

(semi)groups acting on regular rooted trees

- ▷ recognize a language of normal forms

- b define sequential transformations
- represent the elements themselves

▷ recognize a lang

▷ execute the (ser

4

Groups defined by automata

Laurent Bartholdi

Pedro V. Silva

Automatha Handbook Jean-Éric Pin Editor

Contents

1	The	geometry of the Cayley graph)2
	1.1	History of geometric group theory)3
	1.2	Automatic groups)5
	1.3	Main examples of automatic groups)8
	1.4	Properties of automatic groups	0
	1.5	Word-hyperbolic groups	1
	1.6	Non-automatic groups	4
2	Grou	ips generated by automata 11	5
	2.1	Main examples	8
	2.2	Decision problems	20
	2.3	Bounded and contracting automata	20
	2.4	Branch groups	22
	2.5	Growth of groups	23
	2.6	Dynamics and subdivision rules	25
	2.7	Reversible actions	27
	2.8	Bireversible actions	28
Re	References		31
-			_

formations

themselves

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

2 / 8

$$\mathcal{M} = (Q, X, au, \sigma)$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

2 2 3 1 ...

a

picantin@irif.fr

automaticon semigroups

ICALP 2019

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

3 1 ...

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$\mathcal{M} = (Q, X, au, \sigma)$$

$$\sigma_a$$
 σ_a
 σ_a

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$\boxed{q} \qquad \boxed{\tau_x(q)}$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in Q \;
angle_+$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$\boxed{q} \qquad \boxed{\tau_x(q)}$$

$$\begin{array}{c|c}
1|1 \\
2|3 \\
\hline
c \\
3|2 \\
1|1 \\
2|1 \\
\hline
b \\
1|1 \\
2|2 \\
3|2
\end{array}$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in m{Q} \;
angle_+$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$\begin{array}{c|c} x \mid \sigma_q(x) \\ \hline \hline \\ \hline \\ \tau_x(q) \end{array}$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_q, q \in \mathit{Q} \;
angle_+$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in m{Q} \;
angle_+$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in Q \;
angle_+$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$\boxed{q} \qquad \boxed{\tau_{x}(q)}$$

$$\begin{array}{c|c}
1|1\\
\bigcirc 2|3\\
\hline
c\\
3|2\\
2|1\\
\hline
a\\
b\\
\end{array}$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in m{\mathcal{Q}} \;
angle_+$$

$$q \xrightarrow{X \atop \sigma_q(x)} \tau_x(q)$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$\begin{array}{c|c} x \mid \sigma_q(x) \\ \hline \hline \tau_X(q) \end{array}$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in m{\mathcal{Q}} \;
angle_+$$

$$\boxed{q} \qquad \boxed{\tau_x(q)}$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in Q \;
angle_+$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in \mathcal{Q} \;
angle_+$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$\mathcal{M}^2$$

$$\mathcal{M} = (Q, X, \tau, \sigma) \qquad \stackrel{\mathfrak{d}}{\longleftrightarrow} \qquad \mathfrak{d}\mathcal{M} = (X, Q, \sigma, \tau)$$

$$\mathcal{M} = (Q, X, \tau, \sigma) \qquad \stackrel{\mathfrak{d}}{\longleftrightarrow} \qquad \mathfrak{d}\mathcal{M} = (X, Q, \sigma, \tau)$$

$$\mathcal{M} = (Q, X, \tau, \sigma) \qquad \stackrel{\mathfrak{d}}{\longleftrightarrow} \qquad \mathfrak{d}\mathcal{M} = (X, Q, \sigma, \tau)$$

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$\mathsf{EV}: \mathcal{Q}^* {\longrightarrow} \mathcal{S}$$

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$\mathsf{EV}: \mathcal{Q}^* \underset{\mathsf{NF}}{\longrightarrow} \mathcal{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word.

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$\mathsf{EV}:\mathcal{Q}^* \longrightarrow \mathcal{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word.

for the Adjan-Garside-Thurston normal form, $\mathcal Q$ is chosen to be {positive braids in which any two strands cross at most once}

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$\mathsf{EV}:\mathcal{Q}^*\longrightarrow \mathcal{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word.

