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If N(eq) = eN(g) holds for some e € Q,
then S is some quotient of ( Mg n )4.
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Let S=( Q:w = N(w) )4 with a normalisation N : Q* — Q*.
Such a normalisation (Q,N) is quadratic when ;" determined by N = N|ga.

/ :
The breadth of (Q,N) is: J,/%/‘// M

maxyegs min{f: N(w) = ﬁ&%_/ (w)}, maxyegz min{{:N(w)= Nal/_/ (W)})

length £ length £

top-approximation bottom-approximation

If N(eq) = eN(q) holds for some e € Q,| If N has|breadth at most (4, 3)}

then S is some quotient of ( Mg )4+. | then ( Mg n )4 is some quotient of S.
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Let S=( Q:w = N(w) )4 with a normalisation N : Q* — Q*.

Such a normalisation (Q,N) is quadratic when ;" determined by N = N|ga.

For N(s) = s,---s1 and N(sq) = gns), - - - s7, we obtain diagrammatically:

st ) s]

S1 S2 Sn
QAl—’lhﬂj—*ch Qn—l%qn

st sh s,

We deduce o4(s1 - sn) =

s;--- sy forany g € Q.

top-approximation

bottom-approximation
If N(eq) = eN(g) holds for some e € Q,| If N has breadth at most (4, 3),
then S is some quotient of ( Mg )4+. | then ( Mg n )4 is some quotient of S.
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Every finite monoid J is an automaticon monoid:
> let (J,N) verify N(xy) = 1(xy) for every (x,y) € J?;

ic ICALP WK



Every finite monoid J is an automaticon monoid:
> let (J,N) verify N(xy) = 1(xy) for every (x,y) € J?;
> its breadth is (3,2), implying Condition (@ ).
AN
/ / 1
// \
< &l / 7
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Every finite monoid J is an automaticon monoid:
o let (J,N) verify N(xy) = 1(xy) for every (x,y) € J?;
> its breadth is (3,2), implying Condition (@ ).

The bicyclic monoid B = (a,b:ab=1)} is not an automaton monoid:
> let ({a,b,1},N) with N(ab) = 11, N(x1) = 1x, and N(xy) = xy;
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Every finite monoid J is an automaticon monoid:
> let (J,N) verify N(xy) = 1(xy) for every (x,y) € J?;
> its breadth is (3,2), implying Condition (@ ).

The bicyclic monoid B = (a,b:ab=1)} is not an automaton monoid:
> let ({a,b,1},N) with N(ab) = 11, N(x1) = 1x, and N(xy) = xy;
> its breadth is (3, 4), contradicting Condition (®).
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(a,b|ab=a)}
Q={a, b, 1}
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(a,b|ab=a)}
Q={a, b, 1}
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Baumslag-Solitar Artin-Krammer
BS'(1,0) = (ab|ab=a)t :AKi([; }D

ic ICALP 7/8



Baumslag-Solitar Artin-Krammer

BSI(1,0)= {ablab=a)} =AKi([} I])

BS1(3,2) = ( a,b | ab® = b%a )}
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Baumslag-Solitar Artin-Krammer
BS'(1,0) = (ab|ab=a)t :AKi([; }D

BS1(3,2) = ( a,b | ab® = b%a )}
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Baumslag-Solitar Artin-Krammer
BS'(1,0) = (ab|ab=a)t :Am@ }D

BS1(3,2) = ( a,b | ab® = b%a )}

)

® ®
) .\ ® <K
—¢ @ &
There exists a group-embeddable automaticon monoid
@

whose enveloping group is not an automaticon groupJ
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Baumslag-Solitar Artin-Krammer
BS'(1,0) = (ab|ab=a)t :AKi(@ }D

BS1(3,2) = ( a,b | ab® = b%a )}

P (e
O—e_® s

—¢ @ &
There exists a group-embeddable automaticon monoid
@ whose enveloping group is not an automaticon group

BS}(m, n) is an automaticon monoid
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Baumslag-Solitar Artin-Krammer

