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Abstract. Small Gaussian groups are a natural generalization of spherical Artin groups,

namely groups of fractions of monoids in which the existence of least common multiples

is kept as an hypothesis, but the relations between the generators are not supposed to

necessarily be of Coxeter type. Here we completely describe the center of small Gaus-

sian groups by constructing a minimal generating set for the quasi-center. We deduce

that every small Gaussian group is an iterated crossed product of small Gaussian groups

with a cyclic center.
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Introduction

Define a small Gaussian monoid to be a cancellative monoid where 1 is the only in-
vertible element, in which least common multiples exist, and which admits a finite
generating set closed under \, where \ is the operation defined such that a(a\b)
is the right lcm of a and b. A small Gaussian group is defined to be the group
of fractions of a small Gaussian monoid. Small Gaussian groups have been intro-
duced in [11] and [12] as a natural generalization for spherical Artin groups, i.e.,
Artin groups associated with finite Coxeter groups.

In this paper, we construct a minimal generating set of the quasi-center of every
small Gaussian monoid. Moreover, we define a notion of ∆-purity and a crossed
product for small Gaussian monoids, and we prove

Proposition A. The center of every ∆-pure small Gaussian group is an infinite
cyclic subgroup.

Proposition B. Every small Gaussian monoid is an iterated crossed product of
some ∆-pure small Gaussian monoids.

These results extend similar statements established by Brieskorn, Saito [7] and
Deligne [13] in the special case of spherical Artin groups.

This paper is organized as follows. In Section 1, we gather earlier results of [11]
and [12] about small Gaussian groups. In Section 2, we introduce what we call
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local Delta’s, and compute a minimal generating set of the quasi-center of every
small Gaussian monoid. A convenient notion of crossed product for small Gaussian
monoids is studied in Section 3. Finally, in Section 4, we define ∆-purity, and prove
Propositions A and B.

1. Preliminaries

In this section, we list some basic properties of small Gaussian monoids and small
Gaussian groups.

Assume that M is a monoid. We say that M is conical if 1 is the only invertible
element in M . For a, b in M , we say that b is a left divisor of a—or that a is a
right multiple of b—if a = bd holds for some d in M . An element c is a right lower
common multiple—or a right lcm—of a and b if it is a right multiple of both a
and b, and every common right multiple of a and b is a right multiple of c. Right
divisor, left multiple, and left lcm are defined symmetrically. For a, b in M , we say
that b divides a—or that b is a divisor of a—if a = cbd holds for some c, d in M .

If c, c′ are two right lcm’s of a and b, necessarily c is a left divisor of c′, and c′ is
a left divisor of c. If we assume M to be conical and cancellative, we have c = c′.
In this case, the unique right lcm of a and b is denoted by a ∨ b. If a ∨ b exists,
and M is left cancellative, there exists a unique element c satisfying a ∨ b = ac.
This element is denoted by a\b. We define the left lcm ∨̃ and the left operation /
symmetrically. In particular, we have

a ∨ b = a(a\b) = b(b\a), and a ∨̃ b = (b/a)a = (a/b)b.

Let us mention that cancellativity plus conicity simply means that left and right
divisibility are order relations.

Definition. [11] A monoid M is said to be Gaussian if it is conical, cancellative,
and every pair of elements in M admits a left lcm and a right lcm. A Gaussian
monoid M is said to be small if there exists a finite subset that generates M and
is closed under \.

Example 1.1. The monoid M0 with presentation 〈 x, y : xyyxyxyyx = yxyyxy 〉
is a small Gaussian monoid.

If M is a (small) Gaussian monoid, then M satisfies Ore’s conditions [8], and
it embeds in a group of right fractions, and, symmetrically, in a group of left
fractions. In this case, by construction, every right fraction ab−1 with a, b in M
can be expressed as a left fraction c−1d, and conversely. Therefore, the two groups
coincide, and there is no ambiguity in speaking of the group of fractions of a small
Gaussian monoid.
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Definition. A group G is a small Gaussian group if there exists a small Gaussian
monoid of which G is the group of fractions.

By [7], all spherical Artin monoids are small Gaussian monoids. The braid monoids
of the complex reflection groups G7, G11, G12, G13, G15, G19 and G22 given in [6],
some monoids for torus knot or link groups [20][19], the Birman-Ko-Lee monoids
of spherical Artin groups [4][2][18][1] are also small Gaussian monoids.

Lemma 1.2. [11] Assume that M is a Gaussian monoid. Then the following
identities holds in M :

(ab) ∨ (ac) = a(b ∨ c), (1.1)
c\(ab) = (c\a)((a\c)\b), (ab)\c = b\(a\c), (1.2)

(a ∨ b)\c = (a\b)\(a\c) = (b\a)\(b\c), c\(a ∨ b) = (c\a) ∨ (c\b). (1.3)

Lemma 1.3. [12] Assume that M is a small Gaussian monoid. Then the following
equivalent assertions hold:

(i) There exists a mapping µ from M into the integers satisfying µ(a) > 0 for
every a 6= 1 in M , and satisfying µ(ab) ≥ µ(a) + µ(b) for every a, b in M ;

(ii) For every set X that generates M and for every a in M , the lengths of the
decompositions of a as products of elements in X have a finite upper bound.

Definition. [12] A monoid is said to be atomic if it satisfies the equivalent condi-
tions of Lemma 1.3. The norm function ||.|| of an atomic monoid M is defined such
that, for every a in M , ||a|| is the upper bound of the lengths of the decompositions
of a as products of atoms.

By the previous lemma, every element in a small Gaussian monoid has only finitely
many left divisors, then, for every pair of elements (a, b), the common left divisors
of a and b admit a right lcm, which is therefore the left gcd of a and b. This left
gcd will be denoted by a ∧ b. We define the right gcd ∧̃ symmetrically.

The following property essentially expresses the connection between the opera-
tions ∨, ∧, ∨̃ and ∧̃.

Lemma 1.4. Assume that M is a small Gaussian monoid. Then, for a, b, c, d
in M satisfying ab = cd, we have ab = (a ∨ c)(b ∧̃ d) = (a ∧ c)(b ∨̃ d) = cd.

Proof. There exists g in M satisfying ab = (a ∨ c)g = cd. We deduce b = (a\c)g
and (c\a)g = d. In particular, there exists h in M satisfying b ∧̃d = hg. Therefore,
h is a right divisor of both a\c and c\a. By definition of the operation \, we
find h = 1, hence ab = (a ∨ c)(b ∧̃ d) = cd. The equality ab = (a ∧ c)(b ∨̃ d) = cd is
obtained symmetrically. ut
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Lemma 1.5. [11] Assume that M is a small Gaussian monoid. Then it admits a
finite generating subset that is closed under \, /, ∨, ∧, ∨̃ and ∧̃.

An atom is defined to be a non trivial element a such that a = bc implies b = 1
or c = 1. Every small Gaussian monoid admits a finite set of atoms, and this
set is the minimal generating set [12]. The hypothesis that there exists a finite
generating subset that is closed under \ implies that the closure of the atoms
under \ is finite—its elements are called right primitive elements. In particular,
the closure of the atoms under \ and ∨ is finite—its elements are called simple
elements, and their right lcm is denoted by ∆. It turns out that the set of the
simple elements is also the closure of atoms under / and ∨̃. So, the element ∆ is
both the right and the left lcm of the simple elements, and it is called the Garside
element of the monoid. If M is a small Gaussian monoid and S is the set of simple
elements in M , then (S, ∧, ∨, 1,∆) is a finite lattice.

Proposition 1.6. [11] Assume that M is a small Gaussian monoid, S is the set
of its simple elements, and ∆ is its Garside element.

(i) Let k be a nonnegative integer. Then, Sk is both the set of all left divisors
of ∆k and the set of all right divisors of ∆k.

(ii) The functions a 7→ (a\∆)\∆ and a 7→ ∆/(∆/a) from S into itself extend into

automorphisms φ and φ̃ of M that map Sk into itself for every k, and the equalities

a∆ = ∆φ(a), and ∆a = φ̃(a)∆

hold for every a in M .

Definition. Assume that M is a small Gaussian monoid. The order of the
automorphisms φ and φ̃ of M is called the exponent of M .

Our main subject here will be the study of the center. Let us first recall some
basic notions.

Definition. Assume that M is a small Gaussian monoid, A is its set of atoms,
and G is its group of fractions. Then the quasi-center of M (resp. the quasi-
centralizer of A in G) is the submonoid {b ∈ M ; Ab = bA} of M (resp. the
subgroup {b ∈ G ; Ab = bA} of G).

Lemma 1.7. Assume that M is a small Gaussian monoid. Then, for every
element a and every quasi-central element b in M , the following are equivalent:

(i) a divides b;

(ii) a is a left divisor of b;

(iii) a is a right divisor of b.
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The study of the center of small Gaussian groups reduces to the study of the center
and quasi-center of small Gaussian monoids:

Lemma 1.8. Assume that M is a small Gaussian monoid, A is the set of its
atoms, and G is its group of fractions. Then

(i) the quasi-centralizer of A in G is the group of fractions of the quasi-center of M ;

(ii) the center of G is the group of fractions of the center of M .

Proof. Let c be an element in G. There exist an integer p and an element c′ in M
satisfying c = ∆pc′, see [11][17].
(i) Assume c in the quasi-centralizer of A in G. Then, the element ∆|p| of M
being quasi-central by Proposition 1.6, c′ is quasi-central. Every element in the
quasi-centralizer of A in G is so the quotient of two quasi-central elements of M .
(ii) There exist integers q, r satisfying p = qe + r and r ≥ 0, where e denotes
the exponent of M . Assume c central. The element ∆|q|e of M being central by
definition, the element ∆rc′ belongs to the center of M . Every central element
in G is thus the quotient of two central elements of M . ut

2. A local Delta for each element

Assume that M is a small Gaussian monoid. Here we associate with each element a
in M a distinguished quasi-central element ∆a which behaves like a sort of local
Garside element. The main result is that the family of all ∆x’s for x an atom
generates the quasi-center of M .

