternatively, by considering oracles providing global information to the nodes, we also show that
if each node can access an oracle that returns the number of nodes in the input graph, then
all languages can be decided in constant time. To establish this result, we define the oracle class
NLDGraphSize(O(1)), which is the class of decision problems that can be solved nondeterministically
in a constant number of communication rounds assuming that each node has access to the oracle
GraphSize. We prove that

NLDGraphSize(O(1)) = All.

To sum up, for every t = o(n), we have

LD(O(t)) ⊂ NLD(O(t)) ⊂ BPNLD(O(1)) = NLDGraphSize(O(1)) = All.

Finally, we introduce the notion of local reduction, and establish some completeness results. We
show that there exists a problem, called Cover, which is, in a sense, the most difficult decision
problem. That is, we show that Cover is BPNLD(O(1))-complete. Interestingly, a small relaxation
of Cover, called Containment, turns out to be NLD(O(1))-complete.

1.4 Related Work

Locality issues have been thoroughly studied in the literature, via the analysis of various construc-
tion problems, including coloring and maximal independent set (MIS) [2, 7, 37, 40, 42, 45, 48],
minimum-weight spanning tree (MST) [15, 39, 50], matching [31, 43, 44, 54], dominating set
[38, 41], spanners [12, 16, 51], etc. For some problems (e.g., coloring [7, 37, 48]), there are still large
gaps between the best known results on specific families of graphs (e.g., bounded degree graphs)
and on arbitrary graphs.

The question of what can be computed in a constant number of communication rounds was posed
in the seminal work of Naor and Stockmeyer [47]. In particular, that paper considers a subclass
of LD(O(1)), called LCL, which is essentially LD(O(1)) restricted to languages involving graphs
of constant maximum degree and processor inputs taken from a set of constant size, and studies
the question of how to compute in O(1) rounds the constructive versions of decision problems
in LCL. The paper provides several general results. In particular, it shows that if there exists
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a randomized algorithm that constructs a solution for a problem in LCL in O(1) rounds, then
there is also a deterministic algorithm constructing a solution for that problem in O(1) rounds.
Unfortunately, the proof of this result relies heavily on the definition of LCL. Indeed, the constant
bound constraints on the degrees and input sizes enable a proof based on a clever use of Ramsey
theory. It is not clear whether it is possible to extend this result to all languages in LD(O(1)).

The question of whether randomization helps in enabling local solutions for construction prob-
lems has been the focus of numerous studies. To date, there exists evidence that, for some problems
at least, randomization does not help. For instance, [46] proves this for 3-coloring on rings. In fact,
for low degree graphs, the gaps between the efficiencies of the best known randomized and de-
terministic algorithms for problems like MIS, (∆ + 1)-coloring, and maximal matching are very
small. On the other hand, for graphs of arbitrarily large degrees, there seem to be indications
that randomization does help, at least in some cases. For instance, (∆ + 1)-coloring can be ran-
domly computed in expected O(log n) communication rounds on n-node graphs [2, 45], whereas the
best known deterministic algorithm for this problem performs in 2O(

√
logn) rounds [48]. (∆ + 1)-

coloring algorithms whose performance is expressed also in terms of the maximum degree ∆ illus-
trate this phenomenon as well. Specifically, it is known that (∆ + 1)-coloring can be randomly
computed in expected O(log ∆ +

√
log n) communication rounds (see [52]) recently improved to

O(log ∆ + eO(
√

log logn)) rounds in [8], whereas the best known deterministic algorithm performs in
O(∆ + log∗ n) rounds [7, 37].

Recently, several results were established concerning decision problems in distributed comput-
ing. For example, [11] and [32] study specific decision problems in the CONGEST model. (In
contrast to the LOCAL model, this model assumes that the message size is bounded by O(log n)
bits, hence dealing with congestion is the main issue.) Specifically, tight bounds are established in
[32] for the time and message complexities of the problem of deciding whether a given subgraph
is an MST of the network, and time lower bounds for many other subgraph-decision problems
(e.g., spanning tree, connectivity) are established in [11]. Decision problems have recently received
attention in the asynchrony discipline too, in the framework of wait-free computing [25, 26].

The theory of proof labeling schemes [29, 33, 34, 35] was designed to tackle the issue of locally
verifying (with the aid of a “proof”, i.e., a certificate, at each node) solutions to problems that
cannot be decided locally (e.g.,“is the given subgraph a spanning tree of the network?”, or, “is it
an MST of the network?”). Investigations in this framework mostly focus on the minimum size of
the certificate necessary so that verification can be performed in a single round [29, 33, 35], or in
t rounds [34]. Hence, the model of proof labeling schemes has some resemblance to our definition
of the class NLD. The notion of proof labeling schemes also has interesting similarities with the
notions of local detection [1], local checking [5], or silent stabilization [14], which were introduced
in the context of self-stabilization [13]. The notion of NLD seems to be also related to the theory
of lifts [3].

The use of oracles that provide information to nodes was studied intensively in the context of
distributed construction tasks. In particular, it was studied in the framework of local computation
with advice. In this framework, MST construction was studied in [22], 3-coloring of cycles in
[19], and broadcast and wake up in [18]. Finally, in [36] it is shown that, in the context of local
computation, access to the oracle providing the number of nodes is not required for solving efficiently
several central problems (e.g., O(∆)-coloring, MIS, etc.), while previous algorithms in the literature
explicitly or implicitly assumed the use of this oracle.
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2 Decision Problems and Complexity Classes

2.1 Model of Computation

Let us first recall some basic notions in distributed computing. We consider the LOCAL model [49],
which is a standard model capturing the essence of locality. In this model, processors are assumed
to be nodes of a network G, provided with arbitrary distinct identities. All processors are woken
up simultaneously. Initially, a processor v ∈ V (G) is aware only of it own identity Id(v) and,
possibly, of some local input x(v). Computation proceeds in fault-free synchronous rounds. In
each round of an algorithm A, every processor v exchanges messages of unrestricted size with its
neighbors in G, and performs computations on its data. The model does not impose any restriction
on the amount of individual computation performed at each node4. In other words, in each round r
during the execution of a distributed algorithm A, every processor v: (1) receives messages from its
neighbors, (2) performs individual computations, and (3) sends messages to its neighbors. After a
number of rounds (that may depend on the network G and may vary among the processors, simply
because nodes have different identities, potentially different inputs, and are typically located at
non-isomorphic positions in the network), every processor v terminates and generates its output.

Consider an algorithm A running in a network G with input x and identity assignment Id. (An
identity assignment for a graph G is an assignment of distinct integers to the nodes of G.) The
output of processor v in this scenario is denoted by outA(G,x, Id, v) (or simply out(v) when the
parameters are clear from the context). The running time of the algorithm at a node v, denoted
by TA,v, is the number of communication rounds until v produces its output. Note that TA,v may
depend on the structure of G, the global input x, and the identity assignment Id. The algorithm’s
running time, denoted by TA, is the number of rounds until all processors terminate. Again, TA
may depend on (G,x, Id), and

TA(G,x, Id) = max
v∈V (G)

{TA,v(G,x, Id)}.

Let C be the collection of all triples (G,x, Id). A runtime function is a function

t : C → ZZ+ .

Let t be a runtime function. We say that an algorithmA has running time at most t, if TA(G,x, Id) ≤
t(G,x, Id), for every (G,x, Id). We shall give special attention to the case where t represents a con-
stant function. Note that, in general, for a given (G,x, Id), the nodes may not be aware of t(G,x, Id)
because it requires the global knowledge of (G,x, Id). On the other hand, if γ = t(G,x, Id) hap-
pens to be known to every node, then without loss of generality one can assume that an algorithm
running in time at most γ operates at each node v in two stages:

1. The node v collects all information available in its γ-neighborhood (i.e., the ball BG(v, γ) of
radius γ around v in G), including input values, identities, and network structure;

2. The node v computes the output locally based on the information collected in Stage 1.
4We would like to point out that imposing restrictions on the time or the memory used by a node for local com-

putation, may lead to interesting connections between the theory of locality and classical computational complexity
theory. (See discussion in Section 5.1).
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In the case of a randomized algorithm, both the running time of a node and the algorithm’s running
time are random variables, whose values depend on the results of mutually independent random
coin flips performed individually at each node.