 $for the \ Adjan-Garside-Thurston \ normal \ form, \ \mathcal{Q} \ is \ chosen \ to \ be \ \{\textbf{positive braids in which any two strands cross at most once}\}$

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$\mathsf{EV}:\mathcal{Q}^*\longrightarrow \mathcal{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word.

for the Adjan-Garside-Thurston normal form, $\mathcal Q$ is chosen to be {positive braids in which any two strands cross at most once}

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$\mathsf{EV}:\mathcal{Q}^* \longrightarrow \mathsf{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word.

for the Adjan-Garside-Thurston normal form, $\mathcal Q$ is chosen to be $\{\text{positive braids in which any two strands cross at most once}\}$

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$\mathsf{EV}:\mathcal{Q}^* \longrightarrow \mathsf{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word.

for the Adjan-Garside-Thurston normal form, $\mathcal Q$ is chosen to be $\{\text{positive braids in which any two strands cross at most once}\}$

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$\mathsf{EV}:\mathcal{Q}^*\longrightarrow \mathcal{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word.

for the Adjan-Garside-Thurston normal form, $\mathcal Q$ is chosen to be {positive braids in which any two strands cross at most once}

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$\mathsf{EV}:\mathcal{Q}^*\longrightarrow \mathcal{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $N = NF \circ EV$.

for the Adjan-Garside-Thurston normal form, $\mathcal Q$ is chosen to be {positive braids in which any two strands cross at most once}

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$\mathsf{EV}:\mathcal{Q}^* \longrightarrow \mathcal{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $N = NF \circ EV$.

for the Adjan-Garside-Thurston normal form, \mathcal{Q} is chosen to be {positive braids in which any two strands cross at most once}

Whenever NF(S) is regular, it provides a so-called right-automatic structure for S if the language $\bigcup_{q \in \mathcal{Q}} \{ (NF(a)\#^{|NF(aq)|}, NF(aq)\#^{|NF(a)|}) : a \in S \}$ is regular.

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$\text{EV}: \mathcal{Q}^* \longrightarrow S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $N = NF \circ EV$.

Whenever NF(S) is regular, it provides a so-called right-automatic structure for S if the language $\bigcup_{a \in \mathcal{O}} \{ (NF(a)\#^{|NF(aq)|}, NF(aq)\#^{|NF(a)|}) : a \in S \}$ is regular.

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$\mathsf{EV}:\mathcal{Q}^* \longrightarrow \mathsf{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $N = NF \circ EV$.

Whenever NF(S) is regular, it provides a so-called right-automatic structure for S if the language $\bigcup_{a \in \mathcal{O}} \{ (NF(a)\#^{|NF(aq)|}, NF(aq)\#^{|NF(a)|}) : a \in S \}$ is regular.

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$\mathsf{EV}:\mathcal{Q}^* \longrightarrow \mathsf{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $N = NF \circ EV$.

Whenever NF(S) is regular, it provides a so-called right-automatic structure for S if the language $\bigcup_{q \in \mathcal{Q}} \{ (NF(a)\#^{|NF(aq)|}, NF(aq)\#^{|NF(a)|}) : a \in S \}$ is regular.

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$EV: Q^* \longrightarrow S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $N = NF \circ EV$.

Whenever NF(S) is regular, it provides a so-called right-automatic structure for S if the language $\bigcup_{a \in \mathcal{Q}} \{ (NF(a)\#^{|NF(aq)|}, NF(aq)\#^{|NF(a)|}) : a \in S \}$ is regular.

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$EV: Q^* \longrightarrow S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $N = NF \circ EV$.

Whenever NF(S) is regular, it provides a so-called right-automatic structure for S if the language $\bigcup_{a \in \mathcal{Q}} \{ (NF(a)\#^{|NF(aq)|}, NF(aq)\#^{|NF(a)|}) : a \in S \}$ is regular.

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$EV: Q^* \longrightarrow S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $N = NF \circ EV$.

Whenever NF(S) is regular, it provides a so-called right-automatic structure for S if the language $\bigcup_{a \in \mathcal{Q}} \{ (NF(a)\#^{|NF(aq)|}, NF(aq)\#^{|NF(a)|}) : a \in S \}$ is regular.

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$\mathsf{EV}:\mathcal{Q}^* \longrightarrow \mathcal{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $N = NF \circ EV$.

Whenever NF(S) is regular, it provides a so-called right-automatic structure for S if the language $\bigcup_{a \in \mathcal{O}} \{ (NF(a) \#^{|NF(aq)|}, NF(aq) \#^{|NF(a)|}) : a \in S \}$ is regular.

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$\mathsf{EV}:\mathcal{Q}^* \longrightarrow \mathcal{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $N = NF \circ EV$.

Whenever NF(S) is regular, it provides a so-called right-automatic structure for S if the language $\bigcup_{a \in \mathcal{O}} \{ (NF(a) \#^{|NF(aq)|}, NF(aq) \#^{|NF(a)|}) : a \in S \}$ is regular.

Let S be a (semi)group with a finite generating subfamily Q:

$$\mathsf{EV}: \mathcal{Q}^* \underset{\mathsf{NF}}{\longrightarrow} \mathcal{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $N = NF \circ EV$.

Whenever NF(S) is regular, it provides a so-called right-automatic structure for Sif the language $\bigcup_{a \in \mathcal{O}} \{ (NF(a)\#^{|NF(aq)|}, NF(aq)\#^{|NF(a)|}) : a \in S \}$ is regular.