Notation. Assume that M is a Gaussian monoid. For X, Y ⊆ M , we denote
by Y \X the set of the elements b\a for a in X, b in Y . We write Y \a for Y \{a}
and b\X for {b}\X.

Lemma 2.1. Assume that M is a small Gaussian monoid, and S is its set of
simples. Then, for every a in M , we have M\a = Sq\a for some q (depending
on a).

Proof. Let a ∈ M . As S generates M , a belongs to Sp for some p. Now, a direct
computation gives M\Sp = Sp. In particular, we have M\a ⊆ Sp, hence

S\a ⊆ S2\a ⊆ S3\a ⊆ . . . ⊆ Sp.

As S is finite, there exists q ≤ card(Sp) satisfying Sq\a = Sq+1\a. We show
using induction on j that, for every j ≤ 1, we have Sq\a = Sq+j\a. The result is
vacuously true for j = 1. Assume j > 1. Let b ∈ Sq+j−1 and c ∈ S. By induction
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hypothesis, there exists d in Sq satisfying d\a = b\a. By using Identity (1.2)
of Lemma 1.2, we find (bc)\a = c\(b\a) = c\(d\a) = (dc)\a, so (bc)\a belongs
to Sq+1\a, i.e., to Sq\a, which completes the induction. Finally, we obtain Sq\a =
M\a. ut

Definition. Assume that M is a small Gaussian monoid. For every a in M , we
define

∆a =
∨
{b\a ; b ∈M}.

By Lemma 2.1, the element ∆a is well defined and effectively computable for
every a in M . Symmetrically, we define ∆̃a =

∨̃
{a/b ; b ∈ M}. Let us remark

that, for every a in M , the equality 1\a = a (resp. a/1 = a) implies a to be a left
divisor of ∆a (resp. a right divisor of ∆̃a), and that, having b\1 = 1 = 1/b for
every b in M , we obtain ∆1 = 1 = ∆̃1.

For instance, in the small Gaussian monoid M0 of Example 1.1, we compute S0\x ⊆/
S2

0\x = M0\x and S0\y ⊆/ S2
0\y = M0\y, where S0 denotes the set of simple

elements in M0. The considered sets are displayed in Figure 1. We find ∆x =
∆y = ∆. The current example shows that the sets M\x with x an atom need not
be the whole set of primitive elements in M .

We are going to prove:

Proposition 2.2. Assume that M is a small Gaussian monoid. Then, for every a
in M , the element ∆a is quasi-central. More precisely, the application a 7→ ∆a is
a surjection from M onto the quasi-center of M .

The proof of this result relies on several preliminary statements.

Lemma 2.3. Assume that M is a small Gaussian monoid. Then every quasi-
central element a in M satisfies ∆a = a = ∆̃a.

Proof. Let b ∈ M . As a is quasi-central, we have ba = ab′ for some b′ in M .
Therefore, ba is a right multiple of b ∨ a, which is b(b\a), and, by left cancellation,
a is a right multiple of b\a. So, a is a right multiple of ∆a—which is the right
lcm of all b\a’s. Now, a being a left divisor of ∆a, cancellativity and conicity
imply ∆a = a. The equality ∆̃a = a is obtained symmetrically. ut

Lemma 2.4. Assume that M is a small Gaussian monoid. Then, for every a
in M , the following are equivalent:

(i) ∆a = a holds;

(ii) for every b in M , a is a left divisor of ba.
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∆

Figure 1. The lattice of simple elements in M0=〈 x,y : xyyxyxyyx=yxyyxy 〉. The light

edges represent x, while the dark ones represent y. The white points represent the primitive

elements in M0, while the black points represent the non-primitive simple elements in M0.

The elements of M0\x (resp. of M0\y) are those represented by all white points except

those marked ’×’ (resp. ’+’).

Proof. Assume (i). Let b ∈ M . From
∨

(M\a) = a, we deduce that b\a is a
left divisor of a. Therefore, b(b\a) is a left divisor of ba. Now, by definition,
b(b\a) is a(a\b), which implies (ii). Conversely, assume (ii). Then, for every b
in M , a ∨ b—which is b(b\a) by definition—is a left divisor of ba, and so, by left
cancellation, b\a is a left divisor of a. This implies that

∨
(M\a) is a left divisor

of a, and, a being a left divisor of ∆a, cancellativity and conicity yield (i) . ut

Lemma 2.5. Assume that M is a small Gaussian monoid. Then, for every a
in M , ∆a = a is equivalent to ∆̃a = a.

Proof. Let G be the group of fractions of M . We consider the injective endo-
morphism ha : b 7→ a−1ba of G. Assume ∆a = a. Then, by Lemma 2.4, for
every b in M , a is a left divisor of ba : we deduce ha(M) ⊆ M . Let S be
the set of simples in M and e be the exponent of M . According to Proposi-
tion 1.6, for every c in Se, there exists an element d in Se satisfying ∆e = cd.
We obtain ha(∆e) = ha(c)ha(d), and, ∆e being central, ∆e = ha(c)ha(d), which
implies ha(c) ∈ Se (and ha(d) ∈ Se). As, by hypothesis, the set S is finite, the
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injective endomorphism ha restricted to Se is an automorphism. In particular,
ha(M) includes the atoms of M , and we deduce ha(M) = M . The endomor-
phism ha is then an automorphism of M . Therefore, for every b in M , a is a right
divisor of ab, and, by the left counterpart of Lemma 2.4, we deduce ∆̃a = a. The
converse implication is obtained symmetrically. ut

Lemma 2.6. Assume that M is a small Gaussian monoid. Then every element a
in M satisfying ∆a = a is quasi-central.

Proof. Let x be an atom of M . By Lemma 2.4, the hypothesis ∆a = a implies that
there exists d in M satisfying xa = ad. By right cancellativity, we have d 6= 1, and
there exist a positive integer n and atoms z1, . . . , zn satisfying d = z1 · · · zn. By
Lemma 2.5, ∆̃a = a holds, and, by the left counterpart of Lemma 2.4, for every
atom zi with 1 ≤ i ≤ n, there exists an element ci in M satisfying azi = cia. By
left cancellativity, we have ci 6= 1 for 1 ≤ i ≤ n. We obtain

xa = ad = az1 · · · zn = c1 · · · cna,

hence, by right cancellation, x = c1 · · · cn. As x is an atom, we must have n = 1,
i.e., d is an atom. So, there exists a mapping fa from the atoms of M into
themselves such that xa = afa(x) holds for every atom x. By cancellativity, fa is
injective, hence surjective : a is quasi-central by definition. ut

Proof of Proposition 2.2. Let us show that a 7→ ∆a is idempotent. Let a ∈M . By
Lemma 2.1, there exists an integer n satisfying M\a = Sn\a and M\∆a = Sn\∆a.
Let Sn = {q1, . . . , qr}. By using Lemma 1.2, we find

∆∆a = (q1\(q1\a ∨ . . . ∨ qr\a)) ∨ . . . ∨ (qr\(q1\a ∨ . . . ∨ qr\a))
= ((q1q1\a) ∨ . . . ∨ (qrq1\a)) ∨ . . . ∨ ((q1qr\a) ∨ . . . ∨ (qrqr\a)).

Now, one of the qi’s is 1, and, therefore, we obtain ∆∆a
= ∆a∨

∨
(S′\a), where S′ is

some subset of S2n. We deduce that ∆∆a = ∆a holds for every a in M . Therefore,
by Lemma 2.6, ∆a is quasi-central for every a in M . ut

Lemma 2.7. Assume that M is a small Gaussian monoid. Then, for every
element a and every quasi-central element b in M , a dividing b implies ∆a and ∆̃a

dividing b.

Proof. By hypothesis, there exists an element d in M satisfying b = ad. As b is
quasi-central, for every c in M , there exists an element c′ in M satisfying cb = adc′.
In particular, for every c in M , c∨a—which is c(c\a)—is a left divisor of cb, and, by
left cancellation, c\a is a left divisor of b. Therefore, by definition, ∆a divides b. ut
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Proposition 2.8. Assume that M is a small Gaussian monoid. Let A be its set
of atoms. Then the quasi-center of M is generated by the set {∆x ; x ∈ A}.

Proof. Let b be a quasi-central element in M . We show using induction on ||b||
that there exist an integer n and atoms x1, . . . , xn satisfying b = ∆x1 · · ·∆xn .
For ||b ||= 0, n is 0. Assume now ||b ||> 0. Then there exist an atom x and an
element b′ in M satisfying b = xb′. By Lemma 2.7, we have b = ∆xb

′′ for some b′′

in M with ||b′′||<||b||. By Proposition 2.2, the element ∆x is quasi-central, hence
so is b′′. By induction hypothesis, there exist an integer m and atoms y1, . . . , ym
satisfying b′′ = ∆y1 · · ·∆ym . We obtain b = ∆x∆y1 · · ·∆ym . ut

For instance, in the case of the small Gaussian monoid M0 of Example 1.1, Propo-
sition 2.8 implies that its quasi-center is generated by ∆. As its exponent is 1, the
center of M0 coincides with the quasi-center.

We now prove that the generating set {∆x ; x ∈ A} is minimal.

Lemma 2.9. Assume that M is a small Gaussian monoid. Then, for all atoms x, y
in M , we have either ∆x = ∆y or ∆x ∧∆y = 1.

Proof. We first prove that, for all atoms x, y and every b in M , ∆x = ∆y b
implies b = 1. As 1\x = x holds, we have ∆x = xd for some d in M . By using
Lemma 1.4, we obtain

∆x = xd = ∆y b = (x ∧∆y)(d ∨̃ b).

Assume x ∧∆y = 1. Then we find ∆x = xd = ∆y b = d ∨̃ b = (b/d)d, hence, by
right cancellation, x = b/d. Therefore, x divides

∨̃
(b/M), which, by definition,

is ∆̃b. Now, by hypothesis, b is quasi-central, and Lemma 2.3 implies ∆̃b = b. By
Lemma 2.7, ∆x divides b, which, by cancellativity and conicity, implies ∆y = 1,
a contradiction. Assume x ∧∆y 6= 1. Then, by atomicity, x divides ∆y, and, by
Lemma 2.7, ∆x divides ∆y, which, by cancellativity and conicity, implies b = 1.

