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Abstract. Small Gaussian groups are a natural generalization of spherical Artin groups,
namely groups of fractions of monoids in which the existence of least common multiples
is kept as an hypothesis, but the relations between the generators are not supposed to
necessarily be of Coxeter type. Here we completely describe the center of small Gaus-
sian groups by constructing a minimal generating set for the quasi-center. We deduce
that every small Gaussian group is an iterated crossed product of small Gaussian groups

with a cyclic center.
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INTRODUCTION

Define a small Gaussian monoid to be a cancellative monoid where 1 is the only in-
vertible element, in which least common multiples exist, and which admits a finite
generating set closed under \, where \ is the operation defined such that a(a\b)
is the right lem of @ and b. A small Gaussian group is defined to be the group
of fractions of a small Gaussian monoid. Small Gaussian groups have been intro-
duced in [11] and [12] as a natural generalization for spherical Artin groups, i.e.,
Artin groups associated with finite Coxeter groups.

In this paper, we construct a minimal generating set of the quasi-center of every
small Gaussian monoid. Moreover, we define a notion of A-purity and a crossed
product for small Gaussian monoids, and we prove

Proposition A. The center of every A-pure small Gaussian group is an infinite
cyclic subgroup.

Proposition B. Every small Gaussian monoid is an iterated crossed product of
some A-pure small Gaussian monoids.

These results extend similar statements established by Brieskorn, Saito [7] and
Deligne [13] in the special case of spherical Artin groups.

This paper is organized as follows. In Section 1, we gather earlier results of [11]
and [12] about small Gaussian groups. In Section 2, we introduce what we call



local Delta’s, and compute a minimal generating set of the quasi-center of every
small Gaussian monoid. A convenient notion of crossed product for small Gaussian
monoids is studied in Section 3. Finally, in Section 4, we define A-purity, and prove
Propositions A and B.

1. PRELIMINARIES

In this section, we list some basic properties of small Gaussian monoids and small
Gaussian groups.

Assume that M is a monoid. We say that M is conical if 1 is the only invertible
element in M. For a,b in M, we say that b is a left divisor of a—or that a is a
right multiple of b—if a = bd holds for some d in M. An element c is a right lower
common multiple—or a right lem—of @ and b if it is a right multiple of both «a
and b, and every common right multiple of @ and b is a right multiple of c¢. Right
divisor, left multiple, and left lcm are defined symmetrically. For a,b in M, we say
that b divides a—or that b is a divisor of a—if a = ¢bd holds for some ¢,d in M.

If ¢, ¢’ are two right lem’s of a and b, necessarily c¢ is a left divisor of ¢/, and ¢’ is
a left divisor of c. If we assume M to be conical and cancellative, we have ¢ = ¢'.
In this case, the unique right lem of a and b is denoted by a v b. If a v b exists,
and M is left cancellative, there exists a unique element ¢ satisfying a v b = ac.
This element is denoted by a\b. We define the left lem vV and the left operation /
symmetrically. In particular, we have

avb=a(a\b) =b(b\a), and avb=(b/a)a = (a/b)b.

Let us mention that cancellativity plus conicity simply means that left and right
divisibility are order relations.

Definition. [11] A monoid M is said to be Gaussian if it is conical, cancellative,
and every pair of elements in M admits a left lem and a right lem. A Gaussian
monoid M is said to be small if there exists a finite subset that generates M and
is closed under \.

Example 1.1. The monoid M, with presentation ( x,y : xyyryryyxr = yryyxry )
is a small Gaussian monoid.

If M is a (small) Gaussian monoid, then M satisfies Ore’s conditions [8], and
it embeds in a group of right fractions, and, symmetrically, in a group of left
fractions. In this case, by construction, every right fraction ab~! with a,b in M
can be expressed as a left fraction ¢~ 'd, and conversely. Therefore, the two groups
coincide, and there is no ambiguity in speaking of the group of fractions of a small
Gaussian monoid.



Definition. A group G is a small Gaussian group if there exists a small Gaussian
monoid of which G is the group of fractions.

By [7], all spherical Artin monoids are small Gaussian monoids. The braid monoids
of the complex reflection groups Gr7,G11,G12,G13, G5, G19 and Gao given in [6],
some monoids for torus knot or link groups [20][19], the Birman-Ko-Lee monoids
of spherical Artin groups [4][2][18][1] are also small Gaussian monoids.

Lemma 1.2. [11] Assume that M is a Gaussian monoid. Then the following
identities holds in M :

(ab) v (ac) = a(bv c), (1.1)
c\(ab) = (c\a)((a\c)\b),  (ab)\c = b\(a\c), (1.2)
(avb)\c= (a\b)\(a\c) = (D\a)\(b\c),  c\(avDd)=(c\a)v(c\b). (1.3)

Lemma 1.3. [12] Assume that M is a small Gaussian monoid. Then the following
equivalent assertions hold:

(i) There exists a mapping p from M into the integers satisfying p(a) > 0 for
every a # 1 in M, and satisfying p(ab) > u(a) + p(b) for every a,b in M;

(ii) For every set X that generates M and for every a in M, the lengths of the
decompositions of a as products of elements in X have a finite upper bound.

Definition. [12] A monoid is said to be atomic if it satisfies the equivalent condi-
tions of Lemma 1.3. The norm function |.| of an atomic monoid M is defined such
that, for every a in M, |a| is the upper bound of the lengths of the decompositions
of a as products of atoms.

By the previous lemma, every element in a small Gaussian monoid has only finitely
many left divisors, then, for every pair of elements (a, b), the common left divisors
of a and b admit a right lem, which is therefore the left ged of a and b. This left
ged will be denoted by a A b. We define the right ged A symmetrically.

The following property essentially expresses the connection between the opera-
tions v, A, v and A.

Lemma 1.4. Assume that M is a small Gaussian monoid. Then, for a,b,c,d
in M satisfying ab = cd, we have ab = (av c¢)(bAd) = (anc)(bVd) = cd.

Proof. There exists g in M satisfying ab = (a v ¢)g = cd. We deduce b = (a\c)g
and (c\a)g = d. In particular, there exists h in M satisfying bAd = hg. Therefore,
h is a right divisor of both a\c and c\a. By definition of the operation \, we
find h = 1, hence ab = (a v ¢)(bA d) = ed. The equality ab = (ar¢)(bVd) = cd is
obtained symmetrically. O



Lemma 1.5. [11] Assume that M is a small Gaussian monoid. Then it admits a
finite generating subset that is closed under \, /,v, A,V and A.

An atom is defined to be a non trivial element a such that a = bc implies b = 1
or ¢ = 1. Every small Gaussian monoid admits a finite set of atoms, and this
set is the minimal generating set [12]. The hypothesis that there exists a finite
generating subset that is closed under \ implies that the closure of the atoms
under \ is finite—its elements are called right primitive elements. In particular,
the closure of the atoms under \ and v is finite—its elements are called simple
elements, and their right lecm is denoted by A. It turns out that the set of the
simple elements is also the closure of atoms under / and V. So, the element A is
both the right and the left lcm of the simple elements, and it is called the Garside
element of the monoid. If M is a small Gaussian monoid and S is the set of simple
elements in M, then (S, A,v,1,A) is a finite lattice.

Proposition 1.6. [11] Assume that M is a small Gaussian monoid, S is the set
of its simple elements, and A is its Garside element.

(i) Let k be a nonnegative integer. Then, S* is both the set of all left divisors
of A* and the set of all right divisors of A¥*.

(ii) The functions a — (a\A)\A and a — A/(A/a) from S into itself extend into
automorphisms ¢ and ¢ of M that map S* into itself for every k, and the equalities

aA = A¢(a), and Aa=¢(a)A
hold for every a in M.

Definition. Assume that M is a small Gaussian monoid. The order of the
automorphisms ¢ and ¢ of M is called the exponent of M.

Our main subject here will be the study of the center. Let us first recall some
basic notions.

Definition. Assume that M is a small Gaussian monoid, A is its set of atoms,
and G is its group of fractions. Then the quasi-center of M (resp. the quasi-
centralizer of A in G) is the submonoid {b € M ; Ab = bA} of M (resp. the
subgroup {b € G ; Ab=0bA} of G).

Lemma 1.7. Assume that M is a small Gaussian monoid. Then, for every
element a and every quasi-central element b in M, the following are equivalent:

(i) a divides b;
(ii) a is a left divisor of b;

(iii) a is a right divisor of b.



The study of the center of small Gaussian groups reduces to the study of the center
and quasi-center of small Gaussian monoids:

Lemma 1.8. Assume that M is a small Gaussian monoid, A is the set of its
atoms, and G is its group of fractions. Then

(i) the quasi-centralizer of A in G is the group of fractions of the quasi-center of M ;

(ii) the center of G is the group of fractions of the center of M.