2.2 Local Decision (LD)

We now refine some of the above concepts. Obviously, a distributed algorithm that runs on a graph
G operates separately on each connected component of G, and nodes of a component G′ of G cannot
distinguish the underlying graph G from G′. For this reason, we consider connected graphs only.

Definition 2.1 An instance is a pair (G,x) where G is a connected graph, and x is a mapping
from V (G) to {0, 1}∗, i.e., every node v ∈ V (G) is assigned as its local input a binary string
x(v) ∈ {0, 1}∗. (In some problems, the local input of every node is empty, i.e., x(v) = ε for every
v ∈ V (G), where ε denotes the empty binary string.)

Since an undecidable collection of instances remains undecidable in the distributed setting too,
we consider only decidable collections of instances. Formally, we define the following.

Definition 2.2 A distributed language is a decidable collection L of instances.

In general, there are several possible ways of representing an instance of a distributed language
corresponding to a standard distributed computing problem. A naturally arising type of decision
languages involves getting as input an x claimed to be the output of some common distributed
computing problem Π on one of its instances, and having to decide whether it is indeed a legal
output for Π. Some examples for languages of this type are given below.

• Consensus = {(G, (x1,x2)) s.t. ∃u ∈ V (G), ∀v ∈ V (G),x2(v) = x1(u)}. This language
consists of all instances in which all nodes agree on the value proposed by one of them.

• k-Coloring = {(G,x) s.t. ∀v ∈ V (G),x(v) ∈ {1, 2, · · · , k}, and ∀w ∈ N(v),x(v) 6= x(w)}
where N(v) denotes the (open) neighborhood of v, that is, all nodes at distance exactly 1
from v. This language consists of all instances in which x is a legal coloring of G with k
colors.

• MIS = {(G,x) s.t. S = {v ∈ V (G) | x(v) = 1} forms a maximal independent set}.

• Tree = {(G, ε); G is a tree, i.e., it is cycle-free}.

• Planar = {(G, ε); G is a planar graph}.

• SpanningTree = {(G, (name, parent)) s.t. T is a spanning tree of G}, where

T = {(v, w) s.t. (v, w) ∈ E(G), and ∀v ∈ V (G),parent(v) = name(w)}.

In other words, SpanningTree consists of all instances such that the set T of edges between
every node v and its neighbor w satisfying name(w) = parent(v) forms a spanning tree of G.
(The language MST, for minimum spanning tree, can be defined similarly).
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Let L be a distributed language. We say that a distributed algorithm A decides L if and only
if, for every instance (G,x), every node of G eventually terminates and outputs “yes” or “no”,
satisfying the following decision rules:

• If (G,x) ∈ L, then for every identity assignment Id, the algorithmA returns outA(G,x, Id, v) =
“yes” for every node v ∈ V (G);

• If (G,x) /∈ L, then for every identity assignment Id, the algorithmA returns outA(G,x, Id, v) =
“no” for at least one node v ∈ V (G).

We are now ready to define one of our main subjects of interest, the class LD(t), for local
decision. (Recall that C denotes the collection of all triples (G,x, Id)).

Definition 2.3 Let t : C 7→ ZZ+ be a runtime function. LD(t) is the class of all distributed
languages that can be decided by a distributed algorithm with running time at most t.

For instance, observe that k-Coloring ∈ LD(1) for every constant k, and similarly MIS ∈ LD(1).
On the other hand, it is not hard to see that languages such as Consensus, Tree, Planar and
SpanningTree are not in LD(t), for any t = o(n).

For every runtime function t, define LD(O(t)) =
⋃
c>0 LD(c·t). Hence, for a distributed language

L and a function t, L ∈ LD(O(t)) if and only if there exists a constant c such that L ∈ LD(c · t).
Let LD = LD(O(1)).

2.3 Nondeterministic Local Decision (NLD)

A distributed verification algorithm is a distributed algorithm A that gets as input, in addition
to an instance (G,x), also a global certificate vector y, i.e., every node v of a graph G gets as its
input two binary strings, an input x(v) ∈ {0, 1}∗ and a certificate y(v) ∈ {0, 1}∗. A verification
algorithm A verifies L if and only if, for every instance (G,x), the following two conditions hold:

• If (G,x) ∈ L, then there exists a certificate y such that, for every identity assignment Id, the
algorithm A returns outA(G, (x,y), Id, v) =“yes” for all v ∈ V (G);

• If (G,x) /∈ L, then for every certificate y, and for every identity assignment Id, the algorithm
A returns outA(G, (x,y), Id, v) =“no” for at least one node v ∈ V (G).

One motivation for studying nondeterminism in the above sense comes from settings in which
one must repeatedly perform many local verifications. In such cases, one can afford to have a
relatively “wasteful” preliminary step in which a certificate is computed for each node. Using these
certificates, local verifications can then be performed very fast (see [33, 35] for more details regarding
such applications). Indeed, the definition of a verification algorithm bears close similarities with the
notion of proof labeling schemes discussed therein. The two concepts differ as, in a proof labeling
scheme, the construction of a “good” certificate y for an instance (G,x) ∈ L may depend also on
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the given identity assignment. Instead, in the concept of nondeterminism introduced above, the
“good” certificate y for an instance (G,x) ∈ L should be good for any identity assignment.

Since the question of whether an instance (G,x) belongs to a language L is independent from the
particular identity assignment , we prefer to let the “good” certificate y depend only on the instance.
In other words, as defined above, a verification algorithm operating on an instance (G,x) ∈ L and
a “good” certificate y must lead all nodes to say “yes” regardless of the identity assignment . We
now define the class NLD(t), for nondeterministic local decision. (Our terminology is chosen by
direct analogy to the class NP in sequential computational complexity.)

Definition 2.4 Let t : C 7→ ZZ+ be a runtime function. NLD(t) is the class of all distributed
languages that can be verified by a distributed verification algorithm with running time at most t.
Let NLD = NLD(O(1)).

2.4 Bounded-error Probabilistic Local Decision (BPLD)

A randomized distributed algorithm is a distributed algorithm A that enables every node v, at
any point during the execution, to toss a certain number of random bits. More specifically, in this
paper, randomized computation is represented by considering Monte Carlo algorithms.

Recall that, in sequential computing, a Monte Carlo algorithm is a randomized algorithm whose
running time is deterministic (i.e., independent of the random choices), but whose output may be
incorrect with a certain probability. We extend this concept to the distributed setting, by focus-
ing on distributed algorithms that use randomization but whose running times are deterministic.
Actually, we are more liberal, and allow the running time to depend on the values of the random
bits flipped by the nodes, provided that they obey the simple restriction that the maximum exe-
cution time Tv of node v, over all the values of the random bits flipped by all nodes, is bounded
deterministically (i.e., it depends only of the actual instance (G,x) and identity assignment Id).

For fixed p, q ∈ (0, 1], we say that a randomized distributed algorithm A is a (p, q)-decider for
L, or, that it decides L with “yes” success probability p, and “no” success probability q, if and only
if for every instance (G,x), every node of G eventually terminates and outputs “yes” or “no”, and
the following properties are satisfied:

• If (G,x) ∈ L then, for every identity assignment Id,

Pr[outA(G,x, Id, v) = “yes” for every node v ∈ V (G)] ≥ p.

• If (G,x) /∈ L then, for every identity assignment Id,

Pr[outA(G,x, Id, v) = “no” for at least one node v ∈ V (G)] ≥ q.

where the probabilities in the above definition are taken over all possible coin tosses performed by
the nodes.

Note that the running time of a (p, q)-decider A at a node v depends on the triple (G,x, Id)
and on the results of the coin tosses. In the context of a randomized algorithm A, TA,v(G,x, Id)
denotes the maximal running time of Algorithm A at v over all possible coin tosses, for the instance

9



(G,x), and the identity assignment Id. Then, similarly to the deterministic case, the running time
TA of the (p, q)-decider A is the maximum running time of A over the nodes. Again, by definition
of the distributed Monte-Carlo algorithm, both TA,v and TA are deterministic.

We define the class BPLD(t, p, q), for bounded-error probabilistic local decision, as follows.

Definition 2.5 For p, q ∈ (0, 1] and a runtime function t : C 7→ ZZ+, BPLD(t, p, q) is the class
of all distributed languages that have a randomized distributed (p, q)-decider with running time at
most t (i.e., that can be decided in time at most t by a randomized distributed algorithm with “yes”
success probability p and “no” success probability q).