Now, let x, y be atoms in M . Assume ∆x ∧ ∆y 6= 1. Then there exists an
atom z in M dividing both ∆x and ∆y. By Lemma 2.7, ∆z divides both ∆x

and ∆y, which, by the result above, implies ∆x = ∆z = ∆y. ut

Proposition 2.10. Assume that M is a small Gaussian monoid. Let A be its
set of atoms. Then {∆x ; x ∈ A} is a minimal generating set of the quasi-center
of M .

Proof. By Proposition 2.8, the set {∆x ; x ∈ A} generates the quasi-center of M .
Let x be an atom, and a, b be quasi-central elements in M . We have to show
that ∆x = ab implies either a = 1 or b = 1. Assume a 6= 1. Then we have a = ya′
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for some atom y and some a′ in M . As a is quasi-central, by Lemma 2.7, ∆y is a
left divisor of a, and, therefore, ∆y is a left divisor of ∆x. We have ∆y 6= 1, hence,
by Lemma 2.9, ∆y = ∆x. Cancellativity and conicity imply then b = 1. ut

We give now a new characterization of the function a 7→ ∆a. We have seen that
every element ∆a is quasi-central, and, by construction, ∆a is a right multiple
of a. We prove that ∆a is minimal with these properties. This new point of view
will allow us to show that ∆a and ∆̃a always coincide.

Lemma 2.11. Assume that M is a small Gaussian monoid. Then, for all quasi-
central elements a, b in M , the elements a ∧ b and a ∧̃ b are quasi-central.

Proof. By Lemma 2.7, the element ∆a∧b divides both a and b. Therefore, ∆a∧b is
a left divisor of a∧b. Now, a∧b being a left divisor of ∆a∧b, we deduce ∆a∧b = a∧b
by using cancellativity and conicity. By Lemma 2.6, a∧b is therefore quasi-central.
Symmetrically, a ∧̃ b is quasi-central. ut

Proposition 2.12. Assume that M is a small Gaussian monoid, and QZ is its
quasi-center. Then, for every a in M , we have

∆a =
∧

(QZ ∩ aM) and ∆̃a =
∧̃

(QZ ∩Ma).

Proof. Let a ∈ M . By definition, ∆a is a right multiple of a, and, by Proposi-
tion 2.2, ∆a is quasi-central. Therefore, ∆a belongs to QZ∩aM , and

∧
(QZ∩aM)

divides ∆a. Now, as QZ ∩ aM is nonempty,
∧

(QZ ∩ aM) is a right multiple of a.
Moreover, by Lemma 2.11,

∧
(QZ ∩ aM) is quasi-central, and so, by Lemma 2.7,

∆a divides
∧

(QZ∩aM). Cancellativity and conicity allow to conclude. The equal-
ity ∆̃a =

∧̃
(QZ ∩Ma) is obtained symmetrically. ut

Corollary 2.13. Assume that M is a small Gaussian monoid. Then, for every a
in M , we have ∆a = ∆̃a.

Proof. Let a ∈M . By Lemma 1.7, we have

QZ ∩ aM = QZ ∩MaM = QZ ∩Ma.

By using Proposition 2.12, we deduce ∆a =
∧

(QZ ∩MaM) and ∆̃a =
∧̃

(QZ ∩
MaM). Now, ∆a belongs to QZ ∩MaM , and, therefore, ∆̃a is a right divisor
of ∆a. Symmetrically, ∆a is a left divisor of ∆̃a. Cancellativity and conicity allow
to conclude. ut
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We conclude the current section with the observation that the quasi-center of every
small Gaussian monoid is a free abelian submonoid.

Lemma 2.14. Assume that M is a small Gaussian monoid. Then, for all ele-
ments a, b in M , we have ∆a ∨∆b = ∆a∨b.

Proof. First, let us show that, for all quasi-central elements a, b in M , the ele-
ment a ∨ b is quasi-central. Let S be the set of simples in M . As S generates M ,
there exists a positive integer n such that a, b belong to Sn, and, by Proposi-
tion 1.6, there exist elements a′, b′ in Sn satisfying ∆n = aa′ = bb′. As, by
definition, ∆n is quasi-central, both a′, b′ are quasi-central. Now, Lemma 1.4
gives ∆n = aa′ = bb′ = (a ∨ b)(a′ ∧̃ b′). As, by Lemma 2.11, a′ ∧̃ b′ is quasi-central,
we deduce that a ∨ b is quasi-central.

As a ∨ b divides ∆a∨b, a divides ∆a∨b. By Proposition 2.2 and Lemma 2.7, ∆a

divides ∆a∨b, and, symmetrically, ∆b divides ∆a∨b. So, ∆a ∨∆b divides ∆a∨b, and
the equality follows from the result above and Proposition 2.12. ut

Proposition 2.15. Assume that M is a small Gaussian monoid. Let QZ be its
quasi-center. Then QZ is a free abelian submonoid of M , and the function a 7→ ∆a

is a surjective semilattice homomorphism from (M, ∨) onto (QZ, ∨).

Proof. Let A be the set of atoms in M . By Proposition 2.10, QZ is the submonoid
generated by {∆x ; x ∈ A}. So, in order to prove that QZ is free abelian, it suffices
to show that ∆x\∆y = ∆y holds for all x, y in A with ∆x 6=∆y. Assume ∆x 6=∆y.
Then Lemma 2.9 implies ∆x\∆y 6= 1. As ∆∆y is ∆y (see the proof of Propo-
sition 2.2), ∆x\∆y divides ∆y. Now, by Lemma 2.14, the element ∆x\∆y is
quasi-central, and Proposition 2.10 implies ∆x\∆y = ∆y. The second part of the
assertion follows then from Lemma 2.14. ut

Remark. Assume that M is a small Gaussian monoid. Let QZ be its quasi-
center. The function a 7→ ∆a need not be a semilattice homomorphism from (M, ∧)
onto (QZ, ∧). Indeed, for a, b in M , ∆a∧b divides ∆a ∧∆b (as a∧ b divides both ∆a

and ∆b, a ∧ b divides ∆a ∧∆b, which is quasi-central by Lemma 2.11, and so, by
Lemma 2.7, ∆a∧b divides ∆a ∧∆b), but there is no equality in general. We shall
see in Section 4 a necessary and sufficient condition for this.
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3. Crossed products

In this section, we define the notion of a crossed product for small Gaussian groups.
As the latter are groups of fractions, we first define the notion for small Gaussian
monoids.

Definition. Assume that M1, . . . , Mn are small Gaussian monoids—or, more
generally, cancellative conical monoids with finitely many atoms. Let Ai be the
set of atoms in Mi for 1 ≤ i ≤ n. Assume that ~Θ = (Θij)1≤i 6=j≤n is a family
of functions Θij : Mi ×Mj → Mj . We say that ~Θ satisfies Condition (#) if, for
every a in Mi, the restriction Θij(a, .) of Θij to {a}×Mj is a bijection of Mj , and,
in addition, we have

Θij(ab, c) = Θij(b,Θij(a, c)), (#1)
Θij(a, cd) = Θij(a, c) Θij(Θji(c, a), d), (#2)

Θjk(Θij(a, c),Θik(a, e)) = Θik(Θji(c, a),Θjk(c, e)), (#3)

for a, b in Mi, c, d in Mj , e in Mk with 1 ≤ i 6= j 6= k 6= i ≤ n. The crossed
product 1~Θ

i Mi is then defined to be the quotient of the free product of the Mi’s
by the congruence generated by all pairs (xΘij(x, y) , yΘji(y, x)) with x ∈ Ai,
y ∈ Aj and 1 ≤ i < j ≤ n. For n = 2, we write M1 ./~Θ M2.

The current notion of crossed product is reminiscent of the crossed product of
groups as defined in [15] and [21] of which it is a monoidal version.

Example 3.1. Let us say that a family ~Θ is trivial if, for 1 ≤ i 6= j ≤ n, Θij(a, .)
is the identity for every a in Mi : ~Θ is then a family satisfying Condition (#), and
the crossed product 1~Θ

i Mi is the direct product M1 × . . .×Mn.

Lemma 3.2. Assume that M1, . . . , Mn are small Gaussian monoids—or, more
generally, cancellative conical monoids with finitely many atoms. Let Ai be the
set of atoms in Mi for 1 ≤ i ≤ n. Then, for every family ~Θ of functions satisfying
Condition (#), for 1 ≤ i 6= j ≤ n, for every a in Mi, the restriction Θij(a, .) of Θij

to {a} ×Aj is a permutation of Aj .

Proof. First, by taking b = 1 in (#1) and using surjectivity, we find

Θij(1, d) = d, (3.1)

for every d in Mj . Next, by taking c = d = 1 in (#2) and using both (3.1) and
cancellativity, we obtain

Θij(a, 1) = 1, (3.2)
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for every a in Mi. Now, the restriction of Θij to {a}×Mj is a surjection onto Mj :
in particular, for every atom z of Aj , there exists c in Mj satisfying Θij(a, c) = z.
We claim c ∈ Aj . Indeed, (3.2) implies c 6= 1, so we have c = yc′ for some y ∈ Aj

and c′ ∈ Mj . By applying (#2), we find Θij(a, y)Θij(Θji(y, a), c′) = z. Both
injectivity of Θij(a, .) and (3.2) imply Θij(a, y) 6= 1. As z is an atom, we
obtain Θij(a, y) = z, and, by using injectivity of Θij(a, .), we find c = y ∈ Aj . ut

Assume that M1, . . . , Mn are small Gaussian monoids. Let Ai be the set of atoms
in Mi for 1 ≤ i ≤ n. Then every family ~Θ satisfying Condition (#) for M1, . . . , Mn

is completely determined by the induced permutations Θ(x, .) of Aj for x in Ai

and 1 ≤ i 6= j ≤ n (see Lemma 3.2). Now, conversely, not every such family of
atom permutations extends into a family satisfying Condition (#) for M1, . . . , Mn.
For instance, let us consider the small Gaussian monoids 〈 x, y : xyx = y2 〉
and 〈 z : 〉. The family of the atoms permutations Θ(x, .) = Θ(y, .) = (x y zx y z )
and Θ(z, .) = (x y zy x z ) does not extend into a family satisfying Condition (#).
Indeed, by using (#1) for instance, we would find Θ(z, y2) = x2 and Θ(z, xyx) =
yxy, but x2 6= yxy holds. See also Examples 3.3, 3.7, 3.9 and 3.12.