Proof. Let ¢ be an element in G. There exist an integer p and an element ¢ in M
satisfying ¢ = AP, see [11][17].

(i) Assume c in the quasi-centralizer of A in G. Then, the element APl of M
being quasi-central by Proposition 1.6, ¢’ is quasi-central. Every element in the
quasi-centralizer of A in G is so the quotient of two quasi-central elements of M.
(ii) There exist integers g, r satisfying p = ge + r and r > 0, where e denotes
the exponent of M. Assume c central. The element Al9l® of M being central by
definition, the element A”"¢’ belongs to the center of M. Every central element
in G is thus the quotient of two central elements of M. O

2. A LOCAL DELTA FOR EACH ELEMENT

Assume that M is a small Gaussian monoid. Here we associate with each element a
in M a distinguished quasi-central element A, which behaves like a sort of local
Garside element. The main result is that the family of all A,’s for z an atom
generates the quasi-center of M.

Notation. Assume that M is a Gaussian monoid. For XY C M, we denote
by Y\ X the set of the elements b\a for @ in X, b in Y. We write Y\a for Y'\{a}
and b\ X for {b}\X.

Lemma 2.1. Assume that M is a small Gaussian monoid, and S is its set of
simples. Then, for every a in M, we have M\a = S%\a for some q (depending
on a).

Proof. Let a € M. As S generates M, a belongs to S? for some p. Now, a direct
computation gives M\ SP = SP. In particular, we have M\a C SP, hence

S\a C 52\a§ S?’\ag ... C SP.
As S is finite, there exists ¢ < card(SP) satisfying S?7\a = S9"1\a. We show
using induction on j that, for every j < 1, we have S9\a = S?77/\a. The result is

vacuously true for j = 1. Assume j > 1. Let b € S9! and ¢ € S. By induction
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hypothesis, there exists d in S? satisfying d\a = b\a. By using Identity (1.2)
of Lemma 1.2, we find (be)\a = c\(b\a) = c\(d\a) = (dc)\a, so (bc)\a belongs
to S9t1\a, i.e., to S9\a, which completes the induction. Finally, we obtain S%\a =
M\a. O

Definition. Assume that M is a small Gaussian monoid. For every a in M, we
define
A, =V{b\a; be M}.

By Lemma 2.1, the element A, is well defined and effectively computable for
every a in M. Symmetrically, we define A, = \7{a/ b; be M}. Let us remark
that, for every a in M, the equality 1\a = a (resp. a/1 = a) implies a to be a left
divisor of A, (resp. a right divisor of A,), and that, having b\1 = 1 = 1/b for
every b in M, we obtain Ay =1 = &1.

For instance, in the small Gaussian monoid M, of Example 1.1, we compute So\z &
S3\xz = Mo\z and Sp\y G Sg\y = My\y, where Sy denotes the set of simple
elements in My. The considered sets are displayed in Figure 1. We find A, =
A, = A. The current example shows that the sets M\z with z an atom need not
be the whole set of primitive elements in M.

We are going to prove:

Proposition 2.2. Assume that M is a small Gaussian monoid. Then, for every a
in M, the element A, is quasi-central. More precisely, the application a — A, is
a surjection from M onto the quasi-center of M.

The proof of this result relies on several preliminary statements.

Lemma 2.3. Assume that M is a small Gaussian monoid. Then every quasi-
central element a in M satisfies A, = a = /A\,.

Proof. Let b € M. As a is quasi-central, we have ba = ab’ for some b’ in M.
Therefore, ba is a right multiple of b v a, which is b(b\a), and, by left cancellation,
a is a right multiple of b\a. So, a is a right multiple of A,—which is the right
lem of all b\a’s. Now, a being a left divisor of A,, cancellativity and conicity
imply A, = a. The equality ﬁa = @ is obtained symmetrically. O

Lemma 2.4. Assume that M is a small Gaussian monoid. Then, for every a
in M, the following are equivalent:

(i) A, = a holds;

(ii) for every b in M, a is a left divisor of ba.
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Figure 1. The lattice of simple elements in My=( z,y : zyyryryyrx=yzyyzy ). The light
edges represent =, while the dark ones represent y. The white points represent the primitive
elements in My, while the black points represent the non-primitive simple elements in M.
The elements of Mo\z (resp. of My\y) are those represented by all white points except
those marked 'x’ (resp. '+).

Proof. Assume (i). Let b € M. From \/(M\a) = a, we deduce that b\a is a
left divisor of a. Therefore, b(b\a) is a left divisor of ba. Now, by definition,
b(b\a) is a(a\b), which implies (ii). Conversely, assume (ii). Then, for every b
in M, a v b—which is b(b\a) by definition—is a left divisor of ba, and so, by left
cancellation, b\a is a left divisor of a. This implies that \/(M\a) is a left divisor
of a, and, a being a left divisor of A,, cancellativity and conicity yield (i) . O

Lemma 2.5. Assume that M is a small Gaussian monoid. Then, for every a
in M, A, = a is equivalent to A, = a.

Proof. Let G be the group of fractions of M. We consider the injective endo-
morphism h, : b — a"tba of G. Assume A, = a. Then, by Lemma 2.4, for
every b in M, a is a left divisor of ba : we deduce h,(M) C M. Let S be
the set of simples in M and e be the exponent of M. According to Proposi-
tion 1.6, for every c in S¢, there exists an element d in S¢ satisfying A® = cd.
We obtain h,(A€) = he(c)ha(d), and, A€ being central, A = h,(c)hq(d), which
implies h,(c) € S¢ (and hy(d) € S¢). As, by hypothesis, the set S is finite, the
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injective endomorphism h, restricted to S€ is an automorphism. In particular,
ha(M) includes the atoms of M, and we deduce h,(M) = M. The endomor-
phism A, is then an automorphism of M. Therefore, for every b in M, a is a right
divisor of ab, and, by the left counterpart of Lemma 2.4, we deduce A, = a. The
converse implication is obtained symmetrically. O

Lemma 2.6. Assume that M is a small Gaussian monoid. Then every element a
in M satisfying A, = a is quasi-central.

Proof. Let x be an atom of M. By Lemma 2.4, the hypothesis A, = a implies that
there exists d in M satisfying xa = ad. By right cancellativity, we have d # 1, and
there exist a positive integer n and atoms 21, ..., z, satisfying d = 21---2,. By
Lemma 2.5, A, = a holds, and, by the left counterpart of Lemma 2.4, for every
atom z; with 1 <14 < n, there exists an element ¢; in M satisfying az; = c¢;a. By
left cancellativity, we have ¢; # 1 for 1 < i < n. We obtain

ra=ad=az1 -z, =C1- " Cna,

hence, by right cancellation, £ = ¢1 ---¢,. As x is an atom, we must have n = 1,
i.e., d is an atom. So, there exists a mapping f, from the atoms of M into
themselves such that za = af,(z) holds for every atom z. By cancellativity, f, is
injective, hence surjective : a is quasi-central by definition. O

Proof of Proposition 2.2. Let us show that a — A, is idempotent. Let a € M. By
Lemma 2.1, there exists an integer n satisfying M\a = S™\a and M\A, = S™\A,.
Let S™ ={q1,...,¢}. By using Lemma 1.2, we find

An, = (@ \(@\av...vg\a)) v...v(g-\(1\aV...vg\a))
=({(gqg\a)v...v(gr@r1\a)) v...v ((q1g-\a) v ...V (¢g-g-\a)).

Now, one of the ¢;’s is 1, and, therefore, we obtain Ax, = A,vV(S"\a), where S’ is
some subset of $2*. We deduce that Ax, = A, holds for every a in M. Therefore,
by Lemma 2.6, A, is quasi-central for every a in M. O

Lemma 2.7. Assume that M is a small Gaussian monoid. Then, for every
element a and every quasi-central element b in M, a dividing b implies A, and A,
dividing b.

Proof. By hypothesis, there exists an element d in M satisfying b = ad. As b is
quasi-central, for every ¢ in M, there exists an element ¢’ in M satisfying cb = adc’.
In particular, for every ¢ in M, cva—which is ¢(c\a)—is a left divisor of ¢b, and, by
left cancellation, c\a is a left divisor of b. Therefore, by definition, A, dividesb. O
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Proposition 2.8. Assume that M is a small Gaussian monoid. Let A be its set
of atoms. Then the quasi-center of M is generated by the set {A, ; v € A}.

Proof. Let b be a quasi-central element in M. We show using induction on |b|
that there exist an integer n and atoms zi,...,z, satisfying b = A, --- A, .
For |b|= 0, n is 0. Assume now |b|> 0. Then there exist an atom z and an
element b’ in M satisfying b = zb’. By Lemma 2.7, we have b = A, b” for some b”
in M with |b”]<|b]. By Proposition 2.2, the element A, is quasi-central, hence
so is b”. By induction hypothesis, there exist an integer m and atoms y1,...,Ym
satisfying b = Ay, ---A,, .. We obtain b = Az A, --- A, . 0

For instance, in the case of the small Gaussian monoid M, of Example 1.1, Propo-
sition 2.8 implies that its quasi-center is generated by A. As its exponent is 1, the
center of My coincides with the quasi-center.