3 A Sharp Threshold for Randomization

The objective of this section is to address the question of whether randomization helps local dis-
tributed computing, and if so - to what extent. Recall that [47] investigates the question of whether
randomization helps for constructing, in constant time, a solution for a problem in LCL⊂ LD(O(1)).
We stress that the technique used in [47] for tackling this question relies heavily on the definition
of LCL, and specifically, on the fact that only graphs of constant degree and of constant input size
are considered. Hence, it is not clear whether the technique of [47] can be useful for our purposes,
as we impose no such assumptions on the degrees or input sizes. We also note that, although
it seems at first glance that the Lovász local lemma might have been helpful here, we could not
effectively apply it in our proof. Instead, we use a completely different approach. Let us start with
a simple observation. Consider the following language.

Definition 3.1 At-Most-One-Selected (AMOS) = {(G,x) s.t. x : V (G) 7→ {0, 1} and ‖ x ‖1
≤ 1}. Namely, AMOS consists of all instances containing at most one “selected node” (i.e., with
input 1), with all other nodes “unselected” (i.e., having input 0).

By considering the n-node path, one can easily check that AMOS /∈ LD(t), for any t = o(n). (This
holds even if one assumes that the selected nodes can only be the two extremities of the path.)
Yet, we claim that AMOS ∈ BPLD(0, p, q) for every p and q such that p2 + q ≤ 1. Indeed, for such p
and q, we can design the following simple randomized (p, q)-decider algorithm, whose running time
is zero:

• Every unselected node outputs “yes” with probability 1;

• every selected node outputs “yes” with probability p.

Clearly, if the instance has at most one selected node, then all nodes say “yes” with probability at
least p. On the other hand, if there are at least k ≥ 2 selected nodes, that is, if the instance is not
in the language, then the probability that some node says “no” is at least 1 − pk ≥ 1 − p2 ≥ q.
Thus, we obtain the following:

Theorem 3.2 For p and q such that p2 + q ≤ 1, there exists a language L ∈ BPLD(0, p, q), such
that L /∈ LD(t) for any t = o(n).
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In the remainder of the section, we show that, at least for a large class of languages, called
hereditary languages, the bound p2 + q = 1 is actually a sharp threshold.

For a graph G and a subset U ⊆ V (G) of the nodes of G, let G[U ] denote the subgraph of G
induced by the nodes in U . Given an instance (G,x), let x[U ] denote the input x restricted to the
nodes in U . A prefix of an instance (G,x) is an instance (G[U ],x[U ]), where U ⊆ V (G). (Note
that, since an instance always deals with a connected graph, if (G[U ],x[U ]) is a prefix of (G,x),
then G[U ] is connected.)

In what follows, when the instance (G,x) is fixed, we sometimes refer to the prefix (G[U ],x[U ])
informally as “the prefix U”. Moreover, we may informally say, e.g., “U ∈ L,” to mean (G[U ],x[U ]) ∈
L.

Definition 3.3 A language L is hereditary if every prefix of every instance (G,x) ∈ L is also in L.

Coloring and AMOS are clearly hereditary languages. As another example of a hereditary
language, consider a family G of hereditary graphs, i.e., a family closed under vertex deletion.
Then the language {(G, ε) | G ∈ G} is hereditary. Examples of hereditary graph families are planar
graphs, interval graphs, forests, chordal graphs, cographs, perfect graphs, etc. Theorem 3.4 below
asserts that, for hereditary languages, randomization does not help (up to a multiplicative constant)
if one imposes the requirement that the “no” and “yes” success probabilities of the (p, q)-decider
satisfy p2 + q > 1.

Theorem 3.4 Let L be a hereditary language and let t : C 7→ ZZ+ be a runtime function. If
L ∈ BPLD(t, p, q) for constants p, q ∈ (0, 1] such that p2 + q > 1, then L ∈ LD(O(t)).

Informally, the proof of the theorem consists of proving the correctness of a deterministic algo-
rithm that decides L in time O(t). Given an instance (G,x), the proposed deterministic algorithm D
operating at a node v collects the topological information and inputs from the ball BG(v, γ) of ra-
dius γ = O(t) around v, and outputs “yes” at v if and only if BG(v, γ) ∈ L. (Some care is needed
here, since v might not know the time bound t, and therefore, collecting information from a ball
of radius γ = O(t) might potentially be problematic; we ignore this technicality in this informal
sketch.) In proving the correctness of the deterministic algorithm D, one direction is immediate:
the fact that the given language L is hereditary implies that if we start with a legal instance, that is,
(G,x) ∈ L, then every prefix of (G,x) also belongs to L, including in particular the balls BG(v, γ)
for every v, hence in algorithm D, each node outputs “yes”. The difficult task is to show that
one can choose the constant factor hidden in the O(t) notation, such that for any initial illegal
instance, there exists a ball BG(v, γ) of radius γ = O(t) around some node v, such that the prefix
of (G,x) induced by this ball is not in L. Hence, for any instance (G,x) /∈ L, there would exist
a node v, such that under algorithm D, node v outputs “no”. Towards achieving this task, we
first establish Lemma 3.5, which informally states that the union of two legal instances is also legal
provided their intersection is “sufficiently large”. This crucial structural lemma uses the fact that
L ∈ BPLD(t, p, q) for constants p, q ∈ (0, 1] such that p2 + q > 1. Specifically, the question of
how large the intersection needs to be depends on the extent to which p2 + q − 1 is bounded away
from zero. It is interesting to note that Lemma 3.5 does not use the fact that the given language
L is hereditary. To complete the proof, we consider an illegal instance (G,x) /∈ L and assume,
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towards contradiction, that under D every node outputs “yes” (or in other words, BG(v, γ) ∈ L
for every v ∈ V (G)). We then consider the largest prefix U of (G,x) that is legal. This U is not
empty, since by assumption BG(v, γ) ∈ L for every node v. On the other hand, U is not the whole
V (G), since we assume (G,x) /∈ L. Intuitively, if we could choose the constant factor hidden in
the O(t) notation to be large enough so that the intersection of U and the ball BG(v) (for a node
v ∈ U) would be “sufficiently large”, then we could have employed Lemma 3.5 and deduce that
U ∪BG(v, γ) ∈ L. Instead, to deduce that U ∪BG(v, γ) ∈ L, we use a more refined argument that
requires repeated use of Lemma 3.5 on different connected prefixes of U ∪ BG(v, γ). Finally, to
obtain the contradiction, we also make sure that v is chosen close enough to the border of U , so
that U ∪BG(v, γ) strictly contains U , thus contradicting the maximality of U .

We now turn to the formal proof of Theorem 3.4.

Proof. Let us start with some definitions. Let L be a language in BPLD(t, p, q) where p, q ∈ (0, 1],
p2+q > 1, and let t : C 7→ ZZ+ be a runtime function. LetA be a randomized (p, q)-decider algorithm
deciding L, with ”yes” success probability p and ”no” success probability q, whose running time is
at most t, namely, T (G,x, Id) ≤ t(G,x, Id) for every instance (G,x) with identity assignment Id.

For v ∈ V (G), recall that Tv = Tv(G,x, Id) denotes the maximum, over all possible coin tosses,
of the running time of A on v, and that T = T (G,x, Id) denotes the maximum of Tv over all nodes
of G. Note that Tv ≤ T ≤ t(G,x, Id), but it is not assumed that any of these values is initially
known to v. For a given triple (G,x, Id), the radius of a node v, denoted rv = rv(G,x, Id), is the
maximum value of Tu = Tu(G,x, Id) over all nodes u for which v belongs to the ball BG(u, Tu) of
radius Tu around u. (Informally, BG(u, Tu) stands for the collection of nodes that u can possibly
“see” during the execution on (G,x, Id), hence with this terminology, the radius rv is the maximum
running time of a node that can potentially “see” v.) Observe that the radius rv of a node v satisfies
Tv ≤ rv ≤ t(G,x, Id). The radius of a collection of nodes S is rS = maxv∈S{rv}. In particular,
rV (G) = T .

The distance distG(u, v) between two nodes of G is the minimum number of edges in a path
connecting u and v in G. The distance between two subsets U1, U2 ⊆ V is defined as

distG(U1, U2) = min{distG(u, v) | u ∈ U1, v ∈ U2}.

