
Planar Graphs, via Well-Orderly Maps and TreesNiolas Bonihon1, Cyril Gavoille1, Niolas Hanusse1, Dominique Poulalhon2, GillesShae�er31 Laboratoire Bordelais de Reherhe en Informatique, Universit�e Bordeaux I, Frane fbonihon,gavoille, hanusseg�labri.fr2 Laboratoire d'Informatique Algorithmique, Fondements et Appliations (LIAFA) ase 7014, 2,plae Jussieu, 75251 Paris Cedex 05, Frane poulalhon�liafa.jussieu.fr3 Laboratoire d'Informatique de l' �Eole Polytehnique (LIX) �Eole polytehnique, 91128Palaiseau Cedex, Frane gilles.shae�er�lix.polytehnique.frAbstrat The family of well-orderly maps is a family of planar maps with the property thatevery onneted planar graph has at least one plane embedding whih is a well-orderly map. Weshow that the number of well-orderly maps with n nodes is at most 2�n+O(log n), where � � 4:91.A diret onsequene of this is a new upper bound on the number p(n) of unlabeled planar graphswith n nodes, log2 p(n) 6 4:91n.The result is then used to show that asymptotially almost all (labeled or unlabeled), (on-neted or not) planar graphs with n nodes have between 1:85n and 2:44n edges.Finally we obtain as an outome of our ombinatorial analysis an expliit linear-time enodingalgorithm for unlabeled planar graphs using, in the worst-ase, a rate of 4:91 bits per node andof 2:82 bits per edge.Key words. planar graph, triangulation, realizer, well-orderly1. IntrodutionCounting the number of (non-isomorphi) planar graphs with n nodes is a well-knownlong-standing unsolved graph-enumeration problem (f. [LW87℄). There is no known losedformula or asymptoti estimate for the number of unlabeled planar graphs.There are only upper and lower bounds on the growth rate of the sequene of num-bers p(n) of unlabeled planar graphs with n nodes. This growth rate, de�ned as � =limn!1 p(n)1=n, urrently ranges between 27.2268 and 32.1556 (a superadditivity argu-ment shows that suh a limit exists [DVW96,MSW05℄).The lower bound on � omes from asymptotis on the number of labeled planar graphs.This asymptoti is of the form n!�n+o(n) [DVW96,MSW05℄, and a non trivial estimation of� has been given in [OPT03℄. Reently [GN℄ ompletely determined � and gave a preiseestimation of it: � � 27:2268777685. The upper bound on �, due to [BGH03℄, omesfrom a suint enoding of planar graphs. More preisely, after a suitable embedding and



2 Niolas Bonihon et al.triangulation of the planar graph, it is shown that suh embeddings an be represented bya binary string of length at most 5:007n bits. Suh a representation implies that p(n) 625:007n � (32:1556)n.Tehnially, enumerating unlabeled graphs is more diÆult than ounting the labeledversion. And, as pointed out in [BGW02℄, almost all labeled 2- and 1-onneted planargraphs have exponentially large automorphism groups. In other words, Wright's Theo-rem [Wri71℄ does not hold for random planar graphs; the asymptoti number of labeledand unlabeled planar graphs di�er in more than the n! fator, i.e., � < �. So, an asymptotion the number of labeled planar graphs would not give a sharp lower bound on the growthrate of p(n). The situation with respet of the upper bound is not better. A planar graphan be embedded in many ways, and to reover the graph from a suitable triangulationrequires a deep understanding of plane triangulations, in partiular their enumeration withrespet to several parameters depending on the input graph.Besides the pure ombinatorial aspet, the \enoding" approah is also relevant in Com-puter Siene where a lot of attention is given to the eÆient representation of disreteobjets. At least two �elds of appliation of high interest are onerned with suint planargraph representation: Computer Graphis [KADS02,KR99,Ros99℄ and Networking [FJ89,GH99,Lu02,Tho01℄.1.1. Related WorksObviously, without a sharp asymptoti formula, properties and behavior of large randomobjets annot be desribed preisely. For lak of an adequate model, very little is knownabout random planar graphs. However, random generation of planar graphs has been in-vestigated in the last deade.Using a simple Markov hain, Denis et al. [DVW96℄ showed that, experimentally, randomlabeled planar graphs have 2n edges. In fat, Bodirsky et al. [BGK03℄ have designed the �rstpolynomial-time (uniform) random generator of labeled planar graphs. Although limitedin their experiments (mainly