We now prove that the generating set {A, ; = € A} is minimal.

Lemma 2.9. Assume that M is a small Gaussian monoid. Then, for all atoms x,y
in M, we have either A, = A, or Ay n Ay, = 1.

Proof. We first prove that, for all atoms z,y and every b in M, A, = A,b
implies b = 1. As 1\z = z holds, we have A, = xd for some d in M. By using
Lemma 1.4, we obtain

Ay =zd=A7Ayb=(xrA,)(dVD).

Assume x A Ay = 1. Then we find A, = 2d = A, b =d Vb= (b/d)d, hence, by
right cancellation, = b/d. Therefore, x divides \/(b/M), which, by definition,
is Kb. Now, by hypothesis, b is quasi-central, and Lemma 2.3 implies &b =b. By
Lemma 2.7, A, divides b, which, by cancellativity and conicity, implies A, = 1,
a contradiction. Assume x A A, # 1. Then, by atomicity, x divides A, and, by
Lemma 2.7, A, divides A, which, by cancellativity and conicity, implies b = 1.
Now, let x,y be atoms in M. Assume A, A A, # 1. Then there exists an
atom z in M dividing both A, and A,. By Lemma 2.7, A, divides both A,
and A,, which, by the result above, implies A, = A, = A,. O

Proposition 2.10. Assume that M is a small Gaussian monoid. Let A be its
set of atoms. Then {A, ; x € A} is a minimal generating set of the quasi-center
of M.

Proof. By Proposition 2.8, the set {A, ; = € A} generates the quasi-center of M.
Let = be an atom, and a,b be quasi-central elements in M. We have to show
that A, = ab implies either a = 1 or b = 1. Assume a # 1. Then we have a = ya’
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for some atom y and some a’ in M. As a is quasi-central, by Lemma 2.7, A, is a
left divisor of a, and, therefore, A, is a left divisor of A,. We have A, # 1, hence,
by Lemma 2.9, A, = A,. Cancellativity and conicity imply then b = 1. O

We give now a new characterization of the function a — A,. We have seen that
every element A, is quasi-central, and, by construction, A, is a right multiple
of a. We prove that A, is minimal with these properties. This new point of view
will allow us to show that A, and A, always coincide.

Lemma 2.11. Assume that M is a small Gaussian monoid. Then, for all quasi-
central elements a,b in M, the elements a A b and a A b are quasi-central.

Proof. By Lemma 2.7, the element A ap divides both a and b. Therefore, A,pp is
a left divisor of anb. Now, aab being a left divisor of A ap, we deduce Agnp = anb
by using cancellativity and conicity. By Lemma 2.6, aAb is therefore quasi-central.
Symmetrically, a A b is quasi-central. O

Proposition 2.12. Assume that M is a small Gaussian monoid, and QZ is its
quasi-center. Then, for every a in M, we have

Ag=N\@ZnaM) and A,= /\(QZn Ma).

Proof. Let a € M. By definition, A, is a right multiple of a, and, by Proposi-
tion 2.2, A, is quasi-central. Therefore, A, belongs to QZNaM, and A\(QZNaM)
divides A,. Now, as QZ NaM is nonempty, A\(QZ NaM) is a right multiple of a.
Moreover, by Lemma 2.11, A(QZ N aM) is quasi-central, and so, by Lemma 2.7,
A, divides A(QZNal). Cancellativity and conicity allow to conclude. The equal-

ity A, = N(QZ N Ma) is obtained symmetrically. O

Corollary 2.13. Assume that M is a small Gaussian monoid. Then, for every a
in M, we have A, = A,.

Proof. Let a € M. By Lemma 1.7, we have
QZNaM =QZNMaM = QZ N Ma.

By using Proposition 2.12, we deduce A, = A(QZ N MaM) and A, = /N\(QZ N
MaM). Now, A, belongs to QZ N MaM, and, therefore, A, is a right divisor
of A,. Symmetrically, A, is a left divisor of A,. Cancellativity and conicity allow

to conclude. 0
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We conclude the current section with the observation that the quasi-center of every
small Gaussian monoid is a free abelian submonoid.

Lemma 2.14. Assume that M is a small Gaussian monoid. Then, for all ele-
ments a,b in M, we have A, v Ay = Agvp.

Proof. First, let us show that, for all quasi-central elements a,b in M, the ele-
ment a v b is quasi-central. Let S be the set of simples in M. As S generates M,
there exists a positive integer n such that a,b belong to S™, and, by Proposi-
tion 1.6, there exist elements a’,b’ in S™ satisfying A™ = ad’ = bb'. As, by
definition, A™ is quasi-central, both a’,0’ are quasi-central. Now, Lemma 1.4
gives A" = aa’ = b’ = (avb)(a’ Ab'). As, by Lemma 2.11, o/ AV’ is quasi-central,
we deduce that a v b is quasi-central.

As a v b divides A,vp, a divides A,vp. By Proposition 2.2 and Lemma 2.7, A,
divides Ag,vp, and, symmetrically, A, divides Agvp. S0, Ay v Ay divides Agvp, and
the equality follows from the result above and Proposition 2.12. O

Proposition 2.15. Assume that M is a small Gaussian monoid. Let ()Z be its
quasi-center. Then (QZ is a free abelian submonoid of M, and the function a — A,
is a surjective semilattice homomorphism from (M, v) onto (QZ, V).

Proof. Let A be the set of atoms in M. By Proposition 2.10, ()7 is the submonoid
generated by {A, ; x € A}. So, in order to prove that Q7 is free abelian, it suffices
to show that A;\A, = A, holds for all z,y in A with Ay #A,. Assume A, #A,,.
Then Lemma 2.9 implies A,\A, # 1. As Ap, is A, (see the proof of Propo-
sition 2.2), Az\A, divides A,. Now, by Lemma 2.14, the element A \A, is
quasi-central, and Proposition 2.10 implies A;\A, = A,. The second part of the
assertion follows then from Lemma 2.14. O

Remark. Assume that M is a small Gaussian monoid. Let QZ be its quasi-
center. The function a — A, need not be a semilattice homomorphism from (M, A)
onto (QZ, A). Indeed, for a,bin M, A,xp divides A, A Ay (as a b divides both A,
and Ay, a A b divides A, A Ay, which is quasi-central by Lemma 2.11, and so, by
Lemma 2.7, Ayap divides A, A Ap), but there is no equality in general. We shall
see in Section 4 a necessary and sufficient condition for this.
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3. CROSSED PRODUCTS

In this section, we define the notion of a crossed product for small Gaussian groups.
As the latter are groups of fractions, we first define the notion for small Gaussian
monoids.

Definition. Assume that M;y,..., M, are small Gaussian monoids—or, more
generally, cancellative conical monoids with finitely many atoms. Let A; be the
set of atoms in M; for 1 < i < n. Assume that © = (©i)1<izj<n is a family
of functions ©;; : M; x M; — M;. We say that © satisfies Condition (#) if, for
every a in M;, the restriction ©;;(a,.) of ©;; to {a} x M; is a bijection of Mj, and,
in addition, we have

®ij (ab, C) = @ij (b, @ij (a, C)), (#1)
ez’j (a’ Cd) = @ij (a7 C) @ij (@ji(c7 a)? d)7 (#2)
@jk:<@ij (a, C), @ik(a, 6)) = @ik(@ji(c, a), ij(c, 6)), (#3)

for a,b in M;, ¢,d in Mj, e in My, with 1 < ¢ # j # k # i < n. The crossed
product N?Ml is then defined to be the quotient of the free product of the M;’s
by the congruence generated by all pairs (z0;;(z,y) , ¥9;i(y,x)) with z € A;,
y € Ajand 1 <i<j<n. Forn=2, wewrite My x5 Mo.

The current notion of crossed product is reminiscent of the crossed product of
groups as defined in [15] and [21] of which it is a monoidal version.

Example 3.1. Let us say that a family © is trivial if, for 1 <i # j < n, ©;(a,.)
is the identity for every a in M; : © is then a family satisfying Condition (#), and
the crossed product N?Ml is the direct product M7 X ... x M,.

Lemma 3.2. Assume that My, ..., M, are small Gaussian monoids—or, more
generally, cancellative conical monoids with finitely many atoms. Let A; be the
set of atoms in M; for 1 <1i <n. Then, for every family O of functions satisfying
Condition (#), for 1 < i # j <n, for every a in M;, the restriction ©;;(a,.) of ©;;
to {a} x A;j is a permutation of A;.

