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Abstract

This note gathers observations on symmetric quadrangulations, with enumerative
consequences. In the first part a new way of enumerating rooted simple quadrangu-
lations is presented, based on two different quotient operations of symmetric simple
quadrangulations. In the second part, based on results of Bouttier, Di Francesco and
Guitter and on quotient and substitution operations, the series of three families of
symmetric quadrangulations are computed, with control on the radius.
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Introduction

A planar map is a connected graph embedded in the plane up to continuous
deformation; the unique unbounded face of a planar map is called the outer
face, the other ones are called inner faces. Vertices and edges are also said
outer if they belong to the outer face and inner otherwise. A map is said to
be rooted if an edge of the outer face is marked and oriented so as to have the
outer face on its left. A quadrangulation is a map with all faces of degree 4.
For k > 1, a quadrangular dissection of a 2k-gon or k-dissection is a map
whose outer face contour is a simple cycle of length 2k, and with all inner
faces of degree 4. A map is said to be simple if it has no multiple edges; a
k-dissection is said irreducible if every 4-cycle delimits a face (possibly the
outer one).

Enumeration of families of maps has received a lot of attention; several
methods can be applied: the recursive method introduced by Tutte [12],
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the random matrix method introduced by Brézin et al. [3], and the bijec-
tive method introduced by Cori and Vauquelin [6] and Schaeffer [11]. In the
first part of this note, we show another method for the enumeration of rooted
simple quadrangulations based on quotienting symmetric simple quadrangula-
tions. Historically, the enumeration of symmetric maps of order k in a family
M (i.e., such that a rotation of order k fixes the map) was reduced to the
enumeration of rooted maps inM via a quotient argument, a method used by
Liskovets [9]. We proceed in the reverse way, namely we use two quotient oper-
ations of symmetric simple quadrangulations to build an algebraico-differential
Equation (1) satisfied by the series of rooted simple quadrangulations which
can be explicitly solved to obtain the formula for the number of rooted simple
quadrangulations (due to Tutte [12] and bijectively proved by Schaeffer [11]).

One quotient operation is new and relies deeply on the existence and prop-
erties of α-orientations which we recall in Section 1.1. The other quotient
operation is classical and we describe it now. For k > 2, a k-dissection D is
called k-symmetric if the plane embedding (conveniently deformed) is invari-
ant by a rotation of angle 2π/k centered at a vertex – called the center of the
dissection. As observed by Liskovets [9], any two semi-infinite straight lines
starting from the center and forming an angle of 2π/k delimit a sector of D.
When keeping only this sector and pasting these two lines together, we obtain
a planar map, called the quotient-map of D; note that in our case, this map
has outer degree 2.

The results in the second part of the note are expressions of the series of
several families of symmetric quadrangular dissections with control on their
radius, defined as the distance from the central vertex to the outer face. Fam-
ilies of k-symmetric dissections have been counted according to the number
of inner faces by Brown [4,5] using the recursive method (Liskovet’s quotient
method [9] can also be applied, reducing the enumeration to rooted quadran-
gular dissections). In Section 2, combining results by Bouttier et al. [1] with
the quotient method and substitution operations, we count, for any k > 2,
k-symmetric general (resp. simple, irreducible) dissections according to the
number of inner faces and the radius.

This is the first result on a distance parameter for irreducible quadrangu-
lations; and it illustrates again the property that the series expression of a
“well behaved” map family M refined by a distance parameter d is typically
expressed in terms of the dth power of an algebraic series of singularity type
z1/4 (implying that asymptotically the distance parameter d on a random map
of size n in M converges in the scale n1/4 as a random variable).



1 Simple quadrangulations via symmetric ones

In this section, simple quadrangulations are required to have at least two
faces (to avoid the degenerated case with two edges and one face) and we call
symmetric simple quadrangulations the simple 2-symmetric dissections.

1.1 A new way of quotienting 2-symmetric quadrangulations

From [7], a quadrangulation is simple iff it admits an orientation of its inner
edges so that inner vertices have outdegree 2 and outer ones have outdegree 0;
such an orientation is called a 2-orientation. By a general result of Felsner [8]
on orientations with prescribed outdegrees, any simple quadrangulation ad-
mits a unique 2-orientation with no counterclockwise circuit, called its minimal
2-orientation of, see Figure 1(a). We now fix a 2-symmetric simple quadran-
gulation Q and describe a new way of quotienting Q relying on its minimal
2-orientation, which is itself necessarily symmetric.

For each inner edge e of Q, call leftmost path starting at e the maximal
oriented path P starting at e such that for any triple v, v′, v′′ of successive
vertices along P , (v′, v′′) is the first outgoing edge after (v, v′) in clockwise
order around v′. It can be shown that it is a simple path ending at one of the
outer vertices of Q.