by the time omplexity of this algorithm), they showed thatatually the number of edges in a random labeled planar graph is more than 2n. The bestproved bounds on the number of edges in a random labeled planar graph were 1:85n [GM02℄and 2:54n [BGH03℄; for the unlabeled ase these bounds are 1:70n and 2:54n [BGH03℄. Veryreently Gim�enez and Noy [GN℄ showed that the number of edges in random labeled planargraphs is asymptotially normal with linear mean (� 2:21n) and variane.Suint representation of n-node m-edge planar graphs has a long history.Tur�an [Tur84℄ pioneered a 4m-bit enoding that has been improved later by Keeler andWestbrook [KW95℄ to 3:58m. Munro and Raman [MR97℄ then proposed a 2m + 8n bitenoding based on the 4-page embedding of planar graphs (see [Yan89℄). In a series ofartiles, Lu et al. [CLL01,CGH+98℄ re�ned the oding to 4m=3 + 5n thanks to orderlyspanning trees, a generalization of Shnyder's trees [Sh90℄.



Planar Graphs, via Well-Orderly Maps and Trees 31.2. Our ResultsAny planar embedding of an n-node planar graph an be seen as a subgraph of an n-nodetriangulation of the plane. Given a triangulation and a set of edges to be kept (or removed),a planar map and the orresponding graph an be onstruted. The onverse is false ingeneral. There is no known method to uniquely assoiate a triangulation to a planar graph.However, in [BGH03℄, a linear-time algorithm is given to onstrut a triangulation of theplane in a anonial way for any planar graph, one given a planar embedding. The readershould keep in mind that there is a-priori no unique embedding of a planar graph. Some pla-nar embeddings have interesting graph properties based on the Shnyder's partition [Sh90℄of triangulations into trees. A new lass of planar embeddings is proposed in [BGH03℄: thewell-orderly maps, a more restritive version of the orderly maps of Chuang et al. [CLL01℄.The two main properties of well-orderly maps that an be exploited for graph oding are:1) every planar graph admits suh an embedding, and 2) given a well-orderly map, we anuniquely assoiate a triangulation.The main result of this paper is to give a good approximation for the number of well-orderly maps. As a by-produt, it gives a new upper bound on the number of planar graphs:p(n) 6 30:061n. More interestingly, the ombinatorial analysis enables us to give an expliitoding of suh maps (and thus of planar graphs) as a funtion of n and m, the numberof edges: log2(30:061) � 4:91 bits per node or 2:82 bits per edge (learly, 2:82m bits isalways smaller than 4m=3+ 5n bits beause, for any onneted planar graph with at least3 verties, m 6 3n � 6). A new bound on the number of edges of a random unlabeledplanar graph is presented as well.The paper is organized as follows. We desribe in Setion 2 the relationships betweenwell-orderly maps, super-triangulations and Shnyder's trees, also alled realizers. Thenew oding is presented in Setion 3, and in Setion 4 the appliations to the number ofunlabeled planar graphs and to the number of edges in random planar graphs are given.Another appliation of our results is an upper bound on the minimal grid area of a randomtriangulation of the plane. We show that plane triangulations an be drawn on grids ofdimensions at most 78n� 78n using straightlines and 1116n� 56n using polylines.2. Enoding Planar Graphs with Minimal RealizersIn this setion we ollet some results from [BGH03℄ about planar graphs, well-orderlymaps, super-triangulations and realizers. In the last paragraph, these results are used toprove a new representation theorem.2.1. Planar Graphs and Well-Orderly MapsA planar map (or plane graph) is an embedding of a onneted planar graph on the planeso that edges meet only at their endpoints. When the plane is ut along the edges, theremaining onneted omponents are alled the faes. Apart from the unbounded ompo-nent, all these faes are homeomorphi to diss. A planar map is rooted if one of its edges



