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Classify Definable subsets of topological spaces
X a 2nd countable T0 topological space:

A countable basis of open sets,
Two points which have same neighbourhoods are equal.

Borel sets are naturally classified according to their definition

Σ0
1(X ) = {O ⊆ X | X is open},

Σ0
2(X ) =

{⋃
i∈ω Bi

∣∣ Bi Boolean combination of open sets
}
,

Π0
α(X ) =

{
A{
∣∣ A ∈ Σ0

α(X )
}
,

Σ0
α(X ) =

{⋃
i∈ω Pi

∣∣ Pi ∈
⋃
β<α Π0

β(X )
}
, for α > 2.

All these classes are pointclasses, i.e.
if f : X → X is continuous and
A ∈ Γ then f −1(A) ∈ Γ.
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Wadge reducibility

Let X be a topological space, A,B ⊆ X .
A is Wadge reducible to B, or A ≤W B,
if there is a continuous function f : X → X
that reduces A to B, i.e. such that
f −1(B) = A or equivalently

∀x ∈ X
(
x ∈ A ←→ f (x) ∈ B

)
.

Bill Wadge
The idea is that the continuous function f reduces
the membership question for A to the membership question for B.

The identity on X is continous, and
continuous functions compose, so

Wadge reducibility is a quasiorder on subsets of X that refines the
Baire hierarchy. Pointclasses are simply initial segments of ≤W .



Hierarchies?

On Polish 0-dimensional spaces,
Wagde reducibility ≤W yields a
nice and well understood hierarchy,
by results of Wadge, Martin, Monk,
Louveau, Duparc and others.
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Thanks to a game theoretic
formulation of the reduction.

“The Wadge hierarchy
is the ultimate analysis of
P(ωω) in terms of
topological complexity...”

Andretta and Louveau.

Applications to Computer Science:
Duparc, Finkel, Ressayre...

And Automata Theory in particular:
Perrin, Pin, Facchini...



Outside Polish 0-dimensional spaces
On non 0-dimensional spaces,
the Wadge reducibility ≤W
yields no hierarchy in general,
by results of Schlicht, Hertling,
Ikegami, Tanaka, Grigorieff,
Selivanov and others.
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There can be very few
continuous maps...

Recall that
D2(Σ0

1) = {U ∩ V { | U,V ∈ Σ0
1}.

Theorem (Ikegami, 2010)
The poset (P(ω),⊆fin) embeds
into (D2(Σ0

1(R)),≤W ).

Notice that (P(ω),⊆fin) contains
descending chains and antichains
of size ℵ1.

Theorem (Schlicht, 2012)
In every non 0-dimensional metric
space, there exists a
≤W -antichain of size 2ℵ0 among
the D2(Σ0

1).



Consider more general reductions

Reduction by continuous functions yield a nice hierarchy of subsets
of Polish 0-dimensional spaces, but not in arbitrary spaces, so we
may ask:

Is the continuous function the right notion of reduction to
study topological complexity in a more general context?

Motto Ros, Schlicht and Selivanov have considered
Reducibility by reasonably discontinuous functions.

We propose to weaken the second fundamental concept at stake,
namely the concept of function:

reducibility by relatively continuous relations.



Reductions
Fix sets X ,Y , and subsets A ⊆ X , B ⊆ Y .
A reduction of A to B is a function f : X → Y such that

∀x ∈ X
(
x ∈ A↔ f (x) ∈ B

)
.

A total relation from X to Y is a relation R ⊆ X × Y with
∀x ∈ X ∃y ∈ Y R(x , y), in symbols R : X ⇒ Y .

Definition
A reduction of A to B is a total relation R : X ⇒ Y such that

∀x ∈ X ∀y ∈ Y
(

R(x , y)→
(
x ∈ A↔ y ∈ B

))
,

or equivalently

∀x ∈ X
(

x ∈ A ∧ R(x) ⊆ B
)
∨
(

x ∈ A{ ∧ R(x) ⊆ B{
)

where R(x) = {y ∈ Y : R(x , y)}.



Reductions, basic properties

Basic Properties
Let A ⊆ X, B ⊆ Y , C ⊆ Z, and R : X ⇒ Y , T : Y ⇒ Z:

If R reduces A to B and T reduces B to C, then

T ◦ R = {(x , z) : ∃y ∈ Y R(x , y) ∧ T (y , z)}

reduces A to C.

Let R be a class of total relations from X to X with
1 the identity on X belongs R,
2 R is closed under composition.

For A,B ⊆ X ,

A R-reducible to B ←→ ∃R ∈ R R reduces A to B

This defines a quasi-order ≤R on subsets of X .



Reductions, basic properties

∀x ∈ X ∀y ∈ Y
(

S(x , y)→
(
x ∈ A↔ y ∈ B

))
.

Basic Properties
Let A ⊆ X, B ⊆ Y , R, S : X ⇒ Y :

If R ⊆ S and S reduces A to B, then R also reduces A to B.

Let R be a class of total relations from X to X with
1 the identity on X belongs R,
2 R is closed under composition.

Let R =
{

S : X ⇒ X : ∃R ∈ R R ⊆ S
}

, then for any A,B ⊆ X ,

A R-reducible to B ←→ A R-reducible to B

So as far as reducibility is concerned, we can always consider
upward closed classes of total relations.



Admissible representations
Let f , g :⊆ ωω → X be partial maps.
Say f continuously reduces to g , f ≤C g , if

∃ a continuous r : dom f → dom g
∀α ∈ dom f f (α) = g ◦ r(α).