Let S be a (semi)group with a finite generating subfamily Q:

$$\mathsf{EV}:\mathcal{Q}^* \longrightarrow \mathcal{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $N = NF \circ EV$.

Whenever NF(S) is regular, it provides a so-called right-automatic structure for S if the language $\bigcup_{a \in \mathcal{O}} \{ (NF(a)\#^{|NF(aq)|}, NF(aq)\#^{|NF(a)|}) : a \in S \}$ is regular.

Let S be a (semi)group with a finite generating subfamily $\mathcal Q$:

$$\mathsf{EV}:\mathcal{Q}^* \longrightarrow S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $N = NF \circ EV$.

Whenever NF(S) is regular, it provides a so-called right-automatic structure for S if the language $\bigcup_{q \in \mathcal{Q}} \{ (NF(a)\#^{|NF(aq)|}, NF(aq)\#^{|NF(a)|}) : a \in S \}$ is regular.

Grigorchuk groups Gupta-Sidki groups

Grigorchuk groups Gupta-Sidki groups $\langle a, b \mid ab = b^m a \rangle$

AIM Self-similar groups & conformal dynamics

finite groups

 $\langle a, b \mid [a, b]^2 \rangle$

Grigorchuk groups Gupta-Sidki groups $\langle a, b \mid ab = b^m a \rangle$

semigroups

& conformal dynamics finite groups Grigorchuk groups hyperbolic groups $\langle a, b \mid [a, b]^2 \rangle$ Gupta-Sidki groups $\langle a, b \mid ab^m = b^m a \rangle$ $\langle a, b \mid ab = b^m a \rangle$ some Artin groups free (abelian) groups Kourovka notebook finite semigroups bicyclic monoid free (abelian) semigroups

& conformal dynamics finite groups Grigorchuk groups hyperbolic groups $\langle a, b \mid [a, b]^2 \rangle$ Gupta-Sidki groups $\langle a, b \mid ab^m = b^m a \rangle$ $\langle a, b \mid ab = b^m a \rangle$ some Artin groups free (abelian) groups Kourovka notebook finite semigroups bicyclic monoid free (abelian) semigroups

Let $S = \langle \mathcal{Q} : w = N(w) \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$.

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

```
Let S = \langle \ \mathcal{Q} : w = \mathsf{N}(w) \ \rangle_+ with a normalisation \mathsf{N} : \mathcal{Q}^* \to \mathcal{Q}^*.
Such a normalisation (\mathcal{Q}, \mathsf{N}) is quadratic when statically determined by \overline{\mathsf{N}} = \mathsf{N}|_{\mathcal{Q}^2}.
```

- s $w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \le i < n$;
- d one can go from any w to N(w) by applying a finite sequence of \overline{N} .

Let $S = \langle \ \mathcal{Q} : w = \mathsf{N}(w) \ \rangle_+$ with a normalisation $\mathsf{N} : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation $(\mathcal{Q}, \mathsf{N})$ is quadratic when statically determined by $\overline{\mathsf{N}} = \mathsf{N}|_{\mathcal{Q}^2}$.

s $w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \le i < n$;

d one can go from any w to N(w) by applying a finite sequence of \overline{N} .

```
Let S = \langle \ \mathcal{Q} : w = \mathsf{N}(w) \ \rangle_+ with a normalisation \mathsf{N} : \mathcal{Q}^* \to \mathcal{Q}^*.
Such a normalisation (\mathcal{Q}, \mathsf{N}) is quadratic when statically determined by \overline{\mathsf{N}} = \mathsf{N}|_{\mathcal{Q}^2}.
```

- s $w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \leq i < n$;
- d one can go from any w to N(w) by applying a finite sequence of \overline{N} .

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

Let $S = \langle \ \mathcal{Q} : w = \mathsf{N}(w) \ \rangle_+$ with a normalisation $\mathsf{N} : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation $(\mathcal{Q}, \mathsf{N})$ is quadratic when statically determined by $\overline{\mathsf{N}} = \mathsf{N}|_{\mathcal{Q}^2}$. We define the automaton $\mathcal{M}_{\mathcal{Q},\mathsf{N}} = (\mathcal{Q}, \mathcal{Q}, \tau, \sigma)$ with every $(a, b) \in \mathcal{Q}^2$ satisfying

Let $S = \langle \ \mathcal{Q} : w = \mathsf{N}(w) \ \rangle_+$ with a normalisation $\mathsf{N} : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation $(\mathcal{Q}, \mathsf{N})$ is quadratic when statically determined by $\overline{\mathsf{N}} = \mathsf{N}|_{\mathcal{Q}^2}$. We define the automaton $\mathcal{M}_{\mathcal{Q},\mathsf{N}} = (\mathcal{Q},\mathcal{Q},\tau,\sigma)$ with every $(a,b) \in \mathcal{Q}^2$ satisfying