Definition. Assume that M1, . . . , Mn are small Gaussian monoids—or, more
generally, cancellative conical monoids with finitely many atoms. Let Ai be the
set of atoms in Mi for 1 ≤ i ≤ n, and A be the disjoint union A1 t . . . tAn.
Assume that ~θ = (θx)x∈A is a family of permutations of A. We say that ~θ satisfies
Condition (#) if, for every x, θx is a permutation of A which globally preserves
every Aj for 1 ≤ j ≤ n, and, in addition, the θx’s can be extended into a (necessary
unique) family of functions satisfying Condition (#). The corresponding crossed
product is then denoted by 1

~θ
iMi. The latter does not depend on the value

of θx(y) for x, y in Aj and 1 ≤ j ≤ n, and we can assume that θx is the identity
on Aj for every x in Aj and 1 ≤ j ≤ n.

Example 3.3. Let us consider the small Gaussian monoids M1 = 〈 x1, x2, x3 :
x1x2 = x2x3 = x3x1 〉 and M2 = 〈 y, z : y3 = z3 〉. Let ~θ be defined by θx1 =
θx2 = θx3 = (x1 x2 x3 y z

x1 x2 x3 z y ), and θy = θz = (x1 x2 x3 y z
x3 x1 x2 y z ). Then ~θ is a family

satisfying Condition (#) for M1, M2, and the monoid M1 ./~θ M2 admits the
presentation 〈 x1, x2, x3, y, z : x1x2 = x2x3 = x3x1 , y3 = z3 , x1z = yx3 , x1y =
zx3 , x2z = yx1 , x2y = zx1 , x3y = zx2 , x3z = yx2 〉.

Lemma 3.4. Assume that M1, . . . , Mn are small Gaussian monoids—or, more
generally, cancellative atomic monoids with finitely many atoms. Then, for every
family ~Θ of functions satisfying Condition (#), for 1 ≤ i 6= j ≤ n, for every a
in Mi and every b in Mj , we have ||Θij(a, b)||=||b||.

Proof. We show by induction on ||b|| that, for 1 ≤ i 6= j ≤ n, for every a in Mi and
every b in Mj , we have ||Θij(a, b)||≥||b||. For ||b||= 0, the result follows from (3.2).
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Assume ||b||> 0. Then there exist an atom x and an element d in Mj satisfying
both b = xd and ||b||= 1+ ||d||. Lemma 3.2 implies ||Θij(a, x)||= 1. By applying the
induction hypothesis, we obtain

||Θij(a, b)||= ||Θij(a, xd)|| =(3.2) ||Θij(a, x)Θij(Θji(x, a), d)||
≥ ||Θij(a, x)|| + ||Θij(Θji(x, a), d)||
= 1+ ||Θij(Θji(x, a), d)||
≥(IH)

1+ ||d||=||b||,

which completes the induction.

Now, for every a in Mi with 1 ≤ i ≤ n, we denote by Θ̃ij(a, .) the inverse of the
bijection Θij(a, .). By definition, we have

Θij(a, Θ̃ij(a, b)) = b = Θ̃ij(a,Θij(a, b)), (3.3)

for a in Mi, b in Mj and 1 ≤ i 6= j ≤ n. From (3.3), (#1) and (#2), we deduce
the following identities

Θ̃ij(ab, c) = Θ̃ij(a, Θ̃ij(b, c)), (3.4)

Θ̃ij(a, cd) = Θ̃ij(a, c)Θ̃ij(Θji(Θ̃ij(a, c), a), d), (3.5)

for a, b in Mi, c, d in Mj and 1 ≤ i 6= j ≤ n. An induction similar to the previous
one gives ||Θ̃ij(a, c)||≥||c|| for every a in Mi, every c in Mj with 1 ≤ i 6= j ≤ n. We
obtain

||Θij(a, b)||≥||b||=||Θ̃ij(a,Θij(a, b))||≥||Θij(a, b)||,

which implies ||Θij(a, b)||=||b||. ut

Lemma 3.5. Assume that M1, . . . , Mn are small Gaussian monoids—or, more
generally, cancellative atomic monoids with finitely many atoms. Then, for every
family ~Θ of functions satisfying Condition (#), for 1 ≤ i 6= j ≤ n, for every a
in Mi and every b in Mj ,

aΘij(a, b) = bΘji(b, a) (3.6)

holds in 1~Θ
i Mi.

Proof. We use an induction on ||a||||b||. For ||a||||b||= 0, the result follows from (3.1)
and (3.2). Assume ||a ||||b ||> 0. We have a = xc and b = yd for some atom x

14



and some element c in Mi, some atom y and some element d in Mj . By using
Lemma 3.4, we obtain

aΘij(a, b) = xcΘij(xc, yd)

=
(3.1)

xcΘij(c,Θij(x, yd))

=
(3.2)

xcΘij(c,Θij(x, y)Θij(Θji(y, x), d))

=
(3.2)

xcΘij(c,Θij(x, y))Θij(Θji(Θij(x, y), c),Θij(Θji(y, x), d))

=
(IH)

xΘij(x, y)Θji(Θij(x, y), c)Θij(Θji(Θij(x, y), c),Θij(Θji(y, x), d))

=
(IH)

xΘij(x, y)Θij(Θji(y, x), d)Θji(Θij(Θji(y, x), d),Θji(Θij(x, y), c))

=
def

yΘji(y, x)Θij(Θji(y, x), d)Θji(Θij(Θji(y, x), d),Θji(Θij(x, y), c))

=
(IH)

ydΘji(d, Θji(y, x))Θji(Θij(Θji(y, x), d),Θji(Θij(x, y), c))

=
(3.2)

ydΘji(d, Θji(y, x)Θji(Θij(x, y), c))

=
(3.2)

ydΘji(d, Θji(y, xc))

=
(3.1)

ydΘji(yd, xc) = bΘji(b, a),

which completes the induction. ut

Proposition 3.6. Assume that M1, . . . , Mn are small Gaussian monoids—or,
more generally, cancellative atomic monoids with finitely many atoms. Then, for

every family ~Θ of functions satisfying Condition (#), 1~Θ
i Mi is set-theoretically

equal to M1 × . . .×Mn.

Proof. Let M = 1~Θ
i Mi. By definition, every element in M admits a decom-

position as a product of elements in M1, . . . , Mn. We have to show that such a
decomposition is unique. Here, a decomposition of a non-trivial element a in M
is a finite sequence (b1, . . . , bm) satisfying a = b1 · · · bm with bi ∈ Mµir{1} for
some sequence (µ1, . . . , µm) with values in {1, . . . , n}. The associated finite se-
quence (µ1, . . . , µm) is called the support of the decomposition. We order sup-
ports using the ShortLex ordering on sequences of integers : (µ1, . . . , µm) <ShortLex

(ν1, . . . , νr) holds if m < r does, or we have m = r and (µ1, . . . , µm) pre-
cedes (ν1, . . . , νm) in the lexicographical extension of the standard order of the
integers.
For 1 ≤ i 6= j ≤ n, for every a in Mi, we denote by Θ̃ij(a, .) the inverse bijection
of Θij(a, .). Formula (3.6) is then equivalent to

ab = Θ̃ij(a, b)Θji(Θ̃ij(a, b), a), (3.7)
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for every a ∈ Mi, b ∈ Mj and 1 ≤ i 6= j ≤ n. Applying (3.7) inside some
decomposition yields another decomposition (of the same element) : for µi 6= µi+1,
we define
Ti(b1, . . . , bi, bi+1, . . . , bm)

= (b1, . . . , bi−1, Θ̃µiµi+1(bi, bi+1),Θµi+1µi(Θ̃µiµi+1(bi, bi+1), bi), bi+2, . . . , bm).

Now, any two decompositions of an element a in M can be connected one to the
other by a finite sequence of elementary transformations T , C and C−, where C
is defined by

Ci(b1, . . . , bi, bi+1, . . . , bm) = (b1, . . . , bi−1, bibi+1, bi+2, . . . , bm),

for µi = µi+1, and C− is the inverse (non-functionnal) transformation of C.
The problem is that, starting with any decomposition of a, several transforma-
tions may be applied. We shall prove that, no matter the transformations are
chosen, they lead to a unique final decomposition with <ShortLex-minimal support.
Let us say that an elementary transformation is decreasing if the support of the
transformed decomposition is <ShortLex-smaller than the initial support. So, applied
to some transformation with support (µ1, . . . , µm), Ti (resp. Ci) is decreasing
whenever µi > µi+1 (resp. µi = µi+1) holds, while C−i is never decreasing. Now,
<ShortLex is a wellordering on the supports of a given element, hence there exist no
infinite sequence of decreasing transformations from a given decomposition. So, in
order to prove that any sequence of decreasing transformations leads to a unique
final decomposition with <ShortLex-minimal support, it suffices to prove that, for ev-
ery pair (D1, D2) of decreasing transformations applied to ~b, there exist finite se-
quences D′1 and D′2 of decreasing transformations satisfying D′1◦D1(~b) = D′2◦D2(~b)
(”confluence property”, see [16]).