Proof. First, by taking b = 1 in (#1) and using surjectivity, we find

©;;(1,d) =d, (3.1)
for every d in M;. Next, by taking ¢ = d = 1 in (#2) and using both (3.1) and
cancellativity, we obtain

@m’(d, 1) = 1, (32)
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for every a in M;. Now, the restriction of ©;; to {a} x M, is a surjection onto M; :
in particular, for every atom z of A;, there exists ¢ in M; satisfying ©;;(a,c) = z.
We claim ¢ € A;. Indeed, (3.2) implies ¢ # 1, so we have ¢ = yc¢’ for some y € A;
and ¢ € M;. By applying (#2), we find ©;;(a,y)0,;(0;i(y,a),c’) = z. Both
injectivity of ©;;(a,.) and (3.2) imply ©;;(a,y) 1. As z is an atom, we
obtain ©;;(a,y) = z, and, by using injectivity of ©;;(a,.), we find c=y € 4;. O

Assume that My, ..., M, are small Gaussian monoids. Let A; be the set of atoms
in M; for 1 < i < n. Then every family © satisfying Condition (#) for My, ..., M,
is completely determined by the induced permutations ©(x,.) of A; for x in A;
and 1 < i # j < n (see Lemma 3.2). Now, conversely, not every such family of
atom permutations extends into a family satisfying Condition (#) for My, ..., M,
For instance, let us consider the small Gaussian monoids ( z,y : zyx =
and ( z : ). The family of the atoms permutations ©(z,.) = O(y,.) = (&
and O(z,.) = (y ¥ Z) does not extend into a family satisfying Condition (
Indeed, by using (#1) for instance, we would find O(z,y?) = 2? and O(z, zyx
yxy, but 2 # yxy holds. See also Examples 3.3, 3.7, 3.9 and 3.12.

~— ~—
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Definition. Assume that M;y,..., M, are small Gaussian monoids—or, more
generally, cancellative conical monoids with finitely many atoms. Let A; be the
set of atoms in M; for 1 < i < n, and A be the disjoint union A; U...U A,.
Assume that § = (0)zca is a family of permutations of A. We say that 0 satisfies
Condition (#) if, for every x, 6, is a permutation of A which globally preserves
every A; for 1 < j < n, and, in addition, the 6,’s can be extended into a (necessary
unique) family of functions satisfying Condition (#). The corresponding crossed

product is then denoted by N?MZ The latter does not depend on the value
of 0,(y) for z,y in A; and 1 < j < n, and we can assume that 6, is the identity
on A; for every x in Aj and 1 < j <n.

Example 3.3. Let us consider the small Gaussian monoids M; = ( x1, 22,23 :
T1Ty = Tox3 = x3w1 ) and My = ( y,z : y3 = 23 ). Let 0 be defined by 0., =
Oy, = Oy, = (2122239 2) and 9, = 0, = (S 222 Y2) Then 6 is a family
satisfying Condition (#) for M, M>, and the monoid M; >y Mo admits the
presentation < L1,L2,T3,Y,2 : T1X2 = T2X3 = T3x1 , y3 = Z3 , L1 = YT3 , 1Y =

23, T2 = YT1, ToY = 2Ty, T3Y = 2Ty, T32 = YTa ).

Lemma 3.4. Assume that M, ..., M, are small Gaussian monoids—or, more
generally, cancellative atomic monoids with finitely many atoms. Then, for every
family © of functions satisfying Condition (#), for 1 < i # j < n, for every a
in M; and every b in M;, we have |©;;(a,b)|=|b].

Proof. We show by induction on |b] that, for 1 < i # j < n, for every a in M; and
every b in M, we have |©;;(a,b)|>]b|. For |b|= 0, the result follows from (3.2).
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Assume |b|> 0. Then there exist an atom z and an element d in M; satisfying
both b = zd and |b|= 1+ |d|. Lemma 3.2 implies |©;;(a, z)|= 1. By applying the
induction hypothesis, we obtain

(3.2)

19i;(a, b)|= [©:;(a, xd)| ="[0;;(a, )0:;(O;i(x, a),d)|
> ©ij(a, z)| + 10:(0;i(z,a),d)|
=1+ |0:;(0i(z,a), d)|
()
> 1+ |d|=]o,

which completes the induction.

Now, for every a in M; with 1 <1i < n, we denote by ©;;(a,.) the inverse of the
bijection ©;;(a,.). By definition, we have

Q4;(a, 0ij(a, b)) = b= O;;(a, 0;;(a,b)), (3.3)

for @ in M;, bin M; and 1 < i # j < n. From (3.3), (#1) and (#2), we deduce
the following identities

©ij(ab,c) =
éij (a, Cd)

(E)ij(a, @ii-(b, o)), ) (3.4)
0ij(a,c)0:(0,i(O:j(a, ¢), a),d),

for a,b in M;, ¢,d in M; and 1 <4 # j < n. An induction similar to the previous
one gives |0;;(a, c)|>|c| for every a in M;, every ¢ in M; with 1 <i# j <n. We
obtain

1835 (a, b)|= bl =[6; (a, ©;(a, b))|=|0:;(a, b)],
which implies |©;;(a,b)|=|b|. 0

Lemma 3.5. Assume that My, ..., M, are small Gaussian monoids—or, more
generally, cancellative atomic monoids with finitely many atoms. Then, for every
family O of functions satisfying Condition (#), for 1 < i # j < n, for every a
in M; and every b in M,

a@ij (CL, b) == b@]l(b, (1) (36)
holds in XIS M;.

Proof. We use an induction on |a|[|b|. For |a||b]= 0, the result follows from (3.1)
and (3.2). Assume |a|b]> 0. We have a = zc and b = yd for some atom x
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and some element ¢ in M;, some atom y and some element d in M;. By using
Lemma 3.4, we obtain

)
="2c0;;(c, 0;5(z,yd))
Z'2¢05(c, 0ij(2,4)0i;(0i(y, x), )
2¢035(c, 0i(,9))041(0;:(04 (2, 1), ©), ©:(05:(y, ), d))
= 20(2,9)0,:(04;(,9), €)04;(0:(045(x, ). ©), ©:;(i(y. ), d))
2 20,(2,9)0:;(0;i(y, 2), d)0,:(04(8,i(y, x), d), 0,i(O4;(z, 1), ©))
= ¥0,i(y,2)04;(0;i(y, 2), d)0,i(04;(0;i(y, 7). ), ©,4(O4;(x, y), )
= ydO,:(d, 05:(y, 1))05:(01 (O5:(y, 7). d), ©,4(045(, ), )
Zyd0,i(d, 0;:(y, 2)0,:(04(z, ), )
= yd0i(d, ©i(y, vc))
(g)yd@ji(yd, xzc) = bO;(b,a)
which completes the induction. O
Proposition 3.6. Assume that My, ..., M, are small Gaussian monoids—or,

more generally, cancellative atomic monoids with finitely many atoms. Then, for
every family © of functions satisfying Condition (#), X M; is set-theoretically
equal to My x ... x M,.

Proof. Let M = N?Mi. By definition, every element in M admits a decom-
position as a product of elements in M,..., M,. We have to show that such a
decomposition is unique. Here, a decomposition of a non-trivial element a in M
is a finite sequence (b1,...,bs,) satisfying a = by --- by, with b; € M,,~{1} for
some sequence (f1, ..., fy) with values in {1,...,n}. The associated finite se-
quence (fi1,...,1m) is called the support of the decomposition. We order sup-
ports using the ShortLex ordering on sequences of integers : (fi1, ..., fhy) <7
(v1,...,v) holds if m < r does, or we have m = r and (u1,...,Mmn) pre-
cedes (v1,...,Vn) in the lexicographical extension of the standard order of the
integers.

For 1 <1 # j < n, for every a in M;, we denote by (:jij (a,.) the inverse bijection
of ©;;(a,.). Formula (3.6) is then equivalent to

ab = 0,;(a,0)0,:(04;(a,b),a), (3.7)
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for every a € M;, b € Mj and 1 < ¢ # j < n. Applying (3.7) inside some
decomposition yields another decomposition (of the same element) : for p; # pit1,
we define

Ti(b1, ... biybiy1, ..., bm)

= (b17 ooy bioa, G.Ua'llr;+1 (bi7 bi+1)7 @Hd-o—lui(@/hlh-o—l (biv bH-l) bi ) bit2,-- -, bm)
Now, any two decompositions of an element a in M can be connected one to the
other by a finite sequence of elementary transformations T, C' and C~, where C
is defined by

Ci(bl, e 7biabi+1a .. ,bm) = (bl, . 7bi—17bibi+17bi+27 .. .,bm),

for p; = piyr1, and C~ is the inverse (non-functionnal) transformation of C.
The problem is that, starting with any decomposition of a, several transforma-
tions may be applied. We shall prove that, no matter the transformations are
chosen, they lead to a unique final decomposition with <***<-minimal support.
Let us say that an elementary transformation is decreasing if the support of the
transformed decomposition is <™*<_gmaller than the initial support. So, applied
to some transformation with support (p1,...,um), T; (resp. C;) is decreasing
whenever p; > 1 (resp. p; = piy1) holds, while C; is never decreasing. Now,
<ShrtLer ig a wellordering on the supports of a given element, hence there exist no
infinite sequence of decreasing transformations from a given decomposition. So, in
order to prove that any sequence of decreasing transformations leads to a unique
final decomposition with <**<_minimal support, it suffices to prove that, for ev-
ery pair (D1, D2) of decreasing transformations applied to b, there exist finite se-
quences D} and D} of decreasing transformations satisfying Do D1 (b) = D/yo D4 (b)
(" confluence property”, see [16]).