4 Niolas Bonihon et al.is distinguished and oriented. This determines a root edge, a root node (its origin) and aroot fae (to its left), also alled the external fae or outerfae. A triangulation of the plane(or a maximal plane graph) is a planar map suh that all the faes are triangles. In thispaper, only simple planar graphs or maps are onsidered.A plane tree is, as usual, a rooted tree (the root is a node) suh that the siblings of anode are linearly ordered. Equivalently, it is a planar map with one fae. Among the nodesof a tree, we distinguish the root, the inner nodes and the leaves. A spanning tree of aplanar map is a subset of its edges that forms a tree onneting all its nodes.Let T be a rooted spanning tree of a planar map H, and let v1; : : : ; vn be the lokwisepreordering of the nodes in T . Two nodes are unrelated if neither of them is an anestorof the other in T . An edge of H is unrelated if its endpoints are unrelated.A node vi is orderly in H with respet to T if the edges inident to vi in H form thefollowing four (possibly empty) bloks in lokwise order around vi (see Fig. 2(b)):{ BP (vi): the edge inident to the parent of vi in T ;{ B<(vi): edges that are unrelated in T and inident to nodes vj with j < i;{ BC(vi): edges that are inident to the hildren of vi in T ; and{ B>(vi): edges that are unrelated in T and inident to nodes vj with j > i.A node vi is well-orderly if it is orderly and if the lokwise �rst edge (vi; vj) 2 B>(vi), ifit exists, has the property that the parent of vj is an anestor of vi.A rooted spanning tree T of H is a well-orderly tree of H if all the nodes of T arewell-orderly in H with respet to T . A planar map H is a well-orderly map with root v ifit ontains a well-orderly tree with root v. Observe that a well-orderly tree is neessarilyspanning.Theorem 1. ([BGH03℄) Let G be a onneted planar graph, and let v be any node ofG. Then G admits a map, omputable in linear time, that is a well-orderly map of root v.Moreover, a well-orderly map of root v has a unique well-orderly tree of root v, whih analso be omputed in linear time.In Fig. 1 two orderly trees T 0 span the same triangulation but only one is the well-orderlytree.Observe that by de�nition of well-orderly nodes, an edge of H whih is related withrespet to a well-orderly tree T (i.e. one endpoint is a desendant of the other one in T )must belong to the tree T : indeed all edges are either unrelated or onnet a node to itsfather. In partiular all the edges inident in H to the root of T are in T .2.2. Minimal Realizers and Super-TriangulationsA realizer of a triangulation is a partition of its interior edges (the edges that do not lieon the external fae) into three sets T0, T1, T2 of direted edges suh that the followingonditions hold for eah interior node v (see Fig. 2(a)):{ the lokwise order of the edges inident with v is: leaving in T0, entering in T1, leavingin T2, entering in T0, leaving in T1 and entering in T2;
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Figure 1. Two realizers for a triangulation. The tree T 0 rooted in r0 (the tree with bold edgesaugmented with the edges (r0; r1) and (r0; r2)) is well-orderly in (b), but only orderly in (a) sinenode v is not well-orderly
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Figure 2. Relationship between realizer and orderly tree: (a) edge-orientation rule around a nodefor a realizer, and (b) bloks ordering around an orderly node{ there is exatly one leaving edge inident with v in eah of the sets T0, T1, and T2.Hereafter, when R = (T0; T1; T2) is a realizer, R also denotes the underlying triangulation.The edges of a tree Ti are given the olor i for i = 0; 1; 2.Observe that if (T0; T1; T2) is a realizer, then (T1; T2; T0) and (T2; T0; T1) are also realizers.This yli permutation of the three sets of edges does not in general provide all the distintrealizers of a given triangulation. Fig. 1 depits two realizers for the same triangulation.Atually, the number of n-node realizers is asymptotially 24n+O(logn) (f. [Bon02℄),whereas the number of triangulations is only (256=27)n+O(logn) (f. [Tut62℄).Shnyder showed in [Sh90℄ that if (T1; T2; T3) is a realizer then eah set Ti indues atree rooted in one node of the external fae and spanning all interior nodes. Moreover, foreah Ti, we denote by T i the tree omposed of Ti augmented with the two edges of the



6 Niolas Bonihon et al.external fae inident to the root of Ti. For every non-root node u 2 Ti, we denote by pi(u)the parent of u in Ti.A realizer S = (T0; T1; T2) is a super-triangulation of a graph G if:1. V (S) = V (G) and E(G) � E(S);2. E(T0) � E(G);3. T 0 is a well-orderly tree of S; and4. for every inner node v of T2, (v; p1(v)) 2 E(G).
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Figure 3. (a) A planar graph G with an embedding whih is not well-orderly. An easy way to seethat it is not a well-orderly is to observe that the edges (v1; v2); (v1; v3); (v1; v4); (v2; v6) must bein any spanning tree of G rooted at v1 suh that G has only parent edges and unrelated edges. Insuh trees, v2 is learly not an orderly node. (b) A well-orderly map of G. () A super-triangulationof G (dotted edges are not in G)Lemma 1. ([BGH03℄) Let H be a well-orderly map, and T its unique well-orderly treeof root r0. Assume that T has at least two leaves. Let r2 and r1 be the lokwise �rst andlast leaves of T respetively. Then, there is a unique super-triangulation (T0; T1; T2) of the



Planar Graphs, via Well-Orderly Maps and Trees 7underlying graph of H preserving the embedding H, and suh that eah Ti has root ri.Moreover, T0 = T n fr1; r2g and the super-triangulation is omputable in linear time.There is an alternative haraterization of super-triangulation in terms of minimal re-alizers. A w-triangle (or lokwise triangle), is a triple of nodes (u; v; w) (not neessarilyorresponding to a fae) of a realizer suh that p2(u) = v, p1(v) = w, and p0(w) = u. Aminimal realizer is a realizer that does not ontain any lokwise triangle. In the realizerdepited in Fig. 1(a), (u; v; w) forms a w-triangle, whereas the realizer of Fig. 1(b) has now-triangle.Lemma 2. ([BGH03℄) Let S = (T0; T1; T2) be any realizer. The following statements areequivalent:1. S is a super-triangulation for some graph G.2. S is a minimal realizer.3. The tree T i is well-orderly in S, for every i 2 f0; 1; 2g.2.3. Results of the PaperTheorem 2. (Coding version [BGH03℄) The following enoding sequene holds:{ Any onneted planar graph an be embedded as a well-orderly map.{ Any well-orderly map an be represented as a minimal realizer (T1; T2; T3) with a subsetof marked edges eah of whih is either in T2 or is an edge (u; v) of T1 suh that u is aleaf of T1.Our �rst new result in this paper is that in fat the seond enoding is almost tight.Theorem 3. (Counting version) Let Hn (resp. Hn;m) denote the set of well-orderly mapswith n nodes (resp. with n nodes and m edges), and Rn;` denote the set of minimal realizers(T0; T1; T2) with n nodes and l leaves in T2. Then18 n�3X̀=1 jRn;`j2n+` 6 jHnj 6 n�3X̀=1 jRn;`j2n+`;18 n�3X`=maxf1;2n�m�6g jRn;`j� n+ `m� 2n + 6 + `� 6 jHn;mj 6 n�3X`=maxf1;2n�m�6g jRn;`j� n+ `m� 2n+ 6 + `�:Proof (Theorem 3) . Let S = (T0; T1; T2) be an element of Rn;`, and G be a onnetedplanar graph suh that S is a super-triangulation of G i.e. E(T0) � E(G). The numberof edges of a triangulation with n nodes is 3n � 6. Among the 3n � 6 edges of S, thereare (n � 3) edges that belong to T0 and n � 3� ` edges (v; p1(v)) suh that v is an innernode of T2 (reall that Ti does not ontain the roots of Tj 6=i). All these edges belong alsoto G (see the de�nition of super-triangulations). In S there are n+ ` other edges; so thereare at most 2n+` subgraphs of S satisfying the previous onditions and � n+`m�2n+6+`� m-edge



8 Niolas Bonihon et al.subgraphs of S also satisfying the previous onditions. This inequality implies the upperbounds.Sine a well-orderly map admits a unique super-triangulation (see Lemma 1), the lowerbounds in Theorem 3 will follow one we prove that for eah realizer S 2 Rn;l, the numberof well-orderly maps that admit S as a super-triangulation is at least 2n+`�3, among whih� n+`m�2n+6+`� have m edges. LetE 0 = E(S) n �E(T 0) [ f(v; p1(v)) j v is an inner node of T2g [ f(r1; r2)g�Sine the ardinality of E 0 is (3n � 6) � (n � 1) � (n � 3 � `) � 1 = n + ` � 3, it issuÆient to prove that by removing any subset of edges of E 0 we obtain a di�erent well-orderly map. First we observe that by removing di�erent subsets of edges, we learly obtaindi�erent maps sine the spanning tree T0 is always kept. It remains to hek the well-orderlyondition.Sine S is a well-orderly map, the property is true when no edges are removed. Let usassume that the submap G1 of S obtained by removing some edges of E 0 is well-orderlyand onsider the submap G2 obtained by removing one more edge (u; v) 2 E 0. In G1, T 0 isa well orderly tree, and (u; v) is unrelated edge with respet to T 0, so that T 0 is an orderlyspanning tree of G2. It remains to hek that u and v are well-orderly. We distinguish twoases:{ (u; v) 2 T2: node v was an inner node of the tree T2 in G1, hene the edge e0 = (v; p1(v))belongs to G1 and to G2. Sine the edge e0 is the lokwise �rst edge of B>(v) and thenode p0(p1(v)) is still an anestor of v in T0, v is well-orderly. As for the node u, sineno edge of the blok B>(u) has hanged between G1 and G2, u is still well-orderly.{ (u; v) 2 T1: this implies that u is a leaf of the tree T2 in G1 and in G2. It follows thatB>(u) = f(u; v)g in G1 and B>(u) = ? in G2. By de�nition, u (and also T 0, sineB>(v) is the same in G1 as in G2) is well-orderly.3. Counting and Coding TreesIn this setion we briey reall a result from [PS03℄ about minimal realizers and planetrees. An enoding of well-orderly maps follows.3.1. Minimal Realizers and Plane TreesA tree is planted if it is rooted on a leaf. Let Bn be the set of planted plane trees with nnodes and 2n leaves suh that eah node is adjaent to 2 leaves. Given a planted plane treeT in Bn, its anonial orientation shall be toward the root for all inner edges, and towardthe leaf for all dangling edges.A triple (e1; e2; e3) of edges of a map M is an admissible triple if e1 = (v0; v1), e2 =(v1; v2) and e3 = (v2; v3) appear onseutively in the lokwise diretion around the in�nitefae and if v3 is a vertex of degree 1. The loal losure of M at the admissible triple
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Figure 4. On the left, a planted tree of Bn (the root is indiated by a square). Then from leftto right, the partial losure of the tree
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Figure 5. The struture after a partial losure, and the omplete losure(e1; e2; e3) is obtained by fusing the leaf v3 on node v0 so as to reate triangular fae.Observe that by onstrution the orientation of the dangling edge prevents the formationof w-triangles.The loal losure of a tree T of Bn is the map obtained by performing iteratively theloal losure of any available admissible triple in a greedy way. As shown in [PS03℄, theloal losure is well de�ned independently of the order of loal losures. Moreover all thebounded faes of the resulting map are triangular and the outer fae has the strutureshown on Fig. 5 (a). In partiular there are exatly two anonial dangling edges in thein�nite fae that are immediately followed by dangling edges in the lokwise diretionaround the in�nite fae. A tree T is balaned if its root is one of the two anonial leaves.Finally, the omplete losure of a balaned tree T is the map obtained from the partiallosure of T by fusing eah remaining non-anonial leaf with following anonial leaf inthe lokwise diretion and adding a root edge, as illustrated by Fig. 5 (b).Theorem 4. ([PS03℄) Complete losure is one-to-one orrespondene between balanedtrees with n�2 and triangulations with n nodes. Moreover, the orientation of inner edges ofthe triangulation that is indued by the tree orresponds, via the oloration rule of Fig. 2(a)to a minimal realizer of the triangulation.



10 Niolas Bonihon et al.Observe that the olor of the edges an be dedued from their orientation diretly on thebalaned tree from the appliation of the rule of Fig. 2(a).The following new lemma will serve to predit the entering edges reated by ompletelosure at a node.Lemma 3. Let v be an inner node of a balaned tree B. Let e1 = (v; u) and e2 = (v; w) betwo onseutive edges around v in lokwise order. During the losure algorithm, no edgeswill be inserted between e1 and e2 if and only if:(a) w is a leaf of B, or(b) w is an inner node of B and the node t suh that the edge e3 = (w; t) is the nextedge around w after e2 in lokwise order is a leaf of B.Proof . Let v an inner node of a balaned tree B. Let us onsider two onseutive edges(v; u), (v; w) around v in lokwise order. If w is a leaf, then during the losure it willmerge with a node w0 and lose a triangular fae enlosing the orner between (v; u) and(v; w). No other edge an thus arrive at this orner. Assume now that w is an inner nodeof B. Let (w; t) be the next edge around w in lokwise order. If t is a leaf of B then it willmerge with u to form a triangular fae and again no edge an arrive in the orner between(v; u) and (v; w). In the other ases, (v; w) is an inner edge followed by another inner edge(w; t). Sine an edge that forming a triangular fae that enloses the orner between (v; u)and (v; w) must from w, the orner is not enlosed. But at the end of the partial losure,there are no more pairs of onseutive inner edges: some edge must have arrived in theorner.Lemma 4. Let R = (T0; T1; T2) be the minimal realizer enoded by a balaned tree B. Anode v of B is a leaf of T2 if and only if v has no inoming edge olored 2 in B and,1. the parent edge of v in B is olored 2, or2. the parent edge of v in B is olored 1, or3. the parent edge of v in B is olored 0 and v is the last hild with an edge olored 0 inlokwise order around PB(v) and(a) the parent edge of PB(v) is olored 0, or(b) the parent edge of PB(v) is olored 2.The number of verties of B satisfying these onditions is denoted `(B).Proof . For the node v to be a leaf in T2, it must have no inoming edge of olor 2 in B,and no edge must be inserted between its outgoing edges of olor 0 and 1. When the parentedge of v has olor 2 or 1, the outgoing edge of olor 0 onnets to a leaf and Case (a) ofthe previous lemma ensures that no edge arrives between this outgoing edge of olor 0 andthe outgoing edge of olor 1. When the parent edge of v has olor 0, if the next edge inlokwise order around the parent PB(v) of v in B is an outgoing edge (of olor 1), thenCase (b) of the previous lemma ensures that no edge of olor 2 arrives.Finally we need to hek in the remaining ases that an inoming edge of olor 2 indeedarrives between the two outgoing edges of olor 0 and 1. This ould happen if the ornerwe onsider was part of the unbounded fae after the partial losure. But in the remaining



Planar Graphs, via Well-Orderly Maps and Trees 11ases, both the edge (v; PB(v)) and the next edge in lokwise order around PB(v) areinoming. Sine the form of the