Let $S = \langle \ \mathcal{Q} : w = \mathsf{N}(w) \ \rangle_+$ with a normalisation $\mathsf{N} : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation $(\mathcal{Q}, \mathsf{N})$ is quadratic when statically determined by $\overline{\mathsf{N}} = \mathsf{N}|_{\mathcal{Q}^2}$. We define the automaton $\mathcal{M}_{\mathcal{Q},\mathsf{N}} = (\mathcal{Q}, \mathcal{Q}, \tau, \sigma)$ with every $(a, b) \in \mathcal{Q}^2$ satisfying

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = \mathsf{N}(w) \ \rangle_+$ with a normalisation $\mathsf{N} : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation $(\mathcal{Q}, \mathsf{N})$ is quadratic when statically determined by $\overline{\mathsf{N}} = \mathsf{N}|_{\mathcal{Q}^2}$.

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = N(w) \ \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (\mathcal{Q}, N) is quadratic when statically determined by $\overline{N} = N|_{\mathcal{Q}^2}$.

$$\min\{\,\ell: N(w) = \overline{N}_{\underbrace{212\cdots}_{\operatorname{length}\,\ell}}(w)\}$$

$$\min\{\,\ell: N(w) = \overline{N}_{\underbrace{121\cdots}_{\operatorname{length}\,\ell}}(w)\}$$

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = \mathsf{N}(w) \ \rangle_+$ with a normalisation $\mathsf{N} : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation $(\mathcal{Q}, \mathsf{N})$ is quadratic when statically determined by $\overline{\mathsf{N}} = \mathsf{N}|_{\mathcal{Q}^2}$.

$$\left(\max_{w \in \mathcal{Q}^3} \min \{\, \ell : \mathsf{N}(w) = \overline{\mathsf{N}}_{\underbrace{212\cdots}_{\operatorname{length}\, \ell}}(w) \}, \; \max_{w \in \mathcal{Q}^3} \, \min \{\, \ell : \mathsf{N}(w) = \overline{\mathsf{N}}_{\underbrace{121\cdots}_{\operatorname{length}\, \ell}}(w) \} \right)$$

Lemma P 2019

top-approximation

Let $S = \langle \ \mathcal{Q} : w = \mathrm{N}(w) \ \rangle_+$ with a normalisation $\mathrm{N} : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation $(\mathcal{Q}, \mathrm{N})$ is quadratic when statically determined by $\overline{\mathrm{N}} = \mathrm{N}|_{\mathcal{Q}^2}$.

The breadth of (Q, N) is:

$$\bigg(\max_{w\in\mathcal{Q}^3}\,\min\{\,\ell: \mathsf{N}(w)=\overline{\mathsf{N}}_{\underbrace{212\cdots}_{\mathrm{length}\,\ell}}(w)\},\,\,\max_{w\in\mathcal{Q}^3}\,\min\{\,\ell: \mathsf{N}(w)=\overline{\mathsf{N}}_{\underbrace{121\cdots}_{\mathrm{length}\,\ell}}(w)\}\bigg).$$

Lemma P 2019

top-approximation

Let $S = \langle \mathcal{Q} : w = N(w) \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$. Such a normalisation (Q, N) is quadratic when $\frac{\text{statically}}{\text{dynamically}}$ determined by $\overline{N} = N|_{Q^2}$.

The breadth of (Q, N) is:

$$\bigg(\max_{w\in\mathcal{Q}^{\mathbf{3}}}\min\{\,\ell: \mathsf{N}(w)=\overline{\mathsf{N}}_{\underbrace{\mathtt{212}\dots}_{\mathrm{length}\,\ell}}(w)\},\ \max_{w\in\mathcal{Q}^{\mathbf{3}}}\min\{\,\ell: \mathsf{N}(w)=\overline{\mathsf{N}}_{\underbrace{\mathtt{121}\dots}_{\mathrm{length}\,\ell}}(w)\}\bigg).$$

Lemma P 2019

top-approximation

If N(eq) = eN(q) holds for some $e \in Q$, then *S* is some quotient of $\langle \mathcal{M}_{\mathcal{Q},N} \rangle_{+}$.

Proposition P 2019

If N has breadth at most (4, 3), then $\langle \mathcal{M}_{\mathcal{O},N} \rangle_+$ is some quotient of S.

Let $S = \langle \mathcal{Q} : w = N(w) \rangle_+$ with a normalisation $N : \mathcal{Q}^* \to \mathcal{Q}^*$.