Let u be the central vertex of Q, e1 and e2 its two outgoing edges, and
P 1 = (u = v0, v1, . . . , vp) and P 2 = (u = w0, w1, . . . , wp) their leftmost paths.
Clearly P 1 and P 2 map to one another by the rotation. Hence P 1 and P 2

cannot meet except at their starting point u. Let us cut Q along P 1 ∪ P 2 to
split Q into two isomorphic dissections, see Figure 1(c), and define Q1 as the
one with clockwise contour u, v1, v2, . . . , w2, w1. If Q1 is a quadrangulation,
we set Φ(Q) := Q1 and mark the edge (u, v1). Otherwise, for any i 6 p − 2,
we identify in Q1 vertices vi+2 with wi, and merge corresponding edges; this
defines the map Φ(Q), in which we then mark the edge (v1, v2).

Concerning orientations, the identification of vi+2 with wi creates an ori-
entation conflict only when merging (u, v1) with (v1, v2). We choose to orient
the merged edge from v1 to v2. With this convention, Φ(Q) is naturally en-
dowed with its minimal 2-orientation and the leftmost path of the marked
edge (v1, v2) is (v1, v2, . . . , vp). It is then easy to describe the inverse mapping
and to obtain:

Theorem 1.1 The mapping Φ is a one-to-one correspondence between sym-
metric simple quadrangulations with 2n inner faces and simple quadrangula-
tions with n inner faces and a marked edge.
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Figure 1. Classical quotient (b), (d) and new quotient (c), (e) of a symmetric simple
quadrangulation endowed with its minimal 2-orientation (a).

1.2 Classical quotient vs. new quotient, and getting a functional equation

A quadrangular dissection is said to be pointed if it has a marked vertex. As
any k-symmetric dissection is implicitly pointed (at its center), its k-quotient
is a pointed 1-dissection (i.e. with outer face of degree 2). A pointed dissection
is called quasi-simple if the marked vertex lies strictly in the interior of any
2-cycle. Then the following can be shown (see also Lemma 2.1 in Section 2):

Proposition 1.2 The 2-quotient is a one-to-one correspondence between sym-
metric simple quadrangulations with 2n inner faces and quasi-simple pointed
1-dissections with n inner faces.

Any edge of a simple quadrangulation has an implicit orientation given
by its minimal 2-orientation. Hence a simple quadrangulation with a marked
edge corresponds to two distinct quadrangulations with a marked oriented
edge. Similarly, because 1-dissections are bipartite, each pointed 1-dissection
corresponds to two different rooted pointed 1-dissections. We obtain:

Corollary 1.3 Simple quadrangulations with n inner faces and a marked ori-
ented edge are in one-to-one correspondence with rooted quasi-simple pointed
1-dissections with n inner faces.



B

A

(a) Nested 2-cycles (b) Element of B (c) Element of A

Figure 2. The decomposition of a quasi-simple quadrangular 1-dissection

This correspondence allows us to get a functional equation for the generat-
ing series of the family Q of non-degenerated rooted simple quadrangulations.
Let q(x) =

∑
n>2 qnx

n be the series of Q according to the number of faces
(including the outer one). We will decompose both families involved in Corol-
lary 1.3 in terms of Q.

First any simple quadrangulation with a marked oriented edge can be seen
as a rooted simple quadrangulation with a marked face (possibly the outer
one), hence their generating series according to inner faces is equal to q′(x).

Let now D denote the family of rooted quasi-simple 1-dissections. Observe
that for any D ∈ D, its separating 2-cycles are nested and therefore ordered
from innermost to outermost. This yields a decomposition of D as a sequence
of components. Let A and B be the families of rooted 1-dissections where
the unique 2-cycle is the outer face with respectively a marked inner vertex
and a marked inner edge. We can cut D along the nested 2-cycles to obtain a
pointed 1-dissection inA and a sequence of maps in B (see Figure 2). Denoting
respectively by d(x), a(x), b(x) the series of D, A, and B according to the

number of quadrangular faces. It gives d(x) = a(x)
1−b(x)

.

Deleting the non-root outer edge of a rooted 1-dissection gives a rooted
quadrangulation (possibly degenerated). Taking into account the marked in-
ner vertex or edge, we get:{

a(x) = 2x +
∑

n>2 nqnx
n = 2x + xq′(x)

b(x) = 2x +
∑

n>2 (2n− 1)qnx
n = 2x + 2xq′(x)− q(x).

Proposition 1.4 The series q(x) satisfies the following equation:

x · [2 + 2q′(x)2 + 3q′(x)] = q′(x) · [1 + q(x)]. (1)

This equation can be solved leading to a new proof that qn+1 =
4(3n)!

n!(2n + 2)!
.



2 Distance from the central vertex to the boundary

We define the radius r(D) of a pointed dissection D as the distance between
its marked vertex and the outer face (for instance, the example of Figure 1(a)
has radius 3). We also denote by o(D) its outer degree, `(D) the length of a
shortest cycle not equal to the outer face boundary and strictly enclosing u
and m(D) (resp. m̃(D)) the length of a shortest (resp. non-facial) cycle not
strictly enclosing u. The following lemma relates distances in k-symmetric
dissections and their k-quotients:

Lemma 2.1 For k > 2, let D be a k-symmetric dissection, and E its k-
quotient; we have:

o(D) = k o(E), `(D) = k `(E), m(D) = m(E), m̃(D) = m̃(E), r(D) = r(E).