Fix a constant δ such that 0 < δ < p2 + q − 1, and define

λ = 11 · dlog p/log(1− δ)e .

A separating partition of (G,x, Id) is a triplet (S,U1, U2) of pairwise disjoint subsets of nodes such
that S∪U1∪U2 = V , and distG(U1, U2) ≥ λ ·rS . See Figure 1(a). (Observe that rS may depend on
the identity assignment and on the input; Therefore, being a separating partition is not a property
depending only on G). Given a separating partition (S,U1, U2) of (G,x, Id), let Gk = G[Uk ∪ S],
and let xk be the input x restricted to nodes in Gk, for k = 1, 2. Note that the following structural
result does not use the fact that L is hereditary.

Lemma 3.5 For every instance (G,x) with identity assignment Id, and every separating partition
(S,U1, U2) of (G,x, Id), we have

((G1,x1) ∈ L and (G2,x2) ∈ L) ⇒ (G,x) ∈ L.
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Figure 1: Separating partition

Proof. Let (G,x) be an instance with identity assignment Id. Assume, towards contradiction, that
there exists a separating partition (S,U1, U2) of (G,x, Id), such that (G1,x1) ∈ L and (G2,x2) ∈ L,
yet (G,x) /∈ L. (Note, by the way, that the fact that (G1,x1) ∈ L and (G2,x2) ∈ L implies that
both G1 and G2 are connected; However, for the claim to be true, it is not required that G[U1],
G[U2] or G[S] be connected.) Given a vertex u ∈ S, define the level of u as

`(u) = distG(U1, {u}).

For an integer i ∈ [1, λrS ], let Li denote the set of nodes in S of level i (see Figure 1(b)). We
now construct strips made out of 2rS + 1 consecutive levels (see Figure 1(b) again). Formally, for
i ∈ (rS , (λ− 1)rS), let

Si =
i+rS⋃
j=i−rS

Lj .

Finally, for a set of integers I ⊆ (rS , (λ− 1)rS), let

SI =
⋃
i∈I

Si.

In what follows, we focus on the range of levels

R = {2rS + 1, . . . , (λ− 2)rS − 1}.

For a set U ⊆ V (G), let E(G,x, Id, U) denote the event that, when running A on (G,x) with
identity assignment Id, all nodes in U output “yes”. Define I as the set of levels i such that the
probability that some node of Si will say “no” is more than δ. Formally,

I = {i ∈ R | Pr[E(G,x, Id, Si)] < 1− δ}.
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Claim 3.6 There exists some i ∈ R such that i /∈ I.

Proof. Before establishing the claim, we first note that for specifying an execution of A on
(G,x, Id) completely, it is necessary to specify a collection Γ consisting of n sequences of bits
(resulting from random bit choices), one for each node of G, used in that particular execution with
the random choices made by the algorithm. Denote the resulting execution, or run, of algorithm A
by Run(G,x, Id,Γ).

For proving Claim 3.6, we upper bound the size of I by (λ − 4)rS − 2, which is smaller than
|R| = (λ−4)rS−1. This is done as follows. Let µ = 4rS + 1. We first cover the integers in R by at
most µ sets, each of which is µ-apart, that is, the distance between every two integers in the same
set is at least µ. Specifically, for s ∈ [1, µ] and m(S) = d(λ − 8)rS/µe, we define the arithmetic
progression

Js = {s+ 2rS + jµ | j ∈ [0,m(S)]}.

Observe that, as desired, R ⊂
⋃
s∈[1,µ] Js, and Js is µ-apart for each s ∈ [1, µ].

In what follows, fix s ∈ [1, µ] and let J = Js. Since (G1,x1) ∈ L, it follows that

Pr[E(G1,x1, Id, S′)] ≥ p

for every vertex set S′ in G1. Note that SI∩J ⊆ S, and therefore SI∩J is contained in G1, so

Pr[E(G1,x1, Id, SI∩J)] ≥ p .

Observe that for i ∈ R and v ∈ Si, Tv ≤ rv ≤ rS , and hence the Tv-neighborhood in G of every
node v ∈ Si is contained in S, which in turn is contained in G1, hence BG(v, Tv) ⊆ G1. It therefore
follows that for every such v, its view in the first Tv steps of Run(G1,x1, Id,Γ) of A is the same
as in Run(G,x, Id,Γ) of A, provided that the same sequences Γ of random bits were used for the
random choices. Subsequently, since v halts after Tv steps of Run(G1,x1, Id,Γ), it will halt after
Tv steps of Run(G,x, Id,Γ) too. Hence

Pr[E(G,x, Id, SI∩J)] = Pr[E(G1,x1, Id, SI∩J)] ≥ p . (1)

Consider two integers i and j in J . As J is µ-apart, |i−j| ≥ µ. Hence, the distance in G between any
two nodes u ∈ Si and v ∈ Sj is at least 2rS + 1. Thus, the events E(G,x, Id, Si) and E(G,x, Id, Sj)
are independent. It follows by the definition of I, that

Pr[E(G,x, Id, SI∩J)] =
∏
i∈I∩J

Pr[E(G,x, Id, Si)] < (1− δ)|I∩J | . (2)

By (1) and (2), we have that p < (1− δ)|I∩J | and thus |I ∩ J | < log p/ log(1− δ).
Since R can be covered by the disjoint sets Js, for s = 1, . . . , µ, we get that the sets I ∩ Js, for

s = 1, . . . , µ, form a partition of I. As |I ∩ Js| < log p/ log(1− δ) for every s, we have

|I| =
µ∑
s=1

|Js ∩ I| < µ(log p/ log(1− δ)) .

As a consequence, we get that (λ− 4)rS − 1 > |I|. It follows by the pigeonhole principle that there
exists some i ∈ R such that i /∈ I, as desired. This completes the proof of Claim 3.6. �
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Applying Claim 3.6, let us fix i ∈ R such that i /∈ I, and let F = E(G,x, Id, Si). By definition,

Pr[F ] ≤ δ < p2 + q − 1. (3)

Let H1 denote the subgraph of G induced by the nodes in (
⋃i−rS−1
j=1 Lj) ∪ U1. We similarly define

H2 as the subgraph of G induced by the nodes in (
⋃
j>i+rS

Lj) ∪ U2. Note that Si, V (H1), and
V (H2) are pairwise disjoint, Si ∪ V (H1) ∪ V (H2) = V , and for any two nodes u ∈ V (H1) and
v ∈ V (H2) we have dG(u, v) > 2rS . It follows that, for k = 1, 2, the Tu-neighborhood in G of each
node u ∈ V (Hk) equals the Tu-neighborhood in Gk of u, that is, BG(u, tu) ⊆ Gk. To see why, fix
k ∈ {1, 2}. Given u ∈ V (Hk), it is sufficient to show that there is no v ∈ V (H(k mod 2)+1), such
that v ∈ BG(u, Tu). To establish the latter, we observe that if such a vertex v would exist, then
dG(u, v) > 2rS , and thus Tu > 2rS . Since there must exists a vertex w ∈ Si such that w ∈ B(u, Tu),
we would get that rw > 2rS , contradicting the fact that w ∈ S.

Since for k = 1, 2, (Gk,xk) ∈ L, we get

Pr[E(G,x, Id, V (Hk))] = Pr[E(Gk,xk, Id, V (Hk))] ≥ p .

Let F ′ = E(G,x, Id, V (H1) ∪ V (H2)). As the events E(G,x, Id, V (H1)) and E(G,x, Id, V (H2)) are
independent, it follows that Pr[F ′] ≥ p2, that is Pr[F ′] ≤ 1 − p2. Hence, combining this equation
with Eqs. (3), and using union bound, it follows that Pr[F ∨ F ′] < q. Thus,

Pr[E(G,x, Id, V (G))] = Pr[E(G,x, Id, Si ∪ V (H1) ∪ V (H2))] = Pr[F ∧ F ′] > 1− q,

contradicting the assumption that (G,x) /∈ L. This establishes Lemma 3.5. �

Our goal now is to show that L ∈ LD(O(t)) by proving the existence of a deterministic local
algorithm D that runs in time O(t) and recognizes L. (No attempt is made here to minimize
the constant factor hidden in the O(t) notation.) Recall that none of t, T = T (G,x, Id), or
Tv = Tv(G,x, Id) may be known to v. Nevertheless, by inspecting the balls BG(v, 2i) for increasing
i = 0, 1, 2, . . . , each node v can compute an upper bound on Tv, denoted T ∗v , as given by the
following claim.