Such a normalisation (\mathcal{Q},N) is quadratic when $\frac{\text{statically}}{\text{dynamically}}$ determined by $\overline{N}=N|_{\mathcal{Q}^2}$.

For $N(s) = s_n \cdots s_1$ and $N(sq) = q_n s'_n \cdots s'_1$, we obtain diagrammatically:

Condition ()

We deduce $\sigma_q(s_1 \cdots s_n) = s'_1 \cdots s'_n$ for any $q \in \mathcal{Q}$.

Lemma P 2019

top-approximation

If N(eq) = eN(q) holds for some $e \in Q$, then S is some quotient of $\langle \mathcal{M}_{Q,N} \rangle_+$.

Proposition P 2019

bottom-approximation

If N has breadth at most (4,3), then \langle $\mathcal{M}_{\mathcal{Q},N}$ \rangle_+ is some quotient of S.

Automaticon semigroups: a trivial example

Every finite monoid $\mathcal J$ is an automaticon monoid:

ightharpoonup let (\mathcal{J},N) verify N(xy)=1(xy) for every $(x,y)\in\mathcal{J}^2$;

Automaticon semigroups: a trivial example

Every finite monoid $\mathcal J$ is an automaticon monoid:

- ▶ let (\mathcal{J}, N) verify N(xy) = 1(xy) for every $(x, y) \in \mathcal{J}^2$;
- \triangleright its breadth is (3,2), implying Condition (\spadesuit).

Automaticon semigroups: a trivial example and an iconic counterexample

Every finite monoid ${\mathcal J}$ is an automaticon monoid:

- ▶ let (\mathcal{J}, N) verify N(xy) = 1(xy) for every $(x, y) \in \mathcal{J}^2$;
- \triangleright its breadth is (3,2), implying Condition (\spadesuit).

The bicyclic monoid $\mathbf{B} = \langle a, b : ab = 1 \rangle_+^1$ is not an automaton monoid:

▶ let $({a,b,1},N)$ with N(ab) = 11, N(x1) = 1x, and N(xy) = xy;

Automaticon semigroups: a trivial example and an iconic counterexample

Every finite monoid ${\mathcal J}$ is an automaticon monoid:

- ▶ let (\mathcal{J}, N) verify N(xy) = 1(xy) for every $(x, y) \in \mathcal{J}^2$;
- \triangleright its breadth is (3,2), implying Condition (\spadesuit).

The bicyclic monoid $\mathbf{B} = \langle \mathbf{a}, \mathbf{b} : \mathbf{ab} = 1 \rangle_+^1$ is not an automaton monoid:

- ▶ let $({a,b,1},N)$ with N(ab) = 11, N(x1) = 1x, and N(xy) = xy;
- ▶ its breadth is (3,4), contradicting Condition (♠).

Automaticon semigroups: the smallest nontrivial example

$$\langle a, b \mid ab = a \rangle_+^1$$

Automaticon semigroups: the smallest nontrivial example

$$\langle a, b \mid ab = a \rangle_+^1$$

$$\mathcal{Q} = \{a,b,1\}$$

Automaticon semigroups: the smallest nontrivial example

$$\langle a, b \mid ab = a \rangle_+^1$$

$$Q = \{a, b, 1\}$$

Baumslag-Solitar Artin-Krammer
$$BS^1_+(1,0) = \langle a,b \mid ab = a \rangle^1_+ = AK^1_+\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$$

$$\mathrm{BS}^1_+(1,0) = \langle a,b \mid ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}\right)$$

$$BS_{+}^{1}(3,2) = \langle a, b \mid ab^{3} = b^{2}a \rangle_{+}^{1}$$

$$\mathrm{BS}^1_+(1,0) = \langle a,b \mid ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \right)$$

$$BS^1_+(3,2) = \langle a, b \mid ab^3 = b^2 a \rangle^1_+$$

$$\mathrm{BS}^1_+(1,0) = \langle a,b \mid ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}\right)$$

$$BS^1_+(3,2) = \langle a, b \mid ab^3 = b^2 a \rangle^1_+$$

There exists a group-embeddable automaticon monoid whose enveloping group is not an automaticon group