Claim 1. Assume the confluence property proved. Then any two decompositions
with <®*<_minimal supports of a given element are equal.

Proof. For a given decomposition cf let N (cf) denote the unique decomposition
obtained from d as above, i.e., with <**<-minimal support. Let @ = (a1, ...,a,)
be a decomposMon with a <S’“"“‘“ minimal support. We show that every decompo-
sition b of ay - - - a,, satisfies N (6) = @ by using an induction on the number of T', C,
C~ needed to transform @ into b. Thus, the point is to show that, if d is obtained
in one step from b, then we have N(d) = N(b). If the support of d is <®=smaller
than that of b, N(d) = N(b) follows from confluence directly. Assume that the
support of d is <Shortles. greater than that of b, then d is obtained from b using ei-
ther T or C'~; now, on the one hand, T; is an involution by deﬁnltlon and, on the
other hand, in whatever way C; is applied to b, we have C; (d) = b, so we find
again N(d) = N(b). Thus, if b is a decomposition with a <¥=_minimal support
obtained from @, we have N(b) = @ Now, by construction, we have N(b) = b,
so @ is the unique decomposition of ap - - - a, with a <**“<_minimal support. O
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It remains to prove the confluence property of the decreasing transformations.
Three types of pairs (Dj, D2) are to be considered. Let us fix an element a in M
and a decomposition (by,...,by) of a with support (u1, ..., fm).

Claim 2. Confluence holds for a pair of type (C;, Cj).

Proof. Assume that both C; and C; are decreasing and applied to (bi,...,0bn,
i.e., assume fi; = fii41 and p; = pjp1. Then we have C;(Ci(br,..., b))
C;(Cj(by,...,bp)), and confluence is verified.

~—

ol

Claim 3. Confluence holds for a pair of type (T}, C;).
Proof. Assume that both T; and C; are decreasing and applied to (b1, ...,bm),
i.e., assume p; > i1 and p; = pjy1. Then have ¢ # j. For |i —j| > 1,
we have C;(Ti(bi,...,bn)) = T;(Cj(bi,...,by)), and confluence is verified.
Assume i — j =1 (the case j —i = 1 is similar). We show

Ci(Ti—1(Ti(b1y ... b)) = Ti—1(Ci—1 (b1, . ., by)).
By hypothesis, we have p;—1 = pu; > p;41, and we find
Ci(Ti1(Ti(bry - -, b))

= Ci(Ti—1(b1, .., bi—1, émmﬂ(bi, bit1), @mﬂm(émml(bi, bit1),0i), biva,..,bm))

=Ci(b1, -, bi—2,0 4, (biz1, 0,01 (bis biy1)),
@W+1W(émm+l(bi—1’él«’fiﬂi+1(bia bi—l—l))abi—l)v
@m+1m(émm+1 (bis bit1),0i),bigas ... bm)
= (b1, bim2, Oy (bie1, Oy, (biy bigr)),
O (Opipir (0i—1, O sy (03 6i41)),0i-1) s i (O iy (biy bi1), bi),
bito,...ybm),
and
Ti—1(Ciz1(b1, ..., b))
=Ti_1(by,...,bi—2,bi_1b;, bit1,...,bp)
= (b1, -+ Di—2,O s (bio1Diy bis1),

O v (Opissir (bi1bibig1),bi—10:),biga, .o b))
Now, the equality

Oppisr (bim1: O sy (01, bit1)) = Oy (bim1bi, bis1) (3.8)
follows from (#1), while the equality
@m+1m (éllrzﬂfzﬂ (bi—ljémmH (bi7 bi-‘rl))a bi—1)®m+1m (éﬂiﬂz‘ﬂ (biv bi+1)v bi)
= Oy Oy (bim1biy biy1),bi1b;)
follows from (3.8) and (#2). O
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Claim 4. Confluence holds for a pair of type (13, T;).

Proof. Assume that both T; and Tj are decreasing and applied to (bi,...,0bn),
i.e., assume f1; > ft;41 and p; > pjpq. The case ¢ = j is trivial. For i — j| > 1,
we have T;(T;(bi,...,bn)) = Ti(Tj(b1,...,bm)), and confluence is verified.
Assume i — j =1 (the case j — i = 1 is symmetric). We show

Ti 1 (Ti(Tizq1 (b1, .- - b))) = Ti(Tie1 (Ti(b1, . . . b))
Let p = pi—1, ¢ = pi, v = pi+1 and a, = b;—1, ag = b;, a, = b;11. By hypothesis,
we have p > g > r. We obtain
Ti 1 (Ti(Tiz1(b1y oy apyag, @py - .. b))
=Ti-1(Ti(by, - - -, épq(apa aq), @qp(épq(ap» aq), ap); rs - - bm))
= z‘fl(blw--7épq(ap7aq)7épr(@qp(épq(apvaq)’%)aar>a
@Tp(épr(@qp(épq(am aq), ap); ar), 9qp(épq(ap> aq),ap)), - - - bm)
= (b1,..-, éqr(épq(am aq), épr(@qp(épq(apa aq); ap), ar)),
@Tq(éqr(épq(ap’ aq), épr(gqp(épq(apa aq), ap), ar)), épq(apa aq)),
Grp(épr(@qp(épq(%v aq), ap), ar), @qp(épq(apv aq); ap)), - -, bm)

and
Ti(Ti_l(Ti(bl,...,ap,aq,aT,... )))
= Ti(irifla)la <oy Qp, @qr(aqa ar)a @rq(@q'r(aq) ar) ) ) bm))
:Ti(bh“-v@pr(ap7@qr(aq7ar))a@rp(@pr(apv qr(aqvar) »Ap ),

)
®Tq(éqr(aq> ar),dq)s- -+ bm)

= (b1,...,9p(a pvgqr(aqvar))
@ ( ( (ap’@q (ag,ar)), ap), @Tq(éq,«(aq,ar),aq)),
Oq ( q(© p(@pr(apv qr(aqaar))vap)a@rq(éqr(aqvar)vaq))a
( r(ap, qr(amar))vap))w--vbm)'

We are left with the task of proving the following equalities, which will prove
confluence in this case:

éqr(épq(am aq), épr(gqp(épq(awaq)? ap), ar)) = Opr(ap, Ogr(aq, ar)), (Er)

@rq<éqr(épq(apv aq), épr(@qp(épq(am aq);ap),ar)), épq(apa aq))
= G)pq(@rp(@pr(apv ®qr(am ar)), ap)7 @rq(@qT(aqa ar), aq))’ (Eq)

@Tp(@m“(@qp(épq(ap’ aq), ap), ar), @qp(épq(apa aq), ap))
= eqp(@pq(@m(@pr(apv @qr(aqv ar)), %)’ @rq(@qr(aqv ar), aq)), (Ep)
Orp(Opr(ap, Ogr(ag, ar)), ap))-

18



Let ¢, = épq(ap,aq) and d, = éqr(aq,ar), hence a; = Opq(ap,cq)
and a, = O (aq,d,). Equalities (E,), (E,), (E,) are then equivalent respectively
to

Oyr(Cq, Opr(Ogp(cy, ap); Ogr(Opqg(ap, cq),dr))) = épr(apv dr), (E})

@Tq(éqr(cqv épr(gql)(cm ap); Ogr(Opq(ap, cq),dr))), ¢q) (E;)
ap), Orq(dr, Opg(ap, ¢q))),

= épq (@rp(épr (ap, dr),

@Tp(é:w(@qp(cqv ap), Ogr(Opg(ap, cq), dr)), Ogp(cq, ap)) (E;/))

= @qp(qu(@rp(Gpr(apa dr), ap), @Tq(dra @pq(am Cq)))a @Tp(Gpr(apa d), ap))'

Let e, = (:)pr(ap, dr), hence d, = Op(ay, e,). Equalities (E}), (E,), (E}) are then
equivalent respectively to

e
LS

Oqr (€ Opr(Ogp(cqs ap), Ogr(Opg(ap, cq), Opr(ap, €,)))) = ey, (E)