Claim 3.7 Fix a constant c > 0, and let (G,x) be an instance with an identity assignment Id. In
O(t) time, each node v can compute a value T ∗v = T ∗v (c) such that
(1) c · Tv ≤ T ∗v = O(t), and
(2) Tu ≤ T ∗v for every u ∈ BG(v, c · T ∗v ).

Proof. To establish the claim, observe first that in O(t) time, each node v can compute a value T ′v
satisfying Tv ≤ T ′v ≤ 2t. Indeed, given the ball BG(v, 2i), for some integer i, node v can simulate
all its possible executions of the algorithm by considering all possible trials of the random coins
at nodes in BG(v, r), for 2i−1 < r ≤ 2i. (This is possible because the worst case execution time
Tv over all coin flips is deterministic). The desired value satisfies T ′v = 2i where i is the smallest
integer such that, for a certain r ≤ 2i, all executions of A at v up to round r conclude with an
output at v.

Once T ′v is computed, node v aims at computing T ∗v . For this purpose, it starts again to inspect
the balls BG(v, 2i) for increasing i = 0, 1, 2, . . . , in order to obtain T ′u from each u ∈ BG(v, 2i). (For
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this purpose, it may need to wait until u computes T ′u, but this delays the whole computation by
at most O(t) time.) Now, node v outputs T ∗v = 2i for the smallest i satisfying (1) c · T ′v ≤ 2i and
(2) T ′u ≤ T ∗v for every u ∈ BG(v, c · 2i). For this i, we have 2i = O(t), and thus T ∗v = O(t). This
establishes Claim 3.7. �

Given an instance (G,x) and an identity assignment Id, the deterministic Algorithm D, applied
at a node u, first calculates T ∗u as in Claim 3.7, for c = 6λ. This can be done in O(t) time.
Subsequently, D outputs “yes” if and only if the 2λT ∗u -neighborhood of u in (G,x) belongs to L.
That is,

out(u) = “yes” ⇐⇒ (BG(u, 2λT ∗u ),x[BG(u, 2λT ∗u )]) ∈ L.

Algorithm D is a deterministic algorithm that runs in time O(t). (Recall that L is supposed to
be (sequentially) decidable, so deciding whether (BG(u, 2λT ∗u ),x[BG(u, 2λT ∗u )]) ∈ L can be decided
by every node u.) We claim that D decides L. Indeed, since L is hereditary, if (G,x) ∈ L, then
every prefix of (G,x) is also in L, and thus, every node u outputs out(u) =“yes”. Now consider the
case where (G,x) /∈ L, and assume towards contradiction that by applying D on (G,x) with identity
assignment Id, every node u outputs out(u) =“yes”. Let U ⊆ V (G) be a maximal (under inclusion)
set of vertices such that G[U ] is connected and (G[U ],x[U ]) ∈ L. Obviously, U is not empty, as
(BG(u, 2λT ∗v ),x[BG(u, 2λT ∗v )]) ∈ L for every node u. On the other hand, we have |U | < |V (G)|,
because (G,x) /∈ L.

Let u ∈ U be a node with maximal Tu such that BG(u, 2Tu) contains a node outside U . See
Figure 2 for a graphical representation of node u, and of the sets of nodes used further in the proof.
Define the subgraph of G induced by U ∪ V (BG(u, 2Tu)) as G′ = G[U ∪ V (BG(u, 2Tu))]. Observe
that G′ is connected and that G′ strictly contains U . Our goal is to show that (G′,x[G′]) ∈ L, in
contradiction with the maximality of U .

Let H denote the maximal (under inclusion) graph such that H is connected and

V (BG(u, 2Tu)) ⊂ V (H) ⊆ V (BG(u, 2Tu)) ∪ V (U ∩BG(u, 2λT ∗u )).

Let W 1,W 2, . . . ,W ` be the ` connected components of G[U ] \BG(u, 2Tu), ordered arbitrarily. Let
W 0 be the empty graph, and for k = 0, 1, 2, · · · , `, define the graph

Zk = H ∪W 0 ∪W 1 ∪W 2 ∪ · · · ∪W k.

Observe that Zk is connected for each k = 0, 1, 2, · · · , `, and that Z` = G′. We prove by induction
on k that (Zk,x[Zk]) ∈ L for every k = 0, 1, 2, . . . , `. This will establish the contradiction since,
as we mentioned before, Z` = G′. For the basis of the induction, the case k = 0, we need to show
that (H,x[H]) ∈ L. However, this is immediate by the facts that H is a connected subgraph of
BG(u, 2λt∗u), the instance (BG(u, 2λT ∗u ),x[BG(u, 2λT ∗u )]) ∈ L, and L is hereditary. Assume now
that we have (Zk,x[Zk]) ∈ L for 0 ≤ k < `, and consider the graph Zk+1 = Zk ∪W k+1. Define the
sets of nodes

S = V (Zk) ∩ V (W k+1), U1 = V (Zk) \ S, and U2 = V (W k+1) \ S.

A crucial observation is that (S,U1, U2) is a separating partition of Zk+1. This follows from the
following arguments. Let us first show that rS ≤ T ∗u . By definition, we have Tv ≤ T ∗u , for every
v ∈ BG(u, 6λT ∗u ). Hence, in order to bound the radius of S (in Zk+1) by T ∗u it is sufficient to prove

16



S
U

2Tu

u

Tu*2λ

Tu*6λ W1

W2

W3

U

Figure 2: Illustration of the several node sets used in the proof of Theorem 3.4.

that there is no node w ∈ U \BG(u, 6λT ∗u ) such that BG(w, Tw) ∩ S 6= ∅. Indeed, if such a node w
exists then Tw > 4λT ∗u and hence BG(w, 2Tw) contains a node outside U , in contradiction to the
choice of u, based on the maximality of Tu for this latter property. It follows that rS ≤ T ∗u .

We now claim that distZk+1(U1, U2) ≥ λT ∗u . Consider a simple directed path P in Zk+1 going
from a node x ∈ U1 to a node y ∈ U2. Since x /∈ V (W k+1) and y ∈ V (W k+1), we get that P must
pass through a vertex in BG(u, 2Tu). Let z be the last vertex in P such that z ∈ BG(u, 2Tu), and
consider the directed subpath P[z,y] of P going from z to y. Now, let P ′ = P[z,y] \ {z}. The first
d′ = min{(2λ− 2)T ∗u , |P ′|} vertices in the directed subpath P ′ must belong to V (H) ⊆ V (Zk). In
addition, observe that all nodes in P ′ must be in V (W k+1). It follows that the first d′ nodes of P ′

are in S. Since y /∈ S, we get that |P ′| ≥ d′ = (2λ − 2)T ∗u , and thus |P | > λT ∗u . Consequently,
distZk+1(U1, U2) ≥ λT ∗u ≥ λrS , as desired. This completes the proof that (S,U1, U2) is a separating
partition of Zk+1.

Now, by the induction hypothesis, we have (G1,x[G1]) ∈ L, because G1 = G[U1 ∪ S] = Zk.
In addition, we have (G2,x[G2]) ∈ L, because G2 = G[U2 ∪ S] = W k+1, and W k+1 is a prefix of
G[U ]. We can now apply Lemma 3.5 and conclude that (Zk+1,x[Zk+1]) ∈ L. This concludes the
induction proof. The theorem follows. �
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4 Nondeterminism and Complete Problems

4.1 Separation Results

We first establish two simple separation results, whose proofs use rather standard arguments. Our
first separation result indicates that nondeterminism helps for local decision. Indeed, we show that
there exists a language that belongs to NLD = NLD(O(1)) but not to LD(t) for any t = o(n). The
proof is based on the fact that the language composed of trees cannot be decided locally (because
locally, a cycle looks like a tree). On the other hand, the fact that the underlying graph is a tree
can be verified in 1 round using a certificate at each node v containing the distance from v to a
unique “root” node r. The second separation result shows that nondeterminism helps only up to a
certain extent, as there exists a language which cannot be locally and nondeterministically decided.
Basically, this language consists of graphs where each node has a local input that equals the precise
number of nodes in the graph.