Baumslag-Solitar

$$\mathrm{BS}^1_+(1,0) = \langle a,b \mid ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}\right)$$

$$BS_{+}^{1}(3,2) = \langle a, b \mid ab^{3} = b^{2}a \rangle_{+}^{1}$$

There exists a group-embeddable automaticon monoid whose enveloping group is not an automaticon group

mann 2001 P 2019

 $BS^1_+(m, n)$ is an automaticon monoid

Baumslag-Solitar

$$\mathrm{BS}^1_+(1,0) = \langle a,b \mid ab=a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}\right)$$

$$\mathrm{BS}^1_+(3,2) = \langle \ a,b \mid ab^3 = b^2a \ \rangle^1_+$$

$$AK_{+}^{1}\left(\begin{bmatrix}1&3&2\\4&1&3\\2&4&1\end{bmatrix}\right) = \left\langle a,b,c \mid \begin{matrix} abab = aba\\ac = ca\\bcbc = bcb \end{matrix}\right\rangle_{+}^{1}$$

ann 2001 P 2019

 $BS^1_{\perp}(m,n)$ is an automaticon monoid

Automaticon semigroups: the smallest nontrivial example and some of its cousins

$$\mathrm{BS}^1_+(1,0) = \langle a,b \mid ab=a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}\right)$$

$$BS_{+}^{1}(3,2) = \langle a, b \mid ab^{3} = b^{2}a \rangle_{+}^{1}$$

$$AK_{+}^{1}\left(\begin{bmatrix}1&3&2\\4&1&3\\2&4&1\end{bmatrix}\right) = \left\langle a,b,c \mid \begin{matrix} abab = aba\\ac = ca\\bcbc = bcb \end{matrix}\right\rangle_{+}^{1}$$

ann 2001 P 2019

 $BS^1_+(m, n)$ is an automaticon monoid

Automaticon semigroups: the smallest nontrivial example and some of its cousins

Baumslag-Solitar

$$\mathrm{BS}^1_+(1,0) = \langle a,b \mid ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}\right)$$

$$BS_{+}^{1}(3,2) = \langle a, b \mid ab^{3} = b^{2}a \rangle_{+}^{1}$$

$$\operatorname{AK}_{+}^{1}\left(\left[\begin{smallmatrix}1&3&2\\4&1&3\\2&4&1\end{smallmatrix}\right]\right) = \left\langle a,b,c \mid \begin{matrix} abab = aba\\ac = ca\\bcbc = bcb \end{matrix}\right\rangle_{+}^{1}$$

Artin-Krammer

ann 2001 P 2019

 $BS^1_+(m, n)$ is an automaticon monoid

Automaticon semigroups: the smallest nontrivial example and some of its cousins

Baumslag-Solitar

$$BS_{+}^{1}(1,0) = \langle a, b \mid ab = a \rangle_{+}^{1} = AK_{+}^{1}(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix})$$

$$BS_{+}^{1}(3,2) = \langle a, b \mid ab^{3} = b^{2}a \rangle_{+}^{1}$$

$$AK_{+}^{1}\left(\begin{bmatrix}1&3&2\\4&1&3\\2&4&1\end{bmatrix}\right) = \left\langle a,b,c \mid \begin{matrix} abab = aba\\ac = ca\\bcbc = bcb \end{matrix}\right\rangle_{+}^{1}$$

Artin-Krammer

nann 2001 P 2019

 $BS^1_{\perp}(m, n)$ is an automaticon monoid

oy Guiraud P 2019 P 2019

 $\mathrm{AK}^1_+(\Gamma)$ is an automaticon monoid

$$\mathsf{B}_3^+ = \langle \ \underline{\sim}, \ \overline{>} : \ \underline{\sim} \ \overline{>} \ \underline{\sim} = \ \overline{>} \ \underline{\sim} \ \overline{>} \ \rangle_+^1$$

Thurston transducer

& conformal dynamics 2.... finite groups Grigorchuk groups hyperbolic groups $\langle a, b \mid [a, b]^2 \rangle$ Gupta-Sidki groups $\langle a, b \mid ab^m = b^m a \rangle$ $\langle a, b \mid ab = b^m a \rangle$ some Artin groups free (abelian) groups Kourovka notebook finite semigroups bicyclic monoid free (abelian) semigroups

Kourovka notebook

finite groups $\langle a, b \mid [a, b]^2 \rangle$ $\langle a, b \mid ab^m = b^m a \rangle$ free (abelian) groups

Grigorchuk groups Gupta-Sidki groups $\langle a, b \mid ab = b^m a \rangle$

bicyclic monoid

finite semigroups free (abelian) semigroups Artin or Garside monoids

JPS

Kourovka notebook

finite groups $\langle a, b \mid [a, b]^2 \rangle$ $\langle a, b \mid ab^m = b^m a \rangle$ free (abelian) groups

Grigorchuk groups Gupta-Sidki groups $\langle a,b \mid ab = b^m a \rangle$

bicyclic monoid

some Artin groups

finite semigroups free (abelian) semigroups Artin or Garside monoids Baumslag-Solitar monoids

JPS

some Artin groups

Kourovka notebook

finite groups

 $\langle a, b \mid [a, b]^2 \rangle$ $\langle a, b \mid ab^m = b^m a \rangle$

free (abelian) groups

Grigorchuk groups Gupta-Sidki groups

 $\langle a, b \mid ab = b^m a \rangle$

bicyclic monoid

finite semigroups free (abelian) semigroups Artin or Garside monoids Baumslag-Solitar monoids Artin-Krammer monoids