Claim 1. Assume the confluence property proved. Then any two decompositions
with <ShortLex-minimal supports of a given element are equal.
Proof. For a given decomposition ~d, let N(~d) denote the unique decomposition
obtained from ~d as above, i.e., with <ShortLex-minimal support. Let ~a = (a1, . . . , an)
be a decomposition with a <ShortLex-minimal support. We show that every decompo-
sition~b of a1 · · · an satisfies N(~b) = ~a by using an induction on the number of T , C,
C− needed to transform ~a into ~b. Thus, the point is to show that, if ~d is obtained
in one step from~b, then we have N(~d) = N(~b). If the support of ~d is <ShortLex-smaller
than that of ~b, N(~d) = N(~b) follows from confluence directly. Assume that the
support of ~d is <ShortLex-greater than that of ~b, then ~d is obtained from ~b using ei-
ther T or C−; now, on the one hand, Ti is an involution by definition, and, on the
other hand, in whatever way C−i is applied to ~b, we have Ci(~d) = ~b, so we find
again N(~d) = N(~b). Thus, if ~b is a decomposition with a <ShortLex-minimal support
obtained from ~a, we have N(~b) = ~a. Now, by construction, we have N(~b) = ~b,
so ~a is the unique decomposition of a1 · · · an with a <ShortLex-minimal support. ut
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It remains to prove the confluence property of the decreasing transformations.
Three types of pairs (D1, D2) are to be considered. Let us fix an element a in M
and a decomposition (b1, . . . , bm) of a with support (µ1, . . . , µm).

Claim 2. Confluence holds for a pair of type (Ci, Cj).
Proof. Assume that both Ci and Cj are decreasing and applied to (b1, . . . , bm),
i.e., assume µi = µi+1 and µj = µj+1. Then we have Cj(Ci(b1, . . . , bm)) =
Ci(Cj(b1, . . . , bm)), and confluence is verified. ut

Claim 3. Confluence holds for a pair of type (Ti, Cj).
Proof. Assume that both Ti and Cj are decreasing and applied to (b1, . . . , bm),
i.e., assume µi > µi+1 and µj = µj+1. Then have i 6= j. For |i− j| > 1,
we have Cj(Ti(b1, . . . , bm)) = Ti(Cj(b1, . . . , bm)), and confluence is verified.
Assume i− j = 1 (the case j − i = 1 is similar). We show

Ci(Ti−1(Ti(b1, . . . , bm))) = Ti−1(Ci−1(b1, . . . , bm)).

By hypothesis, we have µi−1 = µi > µi+1, and we find

Ci(Ti−1(Ti(b1, . . . , bm)))

= Ci(Ti−1(b1, .., bi−1, Θ̃µiµi+1(bi, bi+1),Θµi+1µi(Θ̃µiµi+1(bi, bi+1), bi), bi+2, .., bm))

= Ci(b1, . . . , bi−2, Θ̃µiµi+1(bi−1, Θ̃µiµi+1(bi, bi+1)),

Θµi+1µi(Θ̃µiµi+1(bi−1, Θ̃µiµi+1(bi, bi+1)), bi−1),

Θµi+1µi(Θ̃µiµi+1(bi, bi+1), bi), bi+2, . . . , bm)

= (b1, . . . , bi−2, Θ̃µiµi+1(bi−1, Θ̃µiµi+1(bi, bi+1)),

Θµi+1µi(Θ̃µiµi+1(bi−1, Θ̃µiµi+1(bi, bi+1)), bi−1)Θµi+1µi(Θ̃µiµi+1(bi, bi+1), bi),
bi+2, . . . , bm),

and
Ti−1(Ci−1(b1, . . . , bm))

= Ti−1(b1, . . . , bi−2, bi−1bi, bi+1, . . . , bm)

= (b1, . . . , bi−2, Θ̃µiµi+1(bi−1bi, bi+1),

Θµi+1µi(Θ̃µiµi+1(bi−1bi, bi+1), bi−1bi), bi+2, . . . , bm).
Now, the equality

Θ̃µiµi+1(bi−1, Θ̃µiµi+1(bi, bi+1)) = Θ̃µiµi+1(bi−1bi, bi+1) (3.8)

follows from (#1), while the equality

Θµi+1µi(Θ̃µiµi+1(bi−1,Θ̃µiµi+1(bi, bi+1)), bi−1)Θµi+1µi(Θ̃µiµi+1(bi, bi+1), bi)

= Θµi+1µi(Θ̃µiµi+1(bi−1bi, bi+1), bi−1bi)

follows from (3.8) and (#2). ut
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Claim 4. Confluence holds for a pair of type (Ti, Tj).
Proof. Assume that both Ti and Tj are decreasing and applied to (b1, . . . , bm),
i.e., assume µi > µi+1 and µj > µj+1. The case i = j is trivial. For |i− j| > 1,
we have Tj(Ti(b1, . . . , bm)) = Ti(Tj(b1, . . . , bm)), and confluence is verified.
Assume i− j = 1 (the case j − i = 1 is symmetric). We show

Ti−1(Ti(Ti−1(b1, . . . , bm))) = Ti(Ti−1(Ti(b1, . . . , bm))).

Let p = µi−1, q = µi, r = µi+1 and ap = bi−1, aq = bi, ar = bi+1. By hypothesis,
we have p > q > r. We obtain

Ti−1(Ti(Ti−1(b1, . . . , ap, aq, ar, . . . , bm)))

= Ti−1(Ti(b1, . . . , Θ̃pq(ap, aq),Θqp(Θ̃pq(ap, aq), ap), ar, . . . , bm))

= Ti−1(b1, . . . , Θ̃pq(ap, aq), Θ̃pr(Θqp(Θ̃pq(ap, aq), ap), ar),

Θrp(Θ̃pr(Θqp(Θ̃pq(ap, aq), ap), ar),Θqp(Θ̃pq(ap, aq), ap)), . . . , bm)

= (b1, . . . , Θ̃qr(Θ̃pq(ap, aq), Θ̃pr(Θqp(Θ̃pq(ap, aq), ap), ar)),

Θrq(Θ̃qr(Θ̃pq(ap, aq), Θ̃pr(Θqp(Θ̃pq(ap, aq), ap), ar)), Θ̃pq(ap, aq)),

Θrp(Θ̃pr(Θqp(Θ̃pq(ap, aq), ap), ar),Θqp(Θ̃pq(ap, aq), ap)), . . . , bm)
and

Ti(Ti−1(Ti(b1, . . . , ap, aq, ar, . . . , bm)))

= Ti(Ti−1(b1, . . . , ap, Θ̃qr(aq, ar),Θrq(Θ̃qr(aq, ar), aq), . . . , bm))

= Ti(b1, . . . , Θ̃pr(ap, Θ̃qr(aq, ar)),Θrp(Θ̃pr(ap, Θ̃qr(aq, ar)), ap),

Θrq(Θ̃qr(aq, ar), aq), . . . , bm)

= (b1, . . . , Θ̃pr(ap, Θ̃qr(aq, ar)),

Θ̃pq(Θrp(Θ̃pr(ap, Θ̃qr(aq, ar)), ap),Θrq(Θ̃qr(aq, ar), aq)),

Θqp(Θ̃pq(Θrp(Θ̃pr(ap, Θ̃qr(aq, ar)), ap),Θrq(Θ̃qr(aq, ar), aq)),

Θrp(Θ̃pr(ap, Θ̃qr(aq, ar)), ap)), . . . , bm).
We are left with the task of proving the following equalities, which will prove
confluence in this case:

Θ̃qr(Θ̃pq(ap, aq), Θ̃pr(Θqp(Θ̃pq(ap, aq), ap), ar)) = Θ̃pr(ap, Θ̃qr(aq, ar)), (Er)

Θrq(Θ̃qr(Θ̃pq(ap, aq), Θ̃pr(Θqp(Θ̃pq(ap, aq), ap), ar)), Θ̃pq(ap, aq))

= Θ̃pq(Θrp(Θ̃pr(ap, Θ̃qr(aq, ar)), ap),Θrq(Θ̃qr(aq, ar), aq)), (Eq)

Θrp(Θ̃pr(Θqp(Θ̃pq(ap, aq), ap), ar),Θqp(Θ̃pq(ap, aq), ap))

= Θqp(Θ̃pq(Θrp(Θ̃pr(ap, Θ̃qr(aq, ar)), ap),Θrq(Θ̃qr(aq, ar), aq)), (Ep)

Θrp(Θ̃pr(ap, Θ̃qr(aq, ar)), ap)).
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Let cq = Θ̃pq(ap, aq) and dr = Θ̃qr(aq, ar), hence aq = Θpq(ap, cq)
and ar = Θqr(aq, dr). Equalities (Er), (Eq), (Ep) are then equivalent respectively
to

Θ̃qr(cq, Θ̃pr(Θqp(cq, ap),Θqr(Θpq(ap, cq), dr))) = Θ̃pr(ap, dr), (E′r)

Θrq(Θ̃qr(cq, Θ̃pr(Θqp(cq, ap),Θqr(Θpq(ap, cq), dr))), cq) (E′q)

= Θ̃pq(Θrp(Θ̃pr(ap, dr), ap),Θrq(dr,Θpq(ap, cq))),

Θrp(Θ̃pr(Θqp(cq, ap),Θqr(Θpq(ap, cq), dr)),Θqp(cq, ap)) (E′p)

= Θqp(Θ̃pq(Θrp(Θ̃pr(ap, dr), ap),Θrq(dr,Θpq(ap, cq))),Θrp(Θ̃pr(ap, dr), ap)).