Theorem 4.1 LD(O(t)) 6= NLD(O(t)), for any t = o(n).

Proof. To establish the theorem it is sufficient to show that there exists a language L such that
L /∈ LD(o(n)) and L ∈ NLD(1). Recall that Tree = {(G, ε) | G is a tree}. We first observe that
Tree /∈ LD(o(n)). To see why, consider the cycle C with nodes labeled consecutively from 1 to 4n,
and the two paths P1 and P2 with nodes labeled consecutively 1, . . . , 4n and 2n+1, . . . , 4n, 1, . . . , 2n
respectively, from one extremity to the other. For any algorithm A deciding Tree, all nodes
n+ 1, . . . , 3n output “yes” in instance (P1, ε) for any identity assignment for the nodes in P1, while
all nodes 3n+1, . . . , 4n, 1, . . . , n output “yes” in instance (P2, ε) for any identity assignment for the
nodes in P2. Thus if A runs in o(n) rounds, we get that all nodes output “yes” in instance (C, ε)
for an n-node cycle, with n large enough. This yields a contradiction with the correctness of A.

In contrast, we next show that Tree ∈ NLD(1). The (nondeterministic) local algorithm A
verifying Tree operates as follows. Given an instance (G, ε), the certificate given at node v is
y(v) = distG(v, v̂), where v̂ ∈ V (G) is an arbitrary fixed node. The verification procedure is
then as follows. At each node v, A inspects every neighbor (with its certificates), and verifies the
following:

• y(v) is a nonnegative integer,

• if y(v) = 0, then y(w) = 1 for every neighbor w of v, and

• if y(v) > 0, then there exists a neighbor w of v such that y(w) = y(v)− 1, and, for all other
neighbors w′ of v, we have y(w′) = y(v) + 1.

If G is a tree, then applying Algorithm A on G with the certificate yields the answer “yes” at all
nodes regardless of the given identity assignment . On the other hand, if G is not a tree, then we
claim that for every certificate, and every identity assignment Id, Algorithm A outputs “no” at
some node. Indeed, consider some certificate y given to the nodes of G, and let C be a simple cycle
in G. Assume, for the sake of contradiction, that all nodes in C output “yes”. In this case, each
node in C has at least one neighbor in C with a larger certificate. This creates an infinite sequence
of strictly increasing certificates, in contradiction with the finiteness of C. �
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Theorem 4.2 For any t = o(n), NLD(O(t)) 6= All.

Proof. Let GraphSize = {(G,x) | ∀v ∈ V (G), x(v) = |V (G)|}, i.e., x represents the number of
nodes in the graph. We show that GraphSize /∈ NLD(t), for any t = o(n). Assume, for the sake of
contradiction, that there exists a local nondeterministic algorithm A deciding GraphSize in time
o(n). Let n be the smallest integer such that the running time of A on the instance (C,x) is t < dn4 e
for every identity assignment Id, where C = (u0, u1, . . . , un−1) is the n-node cycle, and x(ui) = n
for every i = 0, . . . , n− 1. We have (C,x) ∈ GraphSize, thus there exists a certificate y such that,
for any identity assignment Id of C, algorithm A outputs outA(C,x,y, Id, ui) =“yes” at each node
ui of C. Now, consider the instance (C ′,x′), where C ′ = (v0, v1, . . . , v2n−1) is the 2n-node cycle,
and for each node vi of C ′, x′(vi). We have (C ′,x′) /∈ GraphSize. Nevertheless, it is possible to
fool Algorithm A as follows. Define the certificate y′ as follows:

y′(vi) = y′(vi+n) = y(ui) for i = 0, 1, . . . , n− 1 .

Fix an identity assignment Id′ for the nodes in V (C ′), and let i ∈ {0, 1, . . . , 2n − 1}. Let us then
define the partial identity assignment Id for C by:

Id(ui+j mod n) = Id′(vi+j mod 2n) and Id(ui−j mod n) = Id′(vi−j mod 2n) for j = 0, . . . ,
⌈n

4

⌉
.

Since A runs in t < dn4 e in (C,x), we have outA(C ′,x′,y′, Id′, vi) = outA(C,x,y, Id, ui) because the
t-neighborhoods of ui mod n in C and vi in C ′ are identical. Therefore, outA(C ′,x′,y′, Id′, vi) =“yes”.
Hence, every node vi outputs “yes” for (C ′,x′) with identity assignment Id′, contradicting the fact
that (C ′,x′) /∈ GraphSize. �

For p, q ∈ (0, 1] and a function t, let us define BPNLD(t, p, q) as the class of all distributed
languages that have a local randomized nondeterministic distributed (p, q)-decider running in time t.
We show that such a combination of randomization with nondeterminism enables to capture all
distributed languages.

Theorem 4.3 Let p, q ∈ (0, 1] such that p2 + q ≤ 1. Then, BPNLD(1, p, q) = All.

Proof. Given an arbitrary language L, let us describe a constant time nondeterministic (p, q)-
decider for it. The certificate of a instance (G,x) ∈ L is a map of G, with nodes labeled by distinct
integers, with labeling λ : V (G) 7→ {1, ..., n}, where n = |V (G)|, together with the inputs of all
nodes in G. In addition, every node v receives the label λ(v) of the corresponding vertex in the
map. More formally, the certificate at node v is y(v) = (G′,x′, i), where G′ is an isomorphic copy
of G with nodes labeled by λ from 1 to n, x′ is an n-dimensional vector such that x′[λ(u)] = x(u)
for every node u, and i = λ(v).

The verification algorithm involves checking that the instance (G′,x′) is identical to (G,x).
This is sufficient because distributed languages are sequentially decidable, hence every node can
individually decide whether (G′,x′) belongs to L or not, once it has secured the fact that (G′,x′)
is the actual instance. It remains to show that there exists a local randomized nondeterministic
distributed (p, q)-decider for verifying that the instance (G′,x′) is identical to (G,x), and running
in time 1.
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The nondeterministic (p, q)-decider operates as follows. First, every node v checks that it has
received the input as specified by x′, i.e., v checks whether x′[λ(v)] = x(v), and outputs “no” if this
does not hold. Second, each node v communicates with its neighbors to check that (1) they all got
the same map G′ and the same input vector x′, and (2) they are labeled the way they should be
according to the map G′. If some inconsistency is detected by a node, then this node outputs “no”.
Finally, consider a node v that passed the aforementioned two tests without outputting “no”. If
λ(v) 6= 1 then v outputs “yes” (with probability 1), and if λ(v) = 1 then v outputs “yes” with
probability p.

We claim that the above implements a nondeterministic distributed (p, q)-decider for verifying
that the instance (G′,x′) is identical to (G,x). Indeed, if all nodes pass the two tests without
outputting “no”, then they all agree on the map G′ and on the input vector x′, and they know that
their respective neighborhood fits with what is indicated on the map5. It follows that (G′,x′) =
(G,x) if and only if there exists at most one node v ∈ G, whose label satisfies λ(v) = 1. This
is precisely the AMOS problem which we already know can be decided by a (p, q)-decider whenever
p2 + q ≤ 1 (see Theorem 3.2). This completes the proof of Theorem 4.3. �

The above theorem guarantees that the following is well-defined. Fix some p, q ∈ (0, 1] such
that p2 + q ≤ 1, and let BPNLD = BPNLD(1, p, q). The next corollary follows from Theorems 4.1,
4.2 and 4.3.

Corollary 4.4 For every t = o(n), we have LD(O(t)) ⊂ NLD(O(t)) ⊂ BPNLD = All.

It turns out that there exist some interesting connections between randomization and oracles,
as far as nondeterministic computing is concerned. Motivated by the numerous examples in the
literature for which the knowledge of the size of the network is required to efficiently compute
solutions of distributed computing problems (cf., e.g., [36, 42, 43, 48]), we specifically focus on the
oracle providing the nodes with the size of the graph. Roughly, we show that such an oracle gives
the same power to nondeterministic distributed computing as randomization does. More precisely,
let NLDGraphSize be the class of languages that can be locally verified by a distributed verification
algorithm enhanced with an oracle for GraphSize (i.e., every node has access to an oracle deciding
GraphSize).

Theorem 4.5 NLDGraphSize = BPNLD = All.