ωω

X
ωω

g

f
r

Proposition (Kreitz, Weihrauch, Schröder)
Let X be 2nd countable T0. There exists a partial map
ρ :⊆ ωω → X such that

ρ is continuous (and surjective),
ρ is ≤C -greatest among continuous partial functions, i.e.
∀ continuous f :⊆ ωω → X, f ≤C ρ.

Such a map is called an admissible representation of X.

This concept is fundamental to the approach to computable
analysis called Type-2 Theory of Effectivity.



Examples of admissible representations

1 Let Q = {qn | n ∈ ω}. A sequence (xk)k∈ω is said to be
rapidly Cauchy if i < j → d(xi , xj) ≤ 2−i .
The Cauchy representation σR :⊆ ωω → R is defined by

σR(α) = x ←→
{(

qα(k)
)

k∈ω is rapidly Cauchy
and limk→∞ qα(k) = x .

2 The enumeration representation of the Scott domain P(ω) is
the total function ρEn : ωω → P(ω) defined by

ρEn(x) = {n | ∃k xk = n + 1}.

3 If (Vn)n∈ω is a basis for X , then one can take ρ :⊆ ωω → X :

ρ(α) = x ←→ {α(k) : k ∈ ω} = {n : x ∈ Vn}.



Relatively continuous functions

Let X , Y be 2nd countable T0 spaces.
A map f : X → Y is relatively continuous if
for some (hence any) admissible representations ρX , ρY
there exists a continuous F : dom ρX → dom ρY such that

∀α ∈ dom ρX f ◦ ρX (α) = ρY ◦ F (α)

X Y
x f (x)

α F (α)
ωω ωω

f

F

ρX ρY

Proposition
Let X ,Y be 2nd countable T0.
A map f : X → Y is relatively
continuous iff it is continuous.



Admissible representability and dimension
A space is 0-dimensional if it admits a basis of clopen sets.

Theorem
Let X be a 2nd countable T0 space. The following are equivalent.

1 X is 0-dimensional.
2 X admits an injective admissible representation.

So in case X is not 0-dimensional, there is no injective admissible
representation of X .

X

x

ωω

α

β

X

y
z

ωω

F (α)
F (β)

a continuous function

??



Relatively continuous relations
Definition (Brattka, Hertling, Weihrauch)
X ,Y 2nd countable T0 spaces.
A total relation R : X ⇒ Y is relatively continuous if
for some (hence any) admissible representations ρX , ρY
there exists a continuous F : dom ρX → dom ρY such that

∀α ∈ dom ρX R
(
ρX (α), ρY (F (α))

)
Basic Properties

1 graphs of continuous functions are relatively continuous.
2 relatively continuous relations compose.
3 If R, S : X ⇒ Y , R relatively continuous and R ⊆ S,

then S is also relatively continuous.

In a 0-dimensional space X , for R : X ⇒ X :

R is relatively continuous ←→ R admits a continuous
uniformising function.



Reduction by relatively continuous relations
Definition
Let X be 2nd countable T0, A,B ⊆ X .
A is reducible to B, A 4 B, if there exists a relatively continuous
relation R : X ⇒ X that reduces A to B.

Basic Properties
1 4 is a quasiorder on subsets of X.
2 If A ≤W B, then A 4 B.
3 For any admissible representation ρ of X , A 4 B iff there

exists F : dom ρ→ dom ρ continuous such that

∀α ∈ dom ρ
(
ρ(α) ∈ A ←→ ρ(F (α)) ∈ B

)
.

If X is 0-dimensional: A ≤W B ↔ A 4 B, that is
Wadge reducibility = reducibility by relativ. cont. relations.



Baire classes again

A result due to Saint Raymond gives

Theorem
Let X be a 2nd countable T0 space, ρ :⊆ ωω → X an admissible
representation of X. For any countable α > 0 and A ⊆ X

A ∈ Σ0
α(X ) ←→ ρ−1(A) ∈ Σ0

α(dom ρ).

de Brecht showed that this also holds for Hausdorff-Kuratowski
difference classes.

Corollary
Let X be 2nd countable T0 and Γ be Σ0

α(X ) or Π0
α(X ).

Then B ∈ Γ and A 4 B imply A ∈ Γ.

The Baire classes are not only initial segments for ≤W but for 4
too.



A game for the reduction
Let X be a 2nd countable T0, ρ :⊆ ωω → X an admissible
representation of X , and A,B ⊆ X .

We define a perfect information two players game Gρ(A,B) as
follows

I : α0 α1 α2 α3 · · · α ∈ ωω

II : β0 β1 β2 β3 · · · β ∈ ωω

Player II wins if either α 6∈ dom ρ, or if α ∈ dom ρ, β ∈ dom ρ and

ρ(α) ∈ A ←→ ρ(β) ∈ B.

Proposition
If Player II has a winning strategy, then A 4 B.
If Player I has a winning strategy, then B 4 A{.



Borel representable spaces

Definition
A 2nd countable T0 space X is called Borel representable space if
there exists an admissible representation ρ of X whose domain is
Borel (in ωω).

Borel representable spaces include
every Borel subspace of any Polish space,
i.e. every Borel subspace of [0, 1]ω.
every Borel subspace of any quasi-Polish space,
i.e. every Borel subspace of P(ω) with the Scott topology.

Most (all?) properties of Wadge reducibility on 0-dim Polish
spaces extends to arbitrary Borel representable spaces via the
reducibility by relatively continuous relations.



The nice picture regained

Using Determinacy of Borel games (Martin) and the exact same
proof as in the case of the Wadge reducibility on the Baire space,
we obtain:

Theorem
Let X be Borel representable.

1 For every Borel sets A,B ⊆ X, either A 4 B or B 4 A{
(so antichains have size at most 2).

2 4 is well founded on Borel sets.
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