BSI(1,0)= {ablab=a)} =AKi([} 1))

BS1(3,2) = ( a,b | ab® = b%a )} AK}F( F : gD = <a, b, c
2 41

B
* .f:;.f'

BS}(m, n) is an automaticon monoid l
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Baumslag-Solitar Artin-Krammer

BSI(1,0)= {ablab=a)} =AKi([} 1))

):<a,b,c

3 2
13
41

BSY(3,2) = (a,b | ab® = b%a )! AKi( L

B
* .f:;.f'

BS}(m, n) is an automaticon monoid l
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Baumslag-Solitar Artin-Krammer

BSI(1,0)= {ablab=a)} =AKi([} 1))

BS1(3,2) = ( a,b | ab® = b%a )} AK}F( F : gD = <a, b, c
2 41

B
* .f:;.f'

BS}(m, n) is an automaticon monoid l
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Baumslag-Solitar Artin-Krammer

BSI(1,0)= {ablab=a)} =AKi([} 1))

1 3 2 1 AR abab = aba \ !
BS+(3,2):(a,b|ab =b a>+ AK_,_([; 411 ﬂ) = a,b,c ac =ca

becbe = beb [ +

<

&) o
BS}(m, n) is an automaticon monoid l AK(T) is an automaticon monoid I
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automaton

AIM Self-similar groups
& conformal dynamics Gri orchuk groups

ta-Sidki groups
a,b|ab=1b"a)

Kourovka notebook

finite semigroups
bicyclic monoid free (abelian) semigroups

automatic
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automaton

AIM Self-similar groups
& conformal dynamics Gri orchuk groups

ta-Sidki groups
a,b|ab=1b"a)

Kourovka notebook

finite semigroups
bicyclic monoid free (abelian) semigroups
Artin or Garside monoids
Baumslag-Solitar monoids
Kauffman monoids Artin-Krammer monoids
“2....y plactic or Chinese monoids

automatic
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The plactic monoid of rank n is

Jr
ZXy_Xzy fOI' X<y z
In—<1<<n p >

yxz =yzx forx<y<z
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The plactic monoid of rank n is

Jr
ZXy_XZy fOI' X<Y z
In—<1<<n p >

yxz =yzx forx<y<z

Then P, is also generated by the family Q of columns,
defined to be strictly decreasing products of elements of {1,...,n}.
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The plactic monoid of rank n is

Jr
ZXy_Xzy fOI' X<y z
In—<1<<n p >

yxz =yzx forx<y<z

Then P, is also generated by the family Q of columns,
defined to be strictly decreasing products of elements of {1,...,n}.

Cain Gray Malheiro 2014

P, is an automatic monoid
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The plactic monoid of rank n is

—+ ~
= <
P,,:<1<-~-<n ZXy = XZy forx_y<z> x -
yxz =yzx forx<y<z
z y z y
Then P, is also generated by the family Q of columns, - =

defined to be strictly decreasing products of elements of {1,...,n}.

Cain Gray Malheiro 2014

P, is an automatic monoid
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The plactic monoid of rank n is
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P,,:<1<~'<n ZXy = XZy forx_y<z>' x -

yxz =yzx forx<y<z

Then P, is also generated by the family Q of columns, =
defined to be strictly decreasing products of elements of {1,...,n}.

Cain Gray Malheiro 2014

P, is an automatic monoid

w »~ O
N O
= w &~ O
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= <
P,,:<1<-~-<n ZXy = XZy forx_y<z> x -
yxz =yzx forx<y<z
z y z y
Then P, is also generated by the family Q of columns, - =

defined to be strictly decreasing products of elements of {1,...,n}.

Cain Gray Malheiro 2014

P, is an automatic monoid
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The plactic monoid of rank n is
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yxz =yzx forx<y<z
z y z y
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The plactic monoid of rank n is

+
= <
P,,:<1<~'<n ZXy = XZy forx_y<z>' x -

yxz =yzx forx<y<z

Then P, is also generated by the family Q of columns, =
defined to be strictly decreasing products of elements of {1,...,n}.