Proof. Let L be a language. The certificate of an instance (G,x) ∈ L is identical to the one in the
proof of Theorem 4.3. We show that verifying that the instance (G′,x′) provided by the certificate
is identical to (G,x) can be done locally, assuming that every node has access to an oracle deciding
GraphSize. The verifying algorithm operates as follows. First, every node queries the oracle to
get the number of nodes n of the actual instance, and a node noticing n 6= |V (G′)| outputs “no”.
Second, every node v checks that it has received the input as specified by x′, i.e., v checks whether
x′[λ(v)] = x(v), and outputs “no” if this does not hold. Third, each node v communicates with its
neighbors to check that (1) they all got the same map G′ and the same input vector x′, and (2)
they are labeled the way they should be according to the map G′. If some inconsistency is detected

5(G′,x′) is actually a lift of (G,x) [3].
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by a node, then this node outputs “no”. We claim that if all nodes pass these three phases without
outputting “no”, then (G′,x′) is identical to (G,x). Indeed, if all nodes pass the three phases
without outputting “no”, then they all agree on the map G′ and on the input vector x′, they know
that the map has the right size, and they know that their respective neighborhood fits with what
is indicated on the map. Let Li be the n-dimensional boolean array such that Li[j] = 1 if and only
if node labeled i has a neighboring node labeled j. Observe that all nodes have received pairwise
distinct labels in their certificate, and that these labels are in [1, n]. Indeed, otherwise, by the fact
that |V (G)| = n, there would be at least one label not assigned to any node, and this fact would
be detected during the third phase of the above algorithm. So Li is defined for every i = 1, . . . , n.
By construction, the n × n matrix M whose ith row is Li is the adjacency matrix of both G and
G′. Thus, G and G′ are isomorphic. This completes the proof of Theorem 4.5. �

4.2 Completeness Results

Let us define a notion of reduction that fits with the class LD.

Definition 4.6 For two languages L1 and L2, we say that L1 is locally reducible to L2, denoted
by L1 � L2, if there exists a constant time local algorithm A such that, for every instance (G,x)
and every identity assignment Id, A produces out(v) ∈ {0, 1}∗ as output at every node v ∈ V (G)
so that

(G,x) ∈ L1 ⇐⇒ (G, out) ∈ L2 .

By definition, LD(O(t)) is closed under local reductions, that is, for every two languages L1 and
L2 satisfying L1 � L2, if L2 ∈ LD(O(t)) then L1 ∈ LD(O(t)).

It is somewhat surprising that even under this very weak notion of reduction there exists a
problem which is, in some sense, the “most difficult” decision problem. The corresponding language,
called Cover is defined as follows. Every node v of the input graph G is given as input a pair
x(v) = (E(v),S(v)), where E(v) is an element and S(v) is a finite collection of sets. The instance
(G,x) is in Cover if and only if there exists a node v such that one set in S(v) equals the union of
all the elements given to the nodes. Formally,

Cover = {(G, (E ,S)) | ∃v ∈ V (G), ∃S ∈ S(v) s.t. S = {E(u) | u ∈ V (G)}} .

Theorem 4.7 Cover is BPNLD-complete.

Proof. The fact that Cover ∈ BPNLD follows from Theorem 4.3. To prove that Cover is BPNLD-
hard, we consider some L ∈ BPNLD and show that L � Cover. For this purpose, we describe
a local distributed algorithm A transforming any instance for L into an instance for Cover while
preserving membership. Let (G,x) be an instance for L and let Id be an identity assignment.
Algorithm A operating at a node v outputs a pair (E(v),S(v)), where E(v) is the “local view” at v
in (G,x), i.e., the star subgraph of G consisting of v and its neighbors, together with the inputs of
these nodes and their identities, and S(v) is the collection of sets S defined as follows. For a binary
string x, let |x| denote its length in bits. For every vertex v, let

width(v) = 2|Id(v)|+|x(v)|.
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Node v first generates all instances (G′,x′), where G′ is a graph with k ≤ width(v) vertices and x′

is a collection of k input strings of length at most width(v), such that (G′,x′) ∈ L. For each such
instance (G′,x′), node v generates all possible identity assignments Id′ to V (G′) such that for every
node u ∈ V (G′), |Id(u)| ≤ width(v). Now, for each such pair of a graph (G′,x′) and an identity
assignment Id′, algorithm A associates a set S ∈ S(v) consisting of the k = |V (G′)| local views of
the nodes of G′ in (G′,x′). We show that

(G,x) ∈ L ⇐⇒ (G, outA) ∈ Cover.

If (G,x) ∈ L, then by the construction of Algorithm A, there exists a set S ∈ S(v) such that
S covers the collection of local views for (G,x), i.e., S = {E(u) | u ∈ G}. Indeed, the node v
maximizing width(v) satisfies

width(v) ≥ max{Id(u) | u ∈ V (G)} ≥ n and width(v) ≥ max{x(u) | u ∈ V (G)}.

Therefore, that specific node has constructed a set S that contains all local views of the given
instance (G,x) and Id assignment. Thus (G, outA) ∈ Cover.

Now consider the case that (G, outA) ∈ Cover. In this case, there exists a node v and a set
S ∈ S(v) such that S = {E(u) | u ∈ G}. Such a set S is the collection of local views of nodes
of some instance (G′,x′) ∈ L and some identity assignment Id′. On the other hand, S is also the
collection of local views of nodes of the given instance (G,x) ∈ L and identity assignment Id. It
follows that (G,x) = (G′,x′) ∈ L. �

Finally, finding an NLD-complete problem was not an easy task. Eventually, we managed to
find a problem, called Containment, which is NLD-complete. Somewhat surprisingly, the definition
of Containment is quite similar to the definition of Cover. Specifically, as in Cover, every node v
is given as input a pair x(v) = (E(v),S(v)), where E(v) is an element and S(v) is a finite collection
of sets. However, in contrast to Cover, the union of these inputs is in the language Containment
if there exists a node v such that some set in S(v) contains the union of all the elements given to
the nodes. Formally, define

Containment = {(G, (E ,S)) | ∃v ∈ V (G), ∃S ∈ S(v) s.t. S ⊇ {E(u) | u ∈ V (G)}}.

Theorem 4.8 Containment is NLD-complete.

Proof. We first prove that Containment is NLD-hard. Let L ∈ NLD. We show that L �
Containment. For this purpose, we describe a local distributed algorithm A transforming any
instance for L to an instance for Containment while preserving membership.

Let t ≥ 0 be some (constant) integer such that there exists a local nondeterministic algorithm N
deciding L in time at most t. Let (G,x) be an instance for L and let Id be an identity assignment.
Algorithm A operating at a node v outputs a pair (E(v),S(v)), where E(v) is the “t-local view”
at v in (G,x), i.e., the ball of radius t around v, BG(v, t), together with the inputs of these nodes
and their identities, and S(v) is the collection of sets S defined as follows. We set width(v) as in
the proof of Theorem 4.7. Node v first generates all instances (G′,x′) where G′ is a graph with
k ≤ width(v) vertices, and x′ is a collection of k input strings of length at most width(v), such that

22



(G′,x′) ∈ L. For each such instance (G′,x′), node v generates all possible identity assignments Id′

to V (G′) such that for every node u ∈ V (G′), |Id(u)| ≤ width(v). Now, for each such pair of a
graph (G′,x′) and an identity assignment Id′, algorithm A associates a set S ∈ S(v) consisting of
the m = |V (G′)| t-local views of the nodes of G′ in (G′,x′).

We show that: (G,x) ∈ L ⇐⇒ A(G,x) ∈ Containment.

If (G,x) ∈ L, then by the construction of Algorithm A, there exists a set S ∈ S(v) such that S
covers the collection of t-local views for (G,x), i.e., S = {E(u) | u ∈ G}. Indeed, as in the proof of
Theorem 4.7, the node v maximizing width(v) satisfies

width(v) ≥ max{Id(u) | u ∈ V (G)} ≥ n and width(v) ≥ max{x(u) | u ∈ V (G)}.

Therefore, that specific node has constructed a set S that precisely corresponds to (G,x) and
its given Id assignment; hence, S contains all corresponding t-local views. Thus, A(G,x) ∈
Containment.