Let er = Θ̃pr(ap, dr), hence dr = Θpr(ap, er). Equalities (E′r), (E′q), (E′p) are then
equivalent respectively to

Θ̃qr(cq, Θ̃pr(Θqp(cq, ap),Θqr(Θpq(ap, cq),Θpr(ap, er)))) = er, (E′′r )

Θrq(Θ̃qr(cq, Θ̃pr(Θqp(cq, ap),Θqr(Θpq(ap, cq),Θpr(ap, er)))), cq)

= Θ̃pq(Θrp(er, ap),Θrq(Θpr(ap, er),Θpq(ap, cq))), (E′′q )

Θrp(Θ̃pr(Θqp(cq, ap),Θqr(Θpq(ap, cq),Θpr(ap, er))),Θqp(cq, ap))

= Θqp(Θ̃pq(Θrp(er, ap),Θrq(Θpr(ap, er),Θpq(ap, cq))),Θrp(er, ap)). (E′′p )

By applying Θqr(cq, .) and then Θpr(Θqp(cq, ap), .) to (E′′r ), we obtain

Θqr(Θpq(ap, cq),Θpr(ap, er)) = Θpr(Θqp(cq, ap),Θqr(cq, er)), (E′′′r )

which is true by Condition (#3). Next, by applying Θpq(Θrp(er, ap), .) to (E′′q ),
we find

Θpq(Θrp(er, ap),Θrq(Θ̃qr(cq, Θ̃pr(Θqp(cq, ap),Θqr(Θpq(ap, cq),Θpr(ap, er)))), cq))
= Θrq(Θpr(ap, er),Θpq(ap, cq)). (E′′′q )

Now, by applying Θ̃pr(Θqp(cq, ap), .) to (E′′′r ), we obtain

Θ̃pr(Θqp(cq, ap),Θqr(Θpq(ap, cq),Θpr(ap, er))) = Θqr(cq, er), (E′′′′r )

hence, by applying Θ̃qr(cq, .),

Θ̃qr(cq, Θ̃pr(Θqp(cq, ap),Θqr(Θpq(ap, cq),Θpr(ap, er)))) = er.

According to the latter equality, (E′′′q ) is equivalent to

Θpq(Θrp(er, ap),Θrq(er, cq)) = Θrq(Θpr(ap, er),Θpq(ap, cq)),

which is true by Condition (#3). Finally, by using (E′′′′r ) in (E′′p ), we obtain

Θrp(Θqr(cq, er),Θqp(cq, ap)) = Θqp(Θrq(er, cq),Θrp(er, ap)),

which is true by Condition (#3). ut
This completes the proof of Proposition 3.6. ut
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Corollary 3.7. Assume that M1, . . . , Mn are small Gaussian monoids—or, more
generally, cancellative atomic monoids with finitely many atoms. Then, for every

family ~Θ of functions satisfying Condition (#), 1~Θ
i Mi is atomic and cancellative.

Proof. First, by Proposition 3.6, every element a in 1
~θ
iMi admits a unique de-

composition as a1 · · · an with ai ∈ Mi for 1 ≤ i ≤ n, and, by Lemma 3.4, ||a|| is
the sum of the ||ai||’s. So, 1

~θ
iMi is an atomic monoid (see Lemma 1.3). Next, we

have to show that, for a, b, c in 1
~θ
iMi, ac = bc implies a = b. As 1

~θ
iMi is atomic,

we can use an induction on ||c||. For ||c||= 0, the result is trivial. Assume ac = bc
and || c ||> 0. Then we have c = xc′ with x ∈ Ar for some 1 ≤ r ≤ n and c′

in 1
~θ
iMi. By induction hypothesis, we have ax = bx. By Proposition 3.6, we can

write a = a1 · · · ar−1ar+1 · · · anar and b = b1 · · · br−1br+1 · · · bnbr for some ai, bi
in Mi, and, therefore, a1 · · · ar−1ar+1 · · · an(arx) = b = b1 · · · br−1br+1 · · · bn(brx).
The uniqueness of decomposition implies ai = bi for i 6= r and arx = brx,
hence a = b by cancellativity of Mr. This completes the induction. The argu-
ment for left cancellativity is symmetric. ut

Example 3.8. Let us consider the (isomorphic) small Gaussian monoids 〈 xi, yi :
xiyi = yixi 〉+ for i = 1, 2, 3, and the family ~θ formed by θx1 = (x1 y1 x2 y2 x3 y3

x1 y1 y2 x2 x3 y3 ),
θx2 = (x1 y1 x2 y2 x3 y3

x1 y1 x2 y2 y3 x3 ) and θy1 = θy2 = θx3 = θy3 = (x1 y1 x2 y2 x3 y3
x1 y1 x2 y2 x3 y3 ). Then ~θ

extends into a family of functions ~Θ using (#1) and (#2), but ~Θ does not sat-
isfy Condition (#3). Let us observe that each of the three underlying bicrossed
products is well-defined.

The results so far are valid for cancellative conical and/or atomic monoids with
finitely many atoms. From now on, we shall concentrate on the specific case of
small Gaussian monoids.

Lemma 3.9. Assume that M1, . . . , Mn are small Gaussian monoids. Let Ai be the
set of atoms in Mi for 1 ≤ i ≤ n. Then, for every family ~θ satisfying Condition (#),
for 1 ≤ i 6= j ≤ n, the function (x, y) 7→ (θy(x), θx(y)) is a permutation of Ai×Aj .

Proof. Let us fix (i, j) with 1 ≤ i 6= j ≤ n. Assume (x1, x2) in Ai × Aj such that
there exist (y1, y2) and (z1, z2) in Ai ×Aj satisfying

(θy2(y1), θy1(y2)) = (x1, x2) = (θz2(z1), θz1(z2)).

We obtain { y2x1 = y1x2,
z2x1 = z1x2,

and, the monoid Mi being Gaussian,{
(z1/y1)y2x1 = (z1/y1)y1x2,
(y1/z1)z2x1 = (y1/z1)z1x2,
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hence
(z1/y1)y2x1 = (y1/z1)z2x1.

Proposition 3.6 implies z1/y1 = y1/z1 and y2 = z2, but z1/y1 = y1/z1 leads
to z1/y1 = y1/z1 = 1, hence y1 = z1, which proves injectivity of the func-
tion (x, y) 7→ (θy(x), θx(y)). As the set Ai × Aj is finite, the function (x, y) 7→
(θy(x), θx(y)) is a permutation of Ai ×Aj . ut

Example 3.10. Let us consider the (isomorphic) small Gaussian monoids 〈 x1, y1 :
x1y1 = y1x1 〉+ and 〈 x2, y2 : x2y2 = y2x2 〉+, and the family ~θ consisting
of the permutations θx1 = (x1 y1 x2 y2

x1 y1 x2 y2 ) = θx2 , θy1 = (x1 y1 x2 y2
x1 y1 y2 x2 ) and θy2 =

(x1 y1 x2 y2
y1 x1 x2 y2 ). Then the function (x, y) 7→ (θy(x), θx(y)) is not a permutation

of {x1, y1} × {x2, y2}. By Lemma 3.9, ~θ is not a family satisfying Condition (#).
Indeed, denoting by ~Θ the family of functions associated with ~θ, we would
find Θ21(y2, y1x1) = x2

1 and Θ21(y2, x1y1) = y1x1.

Lemma 3.11. Assume that M1, . . . , Mn are small Gaussian monoids. Then, for
every family ~Θ of functions satisfying Condition (#), for a in Mi, for b in Mj

with 1 ≤ i 6= j ≤ n, aΘij(a, b) = bΘji(b, a) is the right lcm of a and b in 1~Θ
i Mi.

Proof. By Lemma 3.5, aΘij(a, b) = bΘji(b, a) is a right multiple of a and b

in 1~Θ
i Mi. Assume that aa′ = bb′ is a right multiple of a and b in 1~Θ

i Mi. By
Proposition 3.6, we have a′ = a′ia

′
jΠ1≤k≤n,k 6=i,k 6=ja′k and b′ = b′ib

′
jΠ1≤k≤n,k 6=i,k 6=jb′k

for some a′k, b
′
k in Mk with 1 ≤ k ≤ n. By Proposition 3.6 again, aa′ = bb′ implies

both aa′ia
′
j = bb′ib

′
j and a′k = b′k for 1 ≤ k ≤ n, k 6= i, k 6= j. By Proposition 3.6

always, aa′ia
′
j = bb′ib

′
j implies aa′i = Θ̃ji(b, b′i), hence

b′i = Θji(b, aa′i) =
(3.2)

Θji(b, a)Θji(Θij(a, b), a′i).

Therefore, bb′ is a right multiple of bΘji(b, a). ut

Proposition 3.12. Assume that M1, . . . , Mn are small Gaussian monoids. Then,

for every family ~θ of permutations satisfying Condition (#), the monoid 1
~θ
iMi

is a small Gaussian monoid, and the lattice of simple elements in 1
~θ
iMi is the

product of the lattices of simple elements in M1, . . . , Mn.

Proof. Let ~Θ denote the family of functions associated with ~θ. Let Ai be the set
of atoms in Mi for 1 ≤ i ≤ n, and let A be the disjoint union A1 t . . . t An.
First, by Corollary 3.7, 1

~θ
iMi is atomic and cancellative. Now, let us show by

induction on || a |||| b || that any two elements a, b in 1
~θ
iMi admit a right lcm.

For ||a||||b||= 0, it is obviously true. Assume ||a||||b||> 0. Then we have a = a′x
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and b = b′y for some x ∈ Ar, y ∈ As with 1 ≤ r, s ≤ n and a′, b′ in 1
~θ
iMi.

By induction hypothesis, a′ and b′ admit a right lcm a′ ∨ b′. Let a′\b′ and b′\a′
denote those elements in 1

~θ
iMi satisfying a′ ∨ b′ = a′(a′\b′) = b′(b′\a′) (these two

elements are unique by cancellativity and conicity). By Proposition 3.6, there
exist ci, di in Mi for 1 ≤ i ≤ n satisfying a′\b′ = c1 · · · cr−1cr+1 · · · cncr and b′\a′ =
d1 · · · ds−1ds+1 · · · dnds. Let

x′ = Θnr(cn, ..,Θ(r+1)r(cr+1,Θ(r−1)r(cr−1, . . .Θ2r(c2,Θ1r(c1, x)) . . .))..)

and

y′ = Θns(dn, ..,Θ(s+1)s(ds+1,Θ(s−1)s(ds−1, . . .Θ2s(d2,Θ1s(d1, y)) . . .))..).