For k > 2, i > 0, and D(k) a family of k-symmetric dissections, let D(k)
i

be the family of dissections in D(k) of radius i. Let D
(k)
i be the image of D(k)

i

by the k-quotient operation. By Lemma 2, the counting series D
(k)
i (x) of D

(k)
i

according to the number of inner faces is also the series of D(k)
i according to

the number of orbits of inner faces.

Previous work by Bouttier et al. [1] yields the following expression for the

series of the family F (k)
i of all k-symmetric 1-dissections, which is the series

of the family Fi of pointed 1-dissections:

F
(k)
i (x) = Xi −Xi−1 with Xi = X∞

(1−X i)(1−X i+3)

(1−X i+1)(1−X i+2)
,

where X + 1
X

+ 1 = 1
xX 2
∞

and X∞ = 1 + 3xX 2
∞. We want to extend this

result to other families, namely those of simple and irreducible k-symmetric
dissections, respectively denoted by G(k) and H(k).

To compute G
(k)
i (which is the series of Gi, the family of quasi-simple

pointed 1-dissections with radius i), we proceed by substitution (an equiva-
lent approach formulated on some labelled trees is discussed in [2]). We map
each element of Fi to an element of Gi, by collapsing each 2-cycle not strictly
enclosing its pointed vertex into a single edge. Radius does not change be-
cause there is no way of shortening distances by travelling inside a 2-cycle
not enclosing u. Conversely each element of Fi is uniquely obtained from an
element of Gi – with n inner faces – by substituting some of its 2n + 1 edges



by rooted 1-dissections. We obtain

F
(k)
i (x) =

∑
n>1

[yn]G
(k)
i (y) xn (1 + f(x))2n+1 = (1 + f(x)) G

(k)
i

(
x(1 + f(x))2

)
,

where f(x) is the series of rooted quadrangulations according to the number of
faces, which is well known to be algebraic and to satisfy 1+f(x) = X∞−xX 3

∞.
Under the change of variables y = x(1 + f(x))2, we define

Y∞(y) :=
X∞(x)

1 + f(x)
, Y (y) := X(x) and Yi(y) :=

Xi(x)

1 + f(x)
.

Then it is easily checked that Y∞ = 1 + yY 3
∞ (see [10,2]), xX 2

∞ = yY 2
∞,

Y +
1

Y
+ 1 =

1

yY 2
∞

, Yi = Y∞
(1− Y i)(1− Y i+3)

(1− Y i+1)(1− Y i+2)
,

and that for any k, G
(k)
i (y) = Yi − Yi−1.

We now use a substitution approach at faces (instead of edges) to get an

expression for H
(k)
i (z) for k > 2 and i > 0. This time cases k = 2 and

k > 2 differ; we start with k > 2 which is simpler. By Lemma 2.1, H
(k)
i is

the family of pointed 1-dissections where the 2-cycles and non-facial 4-cycles
strictly enclose the pointed vertex u; we call such pointed dissections quasi-
irreducible. The core of γ ∈ Gi is obtained by emptying each maximal (for
the enclosed area) 4-cycle of γ not strictly enclosing u; this yields a quasi-
irreducible 1-dissection with radius i (because there is no way of shortening
this distance by travelling inside a 4-cycle not enclosing u). Conversely each

element of Gi is uniquely obtained from an element of H
(k)
i where at each face

a rooted simple quadrangulation is patched. For k > 3 and i > 0, we obtain

G
(k)
i (y) = H

(k)
i (g(y)),

where g(y) is the series of rooted simple quadrangulations according to the
number of inner faces, which is algebraic and satisfies g(y) = −Y 2

∞ + 3Y∞− 2.
Under the change of variables z = g(y), let Z∞(z) := Y∞(y), Z(z) := Y (y)
and Zi(z) := Yi(y). It is easily checked that Z∞(z) = 1 + z + (Z∞ − 1)2

(see [10]), yY 2
∞ = 1− 1/Z∞. Hence we obtain for k > 3 and i > 0:

Z+
1

Z
=

1

Z∞ − 1
, Zi = Z∞

(1− Zi)(1− Zi+3)

(1− Zi+1)(1− Zi+2)
and H

(k)
i (z) = Zi−Zi−1.



For i > 0, by Lemma 2.1, H
(2)
i is the family of pointed 1-dissections where

the unique 2-cycle is the outer boundary and where non-facial 4-cycles strictly
enclose the pointed vertex u. These dissections are the cores of pointed 1-
dissections with radius i and where the unique 2-cycle is the outer boundary.
From Bouttier and Guitter [2], we get (δi,j is the Kronecker symbol):

H
(2)
i (z) = δi,1 − [ui−1]

1∑
i>0(Zi+1Zi − ZiZi−1)ui−1

.

Acknowledgement: We thank Alin Bostan for showing us how to solve directly (1).

References

[1] Bouttier, J., P. Di Francesco and E. Guitter, Geodesic distance in planar graphs,
Nucl. Phys. B663 (2003), pp. 535–567.

[2] Bouttier, J. and E. Guitter, Distance statistics in quadrangulations with no
multiple edges and the geometry of minbus, J. Phys. A 43 (2010), pp. 313–341.
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