Cain Gray Malheiro 2014

P, is an automatic monoid
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Then P, is also generated by the family Q of columns, - =
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The plactic monoid of rank n is

+
= <
P,,:<1<~'<n ZXy = XZy forx_y<z>' x -

yxz =yzx forx<y<z

z y z y
Then P, is also generated by the family Q of columns, =
defined to be strictly decreasing products of elements of {1,...,n}.
Cain Gray Malheiro 2014
P, is an automatic monoid P, is an automaton monoid
-— — -—
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The plactic monoid of rank n is

+
= <
P,,:<1<-~-<n ZXy = XZy forx_y<z>' x -

yxz =yzx forx<y<z

Then P, is also generated by the family Q of columns, =
defined to be strictly decreasing products of elements of {1,...,n}.

Cain Gray Malheiro 2014
P, is an automatic monoid P, is an automaton monoid

The Chinese monoid of rank n is

C,,=<1<--~<n‘ ZyX = ZXy = yZX forx§y§z>+.
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The plactic monoid of rank n is

—+ ~
= <
P,,:<1<-~-<n ZXy = XZy forx_y<z> x -
yxz =yzx forx<y<z
z y z 'y
Then P, is also generated by the family Q of columns, . T B

defined to be strictly decreasing products of elements of {1,...,n}.

Cain Gray Malheiro 2014
P, is an automatic monoid P, is an automaton monoid

The Chinese monoid of rank n is

C,,=<1<--~<n‘ ZyX = ZXy = yZX forx§y§z>+.

Then C,, is generated by Q = {x:n>x>1}U{yx:y > x}

Cain Gray Malheiro 2016

C,, is an automatic monoid
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The plactic monoid of rank n is

+
= <
P,,:<1<-~-<n ZXy = XZy forx_y<z> x -

yxz =yzx forx<y<z

Then P, is also generated by the family Q of columns, =
defined to be strictly decreasing products of elements of {1,...,n}.

Cain Gray Malheiro 2014
P, is an automatic monoid P, is an automaton monoid

The Chinese monoid of rank n is

C,,=<1<--~<n‘ ZyX = ZXy = yZX forx§y§z>+.

Then C, is generated by O = {x:n>x>1}U{yx:y>x} U {x" n>x > 1}

Cain Gray Malheiro 2016
C, is an automatic monoid C,, is an automaton monoid
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. _ 1
B3 = < 01,02 : 010201 = 020102 >+

21
33
11 O
33 @ 0
Z, 22 12 (Z *7, B3)/ Z(B3)
12

3

12 R 13
2 @@ o > 2

33 ~_
23 31
202 213
v 0o
\/’
11

32
101

Independently, Lavrenyuk, Mazorchuk, Oliynyk, and Sushchansky (2005)
gave 3-letter Mealy automata for o1 (14 states) and o> (13 states).
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The semigroup XX

T={(a,b,c,d,a',b',c',d :ab=1cd,a'b' =c'd,a'd=c'b ),
is known by Malcev work to be cancellative but not group-embeddable:

a b

from these three relations, X

we cannot deduce the relation ad’ = cb’
that holds in the enveloping group.

For instance, the quadratic normalisation ({a,b,c,d,a’,b’,c’,d’'},N) defined by
N(ab) = cd, N(a'd’)=c'd’, and N(a'd)=c'b,

has breadth (2,2), hence satisfies Condition (®).
Moreover, T admits several elements that escape the normalisation N.
Therefore Main Theorem applies: T is an automaticon semigroup.

This answers in particular a question by Alan J. Cain.
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Any Q-words inducing a same action (on 1¢ for instance) are N-equivalent.
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do b
\4 N 4 N d ; /
9 qy j/ i

Assume N(ab) = N(cd) = ab. Let u=qv € Q" for some n >0 and g € Q.
We prove both o,,(u) = oc4(u) (coordinatewise) and 7,(ab) =y Tu(cd) by
induction on n > 0.
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