Lemma 3.2 implies x′ ∈ Ar and y′ ∈ As. By Lemma 3.11, the element cr\x′ in Mr

and the element ds\y′ in Ms admit a unique right lcm g in 1
~θ
iMi. We deduce

that (a′ ∨ b′)g is the right lcm of a and b. Therefore, 1
~θ
iMi is a Gaussian monoid.

In order to prove that 1
~θ
iMi is small, we show that the closure of A under \

is P = P1 t . . . t Pn, where Pi denotes the closure of Ai under \ for 1 ≤ i ≤ n.
Let P (0) = A and P (k) = {a\b ; a, b ∈ P (k−1)} for k > 0. We show by induction
on k that P (k) is included in P1 t . . . t Pn. For k = 0, we deduce A1 t . . . tAn ⊆
P1t . . .tPn from Ai ⊆ Pi for 1 ≤ i ≤ n. Assume k > 0. Let a, b belong to P (k−1).
By induction hypothesis, we have a ∈ Pr and b ∈ Ps for some 1 ≤ r, s ≤ n.
For r = s, a\b ∈ Ps ⊆ P1 t . . . t Pn and we are done. Assume r 6= s. Let us show
inductively on ||a|| that, for every a in Pr, a\Ps is included in Ps. For ||a||= 0, we
have 1\b = b ∈ Ps for every b in Ps. Assume ||a||> 0. We have a = x(x\a) for
some x ∈ Ar. Using Lemma 1.2, we obtain

a\b = (x(x\a))\b =
(1.2)

(x\a)\(x\b),
for every b in Ps. We have to show that x\b belongs to Ps for every x in Pr and
every b in Ps. Let P

(0)
s = As and P

(j)
s = {a\b ; a, b ∈ P

(j−1)
s } for j > 0. We

show by induction on j that, for every b in P
(j)
s , x\b belongs to P

(j)
s for every x

in Ar. For j = 0, we have b ∈ As, hence x\b = θx(b) ∈ As. Assume j > 0. Then
we have b = b1\b2 for some b1, b2 in P

(j−1)
s . Following Lemma 3.2, we denote

by x′ the image of x under the inverse of the permutation Θsr(b1, .) of Ar. Using
Lemmas 3.5 and 1.2, we obtain

x\b = (b1\x′)\(b1\b2) =
(1.3)

(x′\b1)\(x′\b2).

By induction hypothesis, both x′\b1 and x′\b2 belong to P
(j−1)
s , and, therefore,

x\b belongs to P
(j)
s . We deduce that x\b belongs to Ps for every x ∈ Pr and b ∈ Ps.

Now, having ||x\a||<||a||, the initial induction hypothesis implies that (x\a)\(x\b)
belongs to Ps, which completes the induction. Finally, as P1 t . . . t Pn is finite,
the closure of A under \ is finite, and P = P1t . . .tPn follows. Therefore, 1

~θ
iMi

is a small Gaussian monoid.
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Recall that, if (Xi, ∧i, ∨i) with 1 ≤ i ≤ r are lattices, their (Cartesian)
product is the lattice (X1 × . . . × Xr, ∧, ∨), where ∧ and ∨ are defined
by (a1, . . . , ar)∧(b1, . . . , br) = (a1∧1b1, . . . , ar∧rbr) and (a1, . . . , ar)∨(b1, . . . , br) =
(a1∨1b1, . . . , ar∨rbr) for ai, bi in Xi and 1 ≤ i ≤ r, see [3]. Here, for 1 ≤ i ≤ n,
Si denotes the closure of Pi under ∨—by definition, the set of simples in Mi—
and S denotes the closure of P under ∨. We consider the lattice homomorphism ϕ
from S1 × . . . × Sn into S defined by ϕ(1, . . . , 1, aj , 1, . . . , 1) = aj for aj ∈ Sj
and 1 ≤ j ≤ n. Observe that every element in S that can be expressed as the right
lcm of elements in S1, . . . , Sn can also be expressed as the product of elements
in S1, . . . , Sn. Indeed, an easy induction on n gives

a1 ∨ . . . ∨ an = a′1 · · · a′n

with a′1 = a1 and a′i = (a′1 · · · a′i−1)\ai for i > 1. Now, ϕ(a1, . . . , an) =
ϕ(b1, . . . , bn) implies a′1 · · · a′n = b′1 · · · b′n, hence, by Proposition 3.6, a′i = b′i
for 1 ≤ i ≤ n. We show inductively on i that ai = bi holds for 1 ≤ i ≤ n.
The result is obviously true for i = 1. Assume i > 1. By induction hypothesis,
a′i = b′i implies

(a′1 · · · a′i−1)\ai = (a′1 · · · a′i−1)\bi,

hence, by using Lemmas 1.2 and 3.5,

Θ(i−1)i(a′i−1,Θ(i−2)i(a′i−2, . . . (Θ2i(a′2,Θ1i(a′1, ai)) . . .))

= Θ(i−1)i(a′i−1,Θ(i−2)i(a′i−2, . . . , (Θ2i(a′2,Θ1i(a′1, bi)) . . .)).

Now, by successively using injectivity of Θ(i−1)i(a′i−1, .), ..., Θ(1i)(a′1, .), we
find ai = bi, which completes the induction and shows the injectivity of ϕ. By
definition, for every a in S, there exist an integer m and elements b1, . . . , bm
in P = P1 t . . . t Pn satisfying a = b1 ∨ . . . ∨ bm, hence we have a = ϕ(a1, . . . , an)
with ai =

∨
(Pi∩{b1, . . . , bm}) for 1 ≤ i ≤ n, which means that ϕ is surjective. ut

Example 3.13. Let us consider again the small Gaussian monoids M1 and M2

of Example 3.3. Let ~θ′ be defined by θ′x1
= θ′x2

= θ′x3
= (x1 x2 x3 y z

x1 x2 x3 y z ), θ′y = θy

and θ′z = (x1 x2 x3 y z
x2 x3 x1 y z ), and let ~θ′′ be defined by θ′′x1

= θ′′x2
= θ′′x3

= θx1 , θ′′y = θz
and θ′′z = θ′z. The monoids M1 ./~θ M2 and M1 ./~θ′ M2 are small Gaussian, while
the monoid M1 ./~θ′′ M2 is not, as, for instance, (x2\y)\(x2\x1) 6= (y\x2)\(y\x1)
contradicts Lemma 1.2.
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4. Decomposition of a small Gaussian monoid

In this section, we introduce the notion of a ∆-pure small Gaussian monoid, that
extends the one of irreducible spherical Artin monoids. On the one hand, we prove
that the result of Brieskorn, Saito [7] and Deligne [13] stated in the special case
of spherical Artin groups extends to the case of arbitrary small Gaussian groups :
the quasi-center and the center of every ∆-pure small Gaussian group are infinite
cyclic subgroups. On the other hand, we prove that every small Gaussian monoid
is an iterated crossed product of some ∆-pure small Gaussian monoids.

Definition. Assume that M is a small Gaussian monoid. For a, b in M , we
write a ∆∼ b whenever ∆a = ∆b holds. We say that M is ∆-pure if its atoms are
∆∼-equivalent.

Proposition 4.1. Assume that M is a ∆-pure small Gaussian monoid, ∆ is its
Garside element, e is its exponent, and G is its group of fractions.

(i) The quasi-center of M is the infinite cyclic submonoid generated by ∆.

(ii) The center of M (resp. of G) is the infinite cyclic submonoid (resp. subgroup)
generated by ∆e.

Proof. Let A be the set of the atoms in M . According to Lemma 1.8 and Propo-
sition 2.8, it suffices to show {∆x ; x ∈ A} = {∆}. Let δ be the unique element
of {∆x ; x ∈ A}. By Proposition 1.6, ∆ is quasi-central, and, by Proposition 2.10,
δ divides ∆. Let

D =
⋃
x∈A

M\x.

By hypothesis, δ is the right lcm of D. Let a, b ∈ D. By definition, we have a = c\z
for some c in M and some atom z. By using (1.2), we find b\a = b\(c\z) =
(cb)\z, which proves that D is closed under \. As D includes A, D includes the
closure P of A under \, and, therefore, ∆, which is the right lcm of P , divides δ.
Cancellativity and conicity allow to conclude. ut

Our aim is now to show that every small Gaussian monoid is an iterated crossed
product of ∆-pure small Gaussian submonoids.

Definition. Assume that M is a small Gaussian monoid. Let A be its set of
atoms. A subset A1 of A is said to be full if, for every atom x in A1 and every
atom y in A, x ∆∼ y implies y ∈ A1.
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Proposition 4.2. Assume that M is a small Gaussian monoid. Then, for every
full subset A1 of atoms in M , the submonoid of M generated by A1 is a small
Gaussian monoid.

Proof. Let M1 denote the submonoid generated by A1. First, the submonoid M1

inherits cancellativity and conicity from M . Next, we prove M\M1 = M1

and
∨

M1 = M1 =
∨̃

M1. We show using induction on ||a || that, for every a
in M1, the set M\a is included in M1. For ||a ||= 0, we have M\1 = {1}. As-
sume ||a||> 0. Then we have a = xa′ for some atom x in A1 and some a′ in M1.
We claim that ∆x belongs to M1 : let y be an atom in A1 dividing ∆x, then, by
Lemma 2.7, ∆y divides ∆x, and, by Lemma 2.9, we have x ∆∼ y, hence y ∈ A1.
Now, let b ∈M . By Lemma 1.2, we have

b\a = b\(xa′) = (b\x)((x\b)\a′).

The element b\x belongs to M1 as it divides ∆x, and, by induction hypothesis,
the element (x\b)\a′ belongs to M1. Therefore, b\a belongs to M1. Let c, d ∈M1.
Then, from c∨d = c(c\d) and M\M1 = M1, we deduce c∨d ∈M1. Symmetrically,
we have c ∨̃ d ∈ M1. So, every pair (c, d) of elements in M1 admits right and left
lcm’s in M1. Finally, M1 is a small Gaussian monoid since the closure of A1

under \ is included in the closure of A under \. ut

Now, we have to investigate the relations amongst those atoms x, y satisfy-
ing x 6∆∼ y. Though very easy, the following lemma is technically crucial.