O1rq(Ogr(cq, épr (Ogp(cq ap), Ogr(Opg(ap, cq), Oprlap, er)))), cq)
= Opq(Orp(€r; ap), Org(Opr(ap, 1), Opqlap, cq))), (Ef;/)

Orp(Opr(Ogp(Cqs ap), Ogr(Opg(ap, cq)s Opr(ap, €r))), Ogplcy, ap))
= O4p(Opq(Orp(er, ap), Org(Opr(ap, €;), Opg(ap, ¢q))), Orper, ap)). (E;/a/)
By applying ©4,(¢cq,.) and then ©,, (04, (cq, ap),.) to (E)), we obtain
Ogr (Opq(ap, cq), Opr(ap, er)) = Opr(Ogp(cy, ap), Ogr(cy, €r)), (£;")
which is true by Condition (#3). Next, by applying ©,4(0.,(er,a;),.) to (E;),
we find
qu(@rp(eraap)»@rq(éqr(cqvépr(gqp(cqaap)7@qr(®pq(apch)v9pr(ap7er))))acq))
= O¢(Opr(ap, e;), Opg(ap, cq)). (Eé”)

Now, by applying épr(@qp(cq, ap),.) to (E)"), we obtain

Opr(Ogp(Cq: ap); Ogr(Opq(ap, ¢q), Opr(ap, €:))) = Ogr(cq, €r), (")
hence, by applying (:)qr(cq, s

Ogr(cq, épr(gqp<cqv ap); Ogr(Opg(ap, ¢q), Opr(ap, €r)))) = ;.
According to the latter equality, (E7") is equivalent to
Opq(Orpler, ap), Org(er, cq)) = Org(Opr(ap, €r), Opglap, ¢q)),
which is true by Condition (#3). Finally, by using (E£,"') in (E})), we obtain
Orp(Ogr(cq, €r): Ogp(cqs ap)) = Ogp(Org(er, ¢q), Orpler, ap)),

which is true by Condition (#3). 0
This completes the proof of Proposition 3.6. O
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Corollary 3.7. Assume that My, ..., M, are small Gaussian monoids—or, more
generally, cancellative atomic monoids with finitely many atoms. Then, for every

family © of functions satisfying Condition (#), D(]?MZ is atomic and cancellative.

Proof. First, by Proposition 3.6, every element ¢ in Nsz admits a unique de-
composition as aj ---a, with a; € M; for 1 < i < n, and, by Lemma 3.4, |a| is
the sum of the |a;|’s. So, X|?M; is an atomic monoid (see Lemma 1.3). Next, we
have to show that, for a, b, ¢ in D(]fMi, ac = bc implies a = b. As [><]f]\/[Z is atomic,
we can use an induction on |c|. For |¢|= 0, the result is trivial. Assume ac = bc
and | c¢|> 0. Then we have ¢ = xz¢’ with z € A, for some 1 < r < n and ¢
in X1 M;. By induction hypothesis, we have axz = bx. By Proposition 3.6, we can
write ¢ = a1 Gr_1Gr41 - ApGr and b = by -+ - bp_1bp11 - - by b, for some a;, b;
in M;, and, therefore, ay---ap_1a,41 - an(a,x) =b =10y -br_1bp41 - bp(bpz).

The uniqueness of decomposition implies a; = b; for ¢ # r and a,x = bz,
hence a = b by cancellativity of M,.. This completes the induction. The argu-
ment for left cancellativity is symmetric. O

Example 3.8. Let us consider the (isomorphic) small Gaussian monoids ( z;, y; :
xiy; =y )T for i = 1,2, 3, and the family g formed by 0., = (21 01 ve 2 25 03),
Oy = (5t Y 2202 50 43) and 0y, = 0, = 00y, = 0, = (31 41 2242 53 42). Then §
extends into a family of functions © using (#1) and (#2), but © does not sat-
isfy Condition (#3). Let us observe that each of the three underlying bicrossed

products is well-defined.

The results so far are valid for cancellative conical and/or atomic monoids with
finitely many atoms. From now on, we shall concentrate on the specific case of
small Gaussian monoids.

Lemma 3.9. Assume that M, ..., M, are small Gaussi_e}n monoids. Let A; be the
set of atoms in M; for 1 < i < n. Then, for every family 6 satisfying Condition (#),
for 1 < i # j < n, the function (z,y) — (,(x),0,(y)) is a permutation of A; x A;.

Proof. Let us fix (4,j) with 1 < i # j <n. Assume (x1,22) in A; X A; such that
there exist (y1,y2) and (21,22) in A; x A; satisfying

(O, (11), 0y, (y2)) = (21, 22) = (02, (21), 0z, (22)).

We obtain _
{yzl’l = Y122,
22X1 = 212,

and, the monoid M; being Gaussian,

{ (z1/y1)yer1 = (21/y1)y122,
(y1/21)z2m1 = (y1/21) 2122,
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hence
(21/y1)y271 = (y1/21) 2271

Proposition 3.6 implies z1/y; = y1/z1 and ya = 29, but z1/y1 = y1/21 leads

to z1/11 = y1/z1 = 1, hence y; = z;, which proves injectivity of the func-
tion (z,y) — (0y(x),0,(y)). As the set A; x A; is finite, the function (z,y) —
(0y(x),05(y)) is a permutation of A; x A;. O
Example 3.10. Let us consider the (isomorphic) small Gaussian monoids ( 21,1 :
z1y1 = oy )T and ( 2o,y2 1 Toys = yaxo )T, and the family  consisting
of the permutations 0,, = (71§ 22 42) = buy, 0y, = (51 1 42 ¥2) and 0, =

(yi ¥ 32 %2). Then the function (z,y) — (0,(z),0.(y)) is not a permutation
of {z1,y1} X {z2,y2}. By Lemma 3.9, 0 is not a family satisfying Condition (#).
Indeed, denoting by © the family of functions associated with 6, we would

ﬁnd @gl(yg,ylxl) = JJ% and @Ql(yz,l'lyl) = Y171.

Lemma 3.11. Assume that My, ..., M, are small Gaussian monoids. Then, for
every family © of functions satisfying Condition (#), for a in M;, for b in M;

with 1 <i# j <mn, a©;;(a,b) = b0;(b,a) is the right lcm of a and b in N?MZ

Proof. By Lemma 3.5, a©;;(a,b) = b0,;(b,a) is a right multiple of a and b
in [>Q?MZ Assume that aa’ = bb’ is a right multiple of a and b in N?Ml By
Proposition 3.6, we have a’ = a;a;H1§k§n7k¢¢7k¢ja§€ and b = bgb}ngkgn’k#,k#b;ﬁ
for some a}, b}, in M}, with 1 < k < n. By Proposition 3.6 again, aa’ = bb" implies
both aaza; = bbb} and aj = by for 1 < k <n,k # i,k # j. By Proposition 3.6
always, aaja’; = bbjb; implies aa; = ©;;(b, ), hence

(3.2)

by = ©;(b, aa;) = 0,i(b,a)0;i(©;;(a, b), aj).

Therefore, bb" is a right multiple of b©;(b, a). O

Proposition 3.12. Assume that M, ..., M, are small Gaussian monoids. Then,
for every family 6 of permutations satisfying Condition (#), the monoid Nsz

is a small Gaussian monoid, and the lattice of simple elements in IX]?M, is the
product of the lattices of simple elements in My, ..., M,.

Proof. Let O denote the family of functions associated with 0. Let A; be the set
of atoms in M; for 1 < ¢ < n, and let A be the disjoint union A; U ... A,.

First, by Corollary 3.7, [><|§MZ is atomic and cancellative. Now, let us show by

induction on |a||b]| that any two elements a, b in NfMl admit a right lem.
For |a||b|= 0, it is obviously true. Assume |a||b|> 0. Then we have a = d'x
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and b = by for some z € A, y € A, with 1 < 7,5 < n and o,b in XYM,
By induction hypothesis, a’ and b’ admit a right lem o’ v . Let o/\b’" and b'\d’
denote those elements in X|? M; satisfying a’ v ' = a’(a’\b') = b'(b'\a’) (these two
elements are unique by cancellativity and conicity). By Proposition 3.6, there
exist ¢;, d; in M; for 1 < i < n satisfying a’\b' =c¢1 -+ - ¢p_1¢r41 - - e and b'\ad' =
dl tee d5_1d5+1 tee dnds Let

z = @nr(cna ) ®(r+1)r(cr+1a 6(7“71)7“(61”—17 R 627“(027 @1r(cla x)) .. )))

and

y/ = @ns(dnv 0y @(s—i-l)s(ds—‘rla ®(s—l)s(ds—1a v @28(d2’ ®1s(dlay)) e )))

Lemma 3.2 implies 2’ € A, and y’ € A;. By Lemma 3.11, the element ¢, \z’ in M,
and the element ds\y’ in M, admit a unique right lem ¢ in Nsz We deduce
that (a’ v1')g is the right lem of @ and b. Therefore, P}X|? M; is a Gaussian monoid.