Now consider the case that A(G,x) ∈ Containment. In this case, there exists a node v and
a set S ∈ S(v) such that S ⊇ {E(u) | u ∈ G}. Such a set S is the collection of t-local views of
nodes of some instance (G′,x′) ∈ L and some identity assignment Id′. Since (G′,x′) ∈ L, there
exists a certificate y′ for the nodes of G′, such that when algorithm N operates on (G′,x′,y′), all
nodes say “yes”. Now, since S contains the t-local views of nodes (G,x), with the corresponding
identities, there exists a mapping φ : (G,x, Id) → (G′,x′, Id′) that preserves inputs and identities.
Moreover, when restricted to a ball of radius t around a vertex v ∈ G, φ is actually an isomorphism
between this ball and its image. We assign a certificate y to the nodes of G: for each v ∈ V (G),
y(v) = y′(φ(v)). Now, Algorithm N when operating on (G,x,y) outputs “yes” at each node of G.
By the correctness of N , we obtain (G,x) ∈ L.

We now show that Containment ∈ NLD. For this purpose, we design a nondeterministic local
algorithm D that decides whether an instance (G,x) is in Containment. Such an algorithm D
is designed to operate on (G,x,y), where y is a certificate. The instance (G,x) satisfies that
x(v) = (E(v),S(v)). Algorithm A aims at verifying whether there exists a node v∗ with a set
S∗ ∈ S(v∗) such that S∗ ⊇ {E(v) | v ∈ V (G)}. Given a correct instance, i.e., an instance (G,x),
we define the certificate y as follows. For each node v, the certificate y(v) at v consists of several
fields, specifically,

y(v) = (yc(v),ys(v),yid(v),yl(v)).

The candidate instance field yc(v) is a triplet yc(v) = (G′,x′, Id′), where (G′,x′) is an isomorphic
copy (G′,x′) of (G,x) and Id′ is an identity assignment for the nodes of G′. The candidate set
field ys(v) is a copy of S∗, i.e., ys(v) = S∗. In addition, let u and u∗ be the nodes in (G′,x′)
corresponding to v and v∗, respectively. The candidate identity field yid(v) is yid(v) = Id′(u), and
the candidate leader field yl(v) is yl(v) = Id′(u∗).

We describe the operation of Algorithm D on some triplet (G,x,y). First, each node v verifies
that it agrees with its neighbors on the candidate instance and candidate set fields in their cer-
tificates. That way, if all nodes say “yes” then we know that all nodes hold the same candidate
instance which is some triplet (G′,x′, Id′), and the same candidate set S′. Second, each node verifies
that E(v) ∈ S′. Also, each node checks that it agrees with its neighbors on the candidate leader
field in their certificates. I.e, that there exists some integer k such that for all nodes v we have
yl(v) = k. Each node v checks that there exists a node u∗ ∈ V (G′) such that Id′(u∗) = k, and that
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there exists a node v′ ∈ V (G′) such that yid(v) = Id′(v′). Moreover, node v verifies that the input
x′ at v′ contains a collection of sets S ′(v′) that contains S′, that is, S′ ∈ S ′(v′). Finally, each node
v verifies that its immediate neighborhood BG(v, 1) agrees with the corresponding neighborhood
of v′ in G′, and that the candidate identities yid(w) of its neighbors w ∈ BG(v, 1) are compatible
with the corresponding identities Id′(w′) in G′. We term this verification the neighborhood check
of v.

It is easy to see that when applying Algorithm D on a correct instance, together with the
certificate described above, each node outputs “yes”. We now show the other direction. Assume
that Algorithm D applied on some triplet (G,x,y) outputs “yes” at each node, our goal is to show
that (G,x) ∈ L. Since all nodes say “yes” on (G,x,y), it follows that the certificate y(v) at every
node v ∈ V (G) contains the same candidate instance field (G′,x′, Id′), the same candidate set S′

and the same pointer Id′(v′) to a vertex v′ ∈ G′, such that S′ ∈ S(v′). Since each node v ∈ V (G)
verifies that E(v) ∈ S′, it follows that S′ ⊇ {E(v) | v ∈ V (G)}. It remains to show that there exists
a node v∗ ∈ V (G) such that S′ ∈ S(v∗). This follows by the neighborhood checks of all nodes. �

5 Discussion and Future Work

This paper aims at making a first step in the direction of establishing a complexity theory for local
distributed computing in networks. We conclude the paper by discussing several important issues
related to our work and listing some open problems.

5.1 Connection to Sequential Complexity Theory

Our model of computation, namely, the LOCAL model, focuses on difficulties arising from pure
locality issues, and abstracts away other complexity aspects. Naturally, it would be very interest-
ing to come up with a rigorous complexity framework taking into account also other complexity
measures. In particular, it would be interesting to investigate the connections between classical
computational complexity theory and local complexity theory. A possible approach that may pro-
vide a bridge for connecting the two theories can be based on imposing constraints on the individual
computational power at each node in each round, at least asymptotically, e.g., requiring the com-
putations performed individually at a node in one round to be at most polynomial, or exponential,
etc. (Note that the reduction in the proof of Theorems 4.7 and 4.8 may require exponential local
computations). Also, one could restrict the memory used by a node, in addition to, or instead of,
bounding its local computational power. Finally, it would be interesting to come up with a complex-
ity framework taking also traffic congestion into account. (This can be done by, e.g., considering
the CONGEST model).

Note that the framework studied in this paper requires each node to make its decisions based
on a computation performed by an algorithm. Relaxing the framework by enabling the use of
noncomputable functions may change the nature of the study. The reader is referred to [20], which
discusses the power of allowing the nodes to access oracles returning the values of noncomputable
functions.
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5.2 Role of Identities

The LOCAL model assumes pairwise distinct identities given to the nodes. It is known that these
identities play an important role in the context of construction algorithms, i.e., algorithms in which
every node u must compute some output x(u) so that (G,x) ∈ L, where L is some distributed
language specifying the task to be performed (e.g., coloring). In particular, the presence of distinct
identities enables the nodes to break symmetry, which is crucial for many tasks (e.g., leader election,
maximal independent set, coloring, etc.). On the other hand, identities do not seem to play such
a significant role in the context of decision algorithms. In particular, all algorithms designed
for decision in this paper, including the deterministic algorithm resulting from derandomization
technique in the proof of Theorem 3.4, no longer use identities once the nodes have collected all
the information available in their t-neighborhood. In fact, the role of the identities in the context
distributed local decision was studied explicitly in [21], where it is proved that identities play no
role for large classes of decision problems, or when nodes possess specific information about their
environment (e.g., their total number). On the other hand, it has been recently proved [20] that
identities do play a role in general. That is, there exist distributed languages that can be decided
by an algorithm that makes use of identities, but not by any identity-oblivious algorithm (i.e., one
whose outputs at every node are identical for all possible identity assignments).

The role of the identities is made more explicit in the context of verification (or nondeterministic
decision) algorithms, that is, when every node is given a certificate (or a guess). In this context,
the distributed algorithm is in charge of verifying that these certificates collaboratively form a
proof that the given instance belongs to the considered language. The behavior of such verification
algorithms differs significantly according to whether or not the certificates depend on the identities.
In this paper, the certificates are not a function of the identities, and two instances (G,x) that are
the same except for the node identities associate the same certificate with each node. In contrast,
in the framework of proof-labeling schemes [29, 33, 35], the certificates may vary depending on the
node identities, enabling to verify all languages in a single round [35].

5.3 Role of Randomization

Many interesting questions are left open. First, an intriguing question is whether or not Theorem 3.4
holds also for non-hereditary languages. In addition, it would be interesting to investigate the
connections between BPLD(t, p, q) for different p and q such that p2 +q ≤ 1. (A simple observation
shows that BPLD(t, p, q) ⊆ BPLD(t, pk, 1−(1−q)k), for every integer k. Indeed, given an algorithm
with “yes” and “no” success probabilities p and q, one can modify the success probabilities by
performing k runs and requiring each node to individually output “no” if it decided “no” on at least
one of the runs. In this case, the “no” success probability increases from q to at least 1− (1− q)k,
and the “yes” success probability then decreases from p to pk.) The reader is referred to [23]
for some recent advances regarding these questions. Another interesting question is whether the
phenomenon we observed regarding randomization occurs also in the nondeterministic setting, that
is, whether (even for a restricted family of languages) BPNLD(t, p, q) collapses into NLD(O(t)), for
p2 + q > 1.
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