Jps

& conformal dynamics hyperbolic groups

some Artin groups

Kourovka notebook

finite groups

 $\langle a, b \mid [a, b]^2 \rangle$

 $\langle a, b \mid ab^m = b^m a \rangle$

free (abelian) groups

Grigorchuk groups Gupta-Sidki groups $\langle a, b \mid ab = b^m a \rangle$

bicyclic monoid

finite semigroups free (abelian) semigroups Artin or Garside monoids Baumslag-Solitar monoids Artin-Krammer monoids plactic or Chinese monoids

AIM Self-similar groups & conformal dynamics
hyperbolic groups
some Artin groups
Kourovka notebook

finite groups $\langle a, b \mid [a, b]^2 \rangle$ $\langle a, b \mid ab^m = b^m a \rangle$ free (abelian) groups

Grigorchuk groups Gupta-Sidki groups $\langle a, b \mid ab = b^m a \rangle$

bicyclic monoid

Kauffman monoids

finite semigroups
free (abelian) semigroups
Artin or Garside monoids
Baumslag-Solitar monoids
Artin-Krammer monoids
plactic or Chinese monoids

Jps

$$\mathbf{P}_n = \left\langle 1 < \dots < n \middle| \begin{array}{l} \mathtt{zxy} = \mathtt{xzy} & \mathsf{for} \ \mathtt{x} \leq \mathtt{y} < \mathtt{z} \\ \mathtt{yxz} = \mathtt{yzx} & \mathsf{for} \ \mathtt{x} < \mathtt{y} \leq \mathtt{z} \end{array} \right\rangle^+.$$

$$\mathbf{P}_n = \left\langle 1 < \dots < n \middle| \begin{array}{l} \mathtt{zxy} = \mathtt{xzy} & \mathsf{for} \ \mathtt{x} \leq \mathtt{y} < \mathtt{z} \\ \mathtt{yxz} = \mathtt{yzx} & \mathsf{for} \ \mathtt{x} < \mathtt{y} \leq \mathtt{z} \end{array} \right\rangle^+.$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

$$\mathbf{P}_n = \left\langle 1 < \dots < n \middle| \begin{array}{l} \mathtt{zxy} = \mathtt{xzy} & \mathsf{for} \ \mathtt{x} \leq \mathtt{y} < \mathtt{z} \\ \mathtt{yxz} = \mathtt{yzx} & \mathsf{for} \ \mathtt{x} < \mathtt{y} \leq \mathtt{z} \end{array} \right\rangle^+.$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

 P_n is an automatic monoid

Extra#1 the plactic monoid and the Chinese monoid

The plactic monoid of rank n is

$$\mathbf{P}_n = \left\langle 1 < \dots < n \, \middle| \, \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle^+. \quad \mathbf{x} \quad \mathbf{y}$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

 P_n is an automatic monoid

$$\mathbf{P}_{n} = \left\langle 1 < \dots < n \, \middle| \, \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle^{+} \cdot \mathbf{x} \quad \mathbf{y} \quad \mathbf{z} \quad \mathbf{y}$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

- 5 6 6
- 4 2 4
- 3
 - 1

Positive converted by the family
$$Q$$
 of solvens.

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

Positive converted by the family
$$Q$$
 of solvens.

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n \mid \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle^+ \cdot \left\langle \begin{array}{c} \mathbf{x} \\ \mathbf{x} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z}$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n \mid \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle^+ \cdot \left\langle \begin{array}{c} \mathbf{x} \\ \mathbf{x} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z}$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n \mid \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle^+ \cdot \left\langle \begin{array}{c} \mathbf{x} \\ \mathbf{x} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z}$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n \mid \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle^+ \cdot \left\langle \begin{array}{c} \mathbf{x} \\ \mathbf{x} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z}$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n \mid \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle^+ \cdot \left\langle \begin{array}{c} \mathbf{x} \\ \mathbf{x} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z}$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

 P_n is an automatic monoid

$$\mathbf{P}_n = \left\langle 1 < \dots < n \mid \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle^+ \cdot \left\langle \begin{array}{c} \mathbf{x} \\ \mathbf{x} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{z}$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n \mid \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle^+. \quad \mathbf{x} \quad \mathbf{y}$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n \,\middle| \, \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle^+ \cdot \left\langle \begin{array}{c} \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{array} \right\rangle$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n \,\middle| \, \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle^+ . \quad \mathbf{x} \quad \mathbf{y} \quad \mathbf{z} \quad$$

defined to be strictly decreasing products of elements of $\{1, ..., n\}$.