In order to prove that NfMZ is small, we show that the closure of A under \
is P= P U...U P,, where P; denotes the closure of A; under \ for 1 < i < n.
Let P = A and P® = {a\b; a,b € P*~V} for k > 0. We show by induction
on k that P® is included in P, U...U P,. For k = 0, we deduce A; ... A, C
P/ U...UP, from A; C P; for 1 <i < n. Assume k > 0. Let a, b belong to P*~1),
By induction hypothesis, we have ¢ € P. and b € P, for some 1 < r,5 < n.
Forr=s,a\be P, C P, U...U P, and we are done. Assume r # s. Let us show
inductively on |a| that, for every a in P,, a\P; is included in Ps. For |a|= 0, we
have 1\b = b € P, for every b in P,. Assume |a|> 0. We have a = z(z\a) for
some x € A,. Using Lemma 1.2, we obtain

a\b = (e(@\a)\b = (¢\a)\(\b),
for every b in P;. We have to show that x\b belongs to P for every z in P, and
every b in P,. Let P\” = A, and PV = {a\b; a,b € Ps(jfl)} for j > 0. We
show by induction on j that, for every b in Ps(j ), x\b belongs to Ps(j ) for every x
in A,. For j =0, we have b € Ag, hence z\b = 0,(b) € A;. Assume j > 0. Then
we have b = by\by for some by, by in Ps(j -, Following Lemma 3.2, we denote
by 2’ the image of x under the inverse of the permutation Oy, (by,.) of A,. Using
Lemmas 3.5 and 1.2, we obtain
2\b = (b \a')\(b1\b2) = (2'\b1)\ (&' \bs):

By induction hypothesis, both x’\b; and z’\by belong to Ps(j _1), and, therefore,
x\b belongs to Ps(j). We deduce that z\b belongs to P; for every x € P, and b € P;.
Now, having |z\a|<|a|, the initial induction hypothesis implies that (z\a)\(z\b)
belongs to Ps, which completes the induction. Finally, as P; U ... U P, is finite,
the closure of A under \ is finite, and P = P, U...U P, follows. Therefore, Nsz
is a small Gaussian monoid.
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Recall that, if (X;, A;,vi) with 1 < ¢ < r are lattices, their (Cartesian)

product is the lattice (X7 x ... X X,,A,v), where A and v are defined
by (a1,...,a:)A(b1,...,b.) = (a1r1b1, ... arnrby) and (ag, ... a.)v(by, ... b)) =
(a1viby,...,apvyby) for a;,b; in X; and 1 < i < r, see [3]. Here, for 1 < i < n,

S; denotes the closure of P; under v—Dby definition, the set of simples in M;—
and S denotes the closure of P under v. We consider the lattice homomorphism ¢
from Sy x ... x S, into S defined by ¢(1,...,1,a;5,1,...,1) = a; for a; € S;
and 1 < j < n. Observe that every element in .S that can be expressed as the right
lem of elements in S4,...,5, can also be expressed as the product of elements
in S1,...,95,. Indeed, an easy induction on n gives

/

ajv...va, =aj---a,

with ¢ = a1 and a, = (af---al_;)\a; for i > 1. Now, p(ai,...,a,) =
o(b1,...,b,) implies a}---al, = b} ---b), hence, by Proposition 3.6, a, = ¥
for 1 < ¢ < n. We show inductively on ¢ that a; = b; holds for 1 < ¢ < n.
The result is obviously true for ¢ = 1. Assume i > 1. By induction hypothesis,
a; = b} implies

(@)l )\ai = (d; - al_)\bi

hence, by using Lemmas 1.2 and 3.5,

9(1'—1)1'(@2_17@(1'—2)1(@2_2, e (92z‘(a/2, @11‘(61/1, a;))...))
= O(—1)i(aj_1,Ox—2)i(aj_o, ..., (O2i(ay, Ori(al, b)) .. .)).

Now, by successively using injectivity of ©¢_1)i(aj_y,.), ..., ©O@s(ai,.), we
find a; = b;, which completes the induction and shows the injectivity of ¢. By
definition, for every a in S, there exist an integer m and elements by,...,b,,
in P= Py U...U P, satisfying a = by v...V by, hence we have a = p(as,...,an)

with a; = \/(P;N{b1,...,bn}) for 1 <i < n, which means that ¢ is surjective. O

Example 3.13. Let us consider again the small Gaussian monoids M7 and My
of Example 3.3. Let 6 be defined by 0, = 0., =0, = (31 & 255 2), 0, =0y
and ¢, = (3} 22 25 3 =), and let 0" be defined by Oy, =0y, =0, =0.,0, =0,
and ¢ = ¢/. The monoids M; >z My and My t<z M; are small Gaussian, while
the monoid M b, Mo is not, as, for instance, (z2\y)\(z2\z1) # (y\22)\(y\z1)
contradicts Lemma 1.2.
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4. DECOMPOSITION OF A SMALL (GAUSSIAN MONOID

In this section, we introduce the notion of a A-pure small Gaussian monoid, that
extends the one of irreducible spherical Artin monoids. On the one hand, we prove
that the result of Brieskorn, Saito [7] and Deligne [13] stated in the special case
of spherical Artin groups extends to the case of arbitrary small Gaussian groups :
the quasi-center and the center of every A-pure small Gaussian group are infinite
cyclic subgroups. On the other hand, we prove that every small Gaussian monoid
is an iterated crossed product of some A-pure small Gaussian monoids.

Definition. Assume that M is a small Gaussian monoid. For a,b in M, we
write a & b whenever A, = A holds. We say that M is A-pure if its atoms are
R-equivalent.

Proposition 4.1. Assume that M is a A-pure small Gaussian monoid, A is its
Garside element, e is its exponent, and G is its group of fractions.

(i) The quasi-center of M is the infinite cyclic submonoid generated by A.

(ii) The center of M (resp. of G) is the infinite cyclic submonoid (resp. subgroup)
generated by A°.

Proof. Let A be the set of the atoms in M. According to Lemma 1.8 and Propo-
sition 2.8, it suffices to show {A, ; v € A} = {A}. Let 0 be the unique element
of {A, ; x € A}. By Proposition 1.6, A is quasi-central, and, by Proposition 2.10,
0 divides A. Let

D= ] Ma.

T€A

By hypothesis, ¢ is the right lem of D. Let a,b € D. By definition, we have a = ¢\z
for some ¢ in M and some atom z. By using (1.2), we find b\a = b\(c\z) =
(cb)\z, which proves that D is closed under \. As D includes A, D includes the
closure P of A under \, and, therefore, A, which is the right lem of P, divides §.
Cancellativity and conicity allow to conclude. O

Our aim is now to show that every small Gaussian monoid is an iterated crossed
product of A-pure small Gaussian submonoids.

Definition. Assume that M is a small Gaussian monoid. Let A be its set of
atoms. A subset A; of A is said to be full if, for every atom x in A; and every
atom y in A, z & y implies y € A;.
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Proposition 4.2. Assume that M is a small Gaussian monoid. Then, for every
full subset A; of atoms in M, the submonoid of M generated by A; is a small
Gaussian monoid.

Proof. Let M; denote the submonoid generated by A;. First, the submonoid M,
inherits cancellativity and conicity from M. Next, we prove M\M; = M
and \/M; = M; = \/M;. We show using induction on | a| that, for every a
in Mj, the set M\a is included in M;. For |a|= 0, we have M\1 = {1}. As-
sume |a|> 0. Then we have a = za’ for some atom z in A; and some a in M;.
We claim that A, belongs to M; : let y be an atom in A; dividing A, then, by
Lemma 2.7, A, divides A,, and, by Lemma 2.9, we have x Xy, hence y € A;.
Now, let b € M. By Lemma 1.2, we have

b\a = b\(za’) = (\z)((z\b)\a').

The element b\z belongs to M; as it divides A,, and, by induction hypothesis,
the element (x\b)\a’ belongs to M;. Therefore, b\a belongs to M;. Let ¢,d € M.
Then, from cvd = ¢(c\d) and M\M; = M, we deduce cvd € M;. Symmetrically,
we have ¢V d € Mj. So, every pair (c,d) of elements in M; admits right and left
lem’s in M;. Finally, M; is a small Gaussian monoid since the closure of A;
under \ is included in the closure of A under \. O

Now, we have to investigate the relations amongst those atoms x,y satisfy-
ing x # y. Though very easy, the following lemma is technically crucial.