Lemma 4.3. Assume that M is a small Gaussian monoid.

(i) Distinct atoms x, y in M satisfy y\x ∆∼ x.

(ii) For every atom x and every b in M , b ∆∼ x implies c ∆∼ x for every non trivial
element c dividing b in M .

Proof. (i) As ∆x is
∨

(M\x), y\x is a left divisor of ∆x, and, by Lemma 2.7,
∆y\x is a left divisor of ∆x. As y is an atom distinct from x, y\x is not trivial,
and Lemma 2.9 implies ∆y\x = ∆x.

(ii) Let c 6= 1 be a divisor of b in M . As b divides ∆b, which is ∆x by hypothesis,
c divides ∆x. Lemmas 2.7 and 2.9 imply then ∆c = ∆x. ut

Lemma 4.4. Assume that M is a small Gaussian monoid. Then, for all disjoint
full sets A1, A2 of atoms, the application x1 7→ x2\x1 is a permutation of A1 for
every atom x2 in A2.

Proof. It suffices to show the following assertions:
(i) for all atoms x, y in M satisfying x 6∆∼ y, the elements y\x and x\y are atoms
in M , and they satisfy y\x ∆∼ x and x\y ∆∼ y;

25



(ii) for all atoms x, y1, y2 in M satisfying x 6∆∼ y1, x 6∆∼ y2 and y1 6= y2, the
atoms x\y1 and x\y2 are distinct.

First, let us show (i). Let x, y be atoms in M satisfying x 6∆∼ y. We have so x 6= y,
and atomicity implies x\y 6= 1 and y\x 6= 1. Therefore, there exist atoms x′, y′

and elements a, b in M satisfying x ∨ y = xay′ = ybx′, hence, by Lemma 1.4,

x ∨ y = xay′ = ybx′ = (xa ∧ yb)(y′ ∨̃ x′).

Assume xa∧yb 6= 1. Let z be an atom in M dividing xa∧yb on the left. As y∨(xa∧
yb) is a left divisor of yb, we have z 6= x. Therefore, x∨z being a left divisor of x∨y,
x\z is a non trivial left divisor of x\y, and Lemma 4.3 implies z ∆∼ x\z ∆∼ x\y ∆∼ y.
Symmetrically, we find z ∆∼ y\z ∆∼ y\x ∆∼ x, which contradicts the hypothesis x ∆∼/ y.
We obtain then

x ∨ y = xay′ = ybx′ = y′ ∨̃ x′.

By Lemma 4.3(i), x\y = ay′ and y\x = bx′ imply

ay′ ∆∼ y and bx′ ∆∼ x,

whereas x′/y′ = xa and y′/x′ = yb imply xa ∆∼ x′ and yb ∆∼ y′, hence, by using
Lemma 4.3(ii),

xa ∆∼ x and yb ∆∼ y.

By Lemma 4.3(ii) again, the conjunction of ay′ ∆∼ y and xa ∆∼ x implies a = 1,
while the conjunction of bx′ ∆∼ x and yb ∆∼ y implies b = 1.

Now, we prove (ii). Assume x\y1 = x\y2. Then we have y1(y1\x) = y2(y2\x).
In particular, y1\y2 is a left divisor of y1\x. Now, by (i), y1\x is an atom. The
atoms y1 and y2 being distinct, y1\y2 is not 1, and we deduce y1\y2 = y1\x, which,
by Lemma 4.3(i), implies y2

∆∼ x, a contradiction. ut

Proposition 4.5. Every small Gaussian monoid is an iterated crossed product of
∆-pure small Gaussian submonoids.

Proof. Assume that M is a small Gaussian monoid. Let A be its set of atoms,
and A = A1 t . . . t An be a partition such that, for 1 ≤ i ≤ n, Ai is a minimal
nonempty full subset of A. For 1 ≤ i ≤ n, let Mi (resp. Mi) denote the submonoid
generated by Ai (resp. by ArAi). Then, for 1 ≤ i ≤ n, by Lemma 4.2, Mi

and Mi are small Gaussian monoids, and, by Lemma 4.4, there exists a family ~θ (i)

satisfying Condition (#) for Mi,Mi satisfying M = Mi ./~θ (i) Mi. We find

M = 1
~θ
iMi with ~θ =

⊔
i{θ (i)

x ; x ∈ Ai}.

Except for n = 1, the small Gaussian monoids Mi need not be ∆-pure—see Exam-
ple 4.8. Now, an iteration of the previous process leads to a decomposition of M
as an iterated crossed product of ∆-pure small Gaussian monoids. Indeed, as the
number of atoms strictly decreases, such an iteration is necessarily finite. ut
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Corollary 4.6. Every small Gaussian monoid with two atoms is ∆-pure, except
the rank two free abelian monoid.

Remark. Let us come back to Proposition 2.15. Assume that M is a small
Gaussian monoid, and QZ is its quasi-center. We have mentionned that the func-
tion a 7→ ∆a need not be a semilattice homomorphism from (M, ∧) onto (QZ, ∧).
In fact, a 7→ ∆a is a semilattice homomorphism from (M, ∧) onto (QZ, ∧) if and
only if M is a free abelian monoid. Indeed, for distinct atoms x, y in M satisfy-
ing x ∆∼ y, we have ∆x∧y = ∆1 = 1 and ∆x ∧∆y = ∆x 6= 1. Therefore, if a 7→ ∆a

is a semilattice homomorphism from (M, ∧) onto (QZ, ∧), then we have x 6∆∼ y for
all distinct atoms x, y in M , and, following the proof of Proposition 4.5, we deduce
that M is free abelian. The converse implication is trivial.

Let us consider the special case of spherical Artin groups and monoids. As-
sume that M is a Artin monoid with set of atoms X and with Coxeter ma-
trix (mxy)x,y∈X . The Coxeter graph of M is defined to be the unoriented graph
whose vertices are the atoms, and there is an edge between the vertices x and y
whenever mxy ≥ 3 holds, mxy labelling the corresponding edge [5], [7], [13]. The
monoid M is irreducible if its Coxeter graph is connected.

Proposition 4.7. Assume that M is a spherical Artin monoid. Then M is
irreducible if and only if M is ∆-pure.

Proof. Let Γ be the Coxeter graph of M . First, we show that, for all atoms x, y in
the same connected component of Γ, x ∆∼ y holds. We can suppose x and y distinct.
Then there exist a positive integer n and distinct atoms x = z0, . . . , zn = y in M
such that, for 0 ≤ i ≤ n, zi and zi+1 are connected in Γ. Use induction on n
to prove that x and y satisfy x ∆∼ y. Assume n = 1. Then there exists an
integer mxy ≥ 3 satisfying

x\y = prod(yx, mxy − 1), and y\x = prod(xy, mxy − 1),

where prod(w, k) denotes the length k prefix of the word w∞. In particular, x
divides x\y, and y divides y\x. Therefore, by definition, x divides ∆y, and y
divides ∆x. By Lemma 2.7, by cancellativity and conicity, we deduce ∆x = ∆y,
i.e., x ∆∼ y. Assume now n > 1. Then we have x ∆∼ z1 and, by induction hypothesis,
z1

∆∼ y, hence x ∆∼ y.
Conversely, assume that M is not irreducible. Then M is the direct product of

two non trivial spherical Artin monoids. Therefore, the quasi-center of M is not
cyclic, and, by Proposition 4.1, M is not ∆-pure. ut
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We conclude with an example of the decomposition mentionned in Proposition 4.5.

Example 4.8. Let us consider the monoids Cn considered by Garside in [14]—
which are not Artin monoids for n > 2. Let C3 be the monoid admitting the
presentation

〈 x1, x2, x3 : x1x2 = x2x3 , x1x3 = x3x1 , x2x1 = x3x2 〉.

Then C3 is a small Gaussian monoid, and the lattice of its simple elements is
displayed in Figure 2. We compute in C3

∆x1 = ∆x3 = x1x3, and ∆x2 = x2,

and deduce that the quasi-center (resp. the center) of C3 is generated by x1x3

and x2 (resp. by x1x3 and x2
2). In particular, the monoid C3 is not ∆-pure : we

have C3 = M1 ./~θ M2 with M1 = 〈 x1, x3 : x1x3 = x3x1 〉, M2 = 〈 x2 : 〉,
and θx1 = θx3 = (x1 x2 x3

x1 x2 x3 ), θx2 = (x1 x2 x3
x3 x2 x1 ). Now, M2 is ∆-pure, while M1 is

not : we have M1 = 〈 x1 : 〉 × 〈 x3 : 〉. Hence, we obtain C3 = 1
~θ
i=1,2,3〈 xi : 〉.

According to Proposition 3.12, the lattice of simples in C3 is isomorphic to the
lattice of simples in the rank 3 free abelian monoid N3.

1

x1 x2 x3

∆

Figure 2. The lattice of simple elements in C3.

Let us come back finally to the so-called parabolic submonoids of a small Gaus-
sian monoid. A natural question is whether every submonoid of a small Gaussian
monoid generated by atoms is a (small) Gaussian monoid as well—see Proposi-
tion 4.2. Considering the monoid C3 of Example 4.8 again gives a negative answer.
The submonoid M∞ of C3 generated by {x1, x2} is not a Gaussian monoid. Indeed,
the element x2

2 is central in M∞, but cannot be a multiple of x1, and Proposition 2.8
does not work in this case. Actually, we can show that M∞ admits the infinite
presentation 〈 x1, x2 : x1x2x

k
1x2 = x2x

k
1x2x1, k ∈ N 〉.
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Remark. Except the property of effective computability of the function a 7→ ∆a,
most of the results in the previous sections extend to the most general framework
of those monoids M where there exists an element ∆ such that the left divisors
of ∆ coincide with its right divisors and they generate M , but whose we do not
require the divisors of ∆ to be finite in number. A typical example is the monoid
presented by 〈 x, y : xyx = yx2y 〉, whose group of fractions is isomorphic to
the 3-strand braid group.
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