 \mathbf{P}_n is an automatic monoid

P 2019

 P_n is an automaton monoid

$$\mathbf{P}_n = \left\langle 1 < \dots < n \, \middle| \, \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle^+ \cdot \left\langle \begin{array}{c} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\$$

defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

 P_n is an automatic monoid

P 2019

 P_n is an automaton monoid

The Chinese monoid of rank n is

$$\mathbf{C}_n = \langle 1 < \dots < n \mid \text{zyx} = \text{zxy} = \text{yzx} \text{ for } \text{x} \leq \text{y} \leq \text{z} \rangle^+.$$

$$\mathbf{P}_n = \left\langle 1 < \dots < n \, \middle| \, \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle^+ \cdot \left\langle \begin{array}{c} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{array} \right\rangle \mathbf{y}$$
Then \mathbf{P}_n is also generated by the family \mathcal{Q} of columns,

defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

 P_n is an automatic monoid

P 2019

 \mathbf{P}_n is an automaton monoid

The Chinese monoid of rank *n* is

$$\mathbf{C}_n = \langle 1 < \dots < n \mid \mathtt{zyx} = \mathtt{zxy} = \mathtt{yzx} \quad \text{for } \mathtt{x} \leq \mathtt{y} \leq \mathtt{z} \rangle^+.$$

Then C_n is generated by $Q = \{x : n \ge x \ge 1\} \cup \{yx : y > x\}$

Cain Gray Malheiro 2016

$$\mathbf{P}_n = \left\langle 1 < \dots < n \, \middle| \, \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle^+ \cdot \left\langle \begin{array}{c} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{array} \right\rangle \mathbf{y}$$
Then \mathbf{P}_n is also generated by the family \mathcal{Q} of columns,

defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

 P_n is an automatic monoid

P 2019

 P_n is an automaton monoid

The Chinese monoid of rank n is

$$\mathbf{C}_n = \left\langle \ 1 < \dots < n \ \middle| \ \ \mathtt{zyx} = \mathtt{zxy} \ = \mathtt{yzx} \quad \text{for } \mathtt{x} \leq \mathtt{y} \leq \mathtt{z} \ \right
angle^+.$$

Then C_n is generated by $Q = \{x : n \ge x \ge 1\} \cup \{yx : y > x\} \cup \{x^2 : n > x > 1\}$.

Cain Gray Malheiro 2016

 \mathbf{C}_n is an automatic monoid

P 2019

 C_n is an automaton monoid

$$\mathsf{B}_3 = \langle \ \sigma_1, \sigma_2 : \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \ \rangle_+^1$$

$$\mathsf{B}_3 = \langle \ \sigma_1, \sigma_2 : \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \ \rangle_+^1$$

$$\mathbf{B}_3 = \langle \ \sigma_1, \sigma_2 : \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \ \rangle_+^1$$

Independently, Lavrenyuk, Mazorchuk, Oliynyk, and Sushchansky (2005) gave 3-letter Mealy automata for σ_1 (14 states) and σ_2 (13 states).

The semigroup

$$\textbf{T} = \langle \ \textbf{a}, \textbf{b}, \textbf{c}, \textbf{d}, \textbf{a}', \textbf{b}', \textbf{c}', \textbf{d}' : \overrightarrow{\textbf{a}\textbf{b}} = \textbf{c}\textbf{d}, \overrightarrow{\textbf{a}'\textbf{b}'} = \textbf{c}'\textbf{d}', \overrightarrow{\textbf{a}'\textbf{d}} = \textbf{c}'\textbf{b} \ \rangle_{+}$$

is known by Malcev work to be cancellative but not group-embeddable:

from these three relations. we cannot deduce the relation ad' = cb'that holds in the enveloping group.

For instance, the quadratic normalisation ($\{a, b, c, d, a', b', c', d'\}$, N) defined by

$$N(ab)=cd,\quad N(a'b')=c'd',\quad \text{and}\quad N(a'd)=c'b,$$

has breadth (2,2), hence satisfies Condition (\clubsuit) .

Moreover, T admits several elements that escape the normalisation N.

Therefore Main Theorem applies: **T** is an automaticon semigroup.

This answers in particular a question by Alan J. Cain.

Any \mathcal{Q} -words inducing a same action (on $\mathbf{1}^{\omega}$ for instance) are N-equivalent.

Assume N(ab) = N(cd) = ab. Let $\mathbf{u} = q\mathbf{v} \in \mathcal{Q}^n$ for some n > 0 and $q \in \mathcal{Q}$. We prove both $\sigma_{ab}(\mathbf{u}) = \sigma_{cd}(\mathbf{u})$ (coordinatewise) and $\tau_{\mathbf{u}}(ab) \equiv_{\mathbb{N}} \tau_{\mathbf{u}}(cd)$ by induction on n > 0.