Lemma 4.3. Assume that M is a small Gaussian monoid.
(i) Distinct atoms x,y in M satisfy y\z X x.

(i) For every atom x and every b in M, b ~ x implies ¢ ~ x for every non trivial
element c dividing b in M.

Proof. (i) As A, is V/(M\x), y\z is a left divisor of A,, and, by Lemma 2.7,
A\ is a left divisor of A,. As y is an atom distinct from z, y\z is not trivial,
and Lemma 2.9 implies A\, = A,.

(ii) Let ¢ # 1 be a divisor of bin M. As b divides Ay, which is A, by hypothesis,
¢ divides A,. Lemmas 2.7 and 2.9 imply then A, = A,. O

Lemma 4.4. Assume that M is a small Gaussian monoid. Then, for all disjoint
full sets Ay, Ay of atoms, the application x1 — xz2\x1 is a permutation of Ay for
every atom xs in As.

Proof. It suffices to show the following assertions:
(i) for all atoms x,y in M satisfying = 2 v, the elements y\z and x\y are atoms
in M, and they satisfy y\z ~ x and z\y ~ y;
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(i) for all atoms z,y;,y2 in M satisfying z # 31, * & yo and y; # yo, the
atoms z\y; and x\yz are distinct.

First, let us show (i). Let z,y be atoms in M satisfying 2 2 y. We have so x # v,
and atomicity implies z\y # 1 and y\z # 1. Therefore, there exist atoms z’, 3’
and elements a, b in M satisfying x v y = xzay’ = yba’, hence, by Lemma 1.4,

rvy =zay = ybr' = (zaryb)(y' Va').

Assume zanyb # 1. Let z be an atom in M dividing xayb on the left. As yv(xan
yb) is a left divisor of yb, we have z # . Therefore, vz being a left divisor of z vy,
x\z is a non trivial left divisor of z\y, and Lemma 4.3 implies z ~ z\z ~ z\y ~ y.
Symmetrically, we find 2 & y\z & y\z & x, which contradicts the hypothesis x % y.
We obtain then

zvy=zxay =ybx' =y V.

By Lemma 4.3(i), z\y = ay’ and y\x = ba’ imply
ay Xy and bx' Rz,

whereas 7’/y’ = xza and y'/2’ = yb imply za ~ 2’ and yb X 3/, hence, by using
Lemma 4.3(ii),
A A
ra~x and yb~y.

By Lemma 4.3(ii) again, the conjunction of ay’ & y and xa ~ x implies a = 1,
while the conjunction of bz’ ~ x and yb X y implies b = 1.

Now, we prove (ii). Assume x\y; = z\y2. Then we have y; (y1\z) = y2(y2\x).
In particular, y;\y2 is a left divisor of y;\@. Now, by (i), y1\z is an atom. The
atoms y; and y, being distinct, y1 \y2 is not 1, and we deduce y;\y2 = y1 \x, which,
by Lemma 4.3(i), implies 2 ~ x, a contradiction. O

Proposition 4.5. Every small Gaussian monoid is an iterated crossed product of
A-pure small Gaussian submonoids.

Proof. Assume that M is a small Gaussian monoid. Let A be its set of atoms,
and A = A; U...U A, be a partition such that, for 1 < i < n, A; is a minimal
nonempty full subset of A. For 1 < i < n, let M; (resp. M;) denote the submonoid
generated by A; (resp. by ANA;). Then, for 1 < i < n, by Lemma 4.2, M;
and M, are small Gaussian monoids, and, by Lemma 4.4, there exists a family 6@
satisfying Condition (#) for M;, M; satisfying M = M; D7 (i) M;. We find

M =XIM; with §=[],{00; 2 € Ai}.

Except for n = 1, the small Gaussian monoids M; need not be A-pure—see Exam-
ple 4.8. Now, an iteration of the previous process leads to a decomposition of M
as an iterated crossed product of A-pure small Gaussian monoids. Indeed, as the
number of atoms strictly decreases, such an iteration is necessarily finite. O
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Corollary 4.6. Every small Gaussian monoid with two atoms is A-pure, except
the rank two free abelian monoid.

Remark. Let us come back to Proposition 2.15. Assume that M is a small
Gaussian monoid, and ()7 is its quasi-center. We have mentionned that the func-
tion a — A, need not be a semilattice homomorphism from (M, A) onto (QZ, A).
In fact, a — A, is a semilattice homomorphism from (M, A) onto (QZ, A) if and
only if M is a free abelian monoid. Indeed, for distinct atoms x,y in M satisfy-
ing z & y, we have Azpny = A1 =1and Ay A Ay = A, # 1. Therefore, if a — A,
is a semilattice homomorphism from (M, A) onto (QZ, A), then we have x 2 y for
all distinct atoms x,y in M, and, following the proof of Proposition 4.5, we deduce
that M is free abelian. The converse implication is trivial.

Let us consider the special case of spherical Artin groups and monoids. As-
sume that M is a Artin monoid with set of atoms X and with Coxeter ma-
trix (May)z,yex. The Coxeter graph of M is defined to be the unoriented graph
whose vertices are the atoms, and there is an edge between the vertices x and y
whenever mg, > 3 holds, mg, labelling the corresponding edge [5], [7], [13]. The
monoid M is irreducible if its Coxeter graph is connected.

Proposition 4.7. Assume that M is a spherical Artin monoid. Then M is
irreducible if and only if M is A-pure.

Proof. Let I' be the Coxeter graph of M. First, we show that, for all atoms z,y in
the same connected component of I', 2z A y holds. We can suppose = and y distinct.

Then there exist a positive integer n and distinct atoms x = zg,...,2, =y in M
such that, for 0 < i < n, z; and z;41 are connected in I'. Use induction on n
to prove that x and y satisfy # ~ 3. Assume n = 1. Then there exists an

integer mg, > 3 satisfying
SL‘\y = prod(yx,mmy - 1)a and y\SE = prOd('Tyvma:y - 1)5

where prod(w, k) denotes the length k prefix of the word w®. In particular, =
divides z\y, and y divides y\xz. Therefore, by definition, z divides A,, and y
divides A,. By Lemma 2.7, by cancellativity and conicity, we deduce A, = A,
i.e., x ~y. Assume now n > 1. Then we have z & z; and, by induction hypothesis,
21 Ry, hence z X y.

Conversely, assume that M is not irreducible. Then M is the direct product of
two non trivial spherical Artin monoids. Therefore, the quasi-center of M is not
cyclic, and, by Proposition 4.1, M is not A-pure. O
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We conclude with an example of the decomposition mentionned in Proposition 4.5.

Example 4.8. Let us consider the monoids C,, considered by Garside in [14]—
which are not Artin monoids for n > 2. Let (5 be the monoid admitting the
presentation

< Z1,T2,T3 : T1T2 = T2X3 , T1X3 = T3X1 , T2T1 = T3T2 >

Then Cj is a small Gaussian monoid, and the lattice of its simple elements is
displayed in Figure 2. We compute in C3

Awl = Az3 = Il,]?g, and Aarg = Qj2,

and deduce that the quasi-center (resp. the center) of C3 is generated by zjxs
and x5 (resp. by x1rs and x2). In particular, the monoid C3 is not A-pure : we
have C% Ziﬂfltﬂg Aﬂg\VHh.Alliz (aq,xgz Tr1T3 = T3T1 % AIQ =1< To %
and 0, = 0, = (31 22 32), 0, = (2} 22 23). Now, My is A-pure, while M is
not : we have My = (z1: ) X ( 3 : ). Hence, we obtain C3 = N§=1,2,3< Tt ).
According to Proposition 3.12, the lattice of simples in C3 is isomorphic to the
lattice of simples in the rank 3 free abelian monoid N3.

A

i) i) I3

1
Figure 2. The lattice of simple elements in Cj3.

Let us come back finally to the so-called parabolic submonoids of a small Gaus-
sian monoid. A natural question is whether every submonoid of a small Gaussian
monoid generated by atoms is a (small) Gaussian monoid as well—see Proposi-
tion 4.2. Considering the monoid C3 of Example 4.8 again gives a negative answer.
The submonoid M, of C5 generated by {x1,x2} is not a Gaussian monoid. Indeed,
the element z3 is central in M., but cannot be a multiple of 1, and Proposition 2.8
does not work in this case. Actually, we can show that M, admits the infinite
presentation ( x1,xs : a:lxgx’fxg = xgx’facgq:l, ke N).
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Remark. Except the property of effective computability of the function a — A,,
most of the results in the previous sections extend to the most general framework
of those monoids M where there exists an element A such that the left divisors
of A coincide with its right divisors and they generate M, but whose we do not
require the divisors of A to be finite in number. A typical example is the monoid
presented by ( z,y : zyx = yx?y ), whose group of fractions is isomorphic to
the 3-strand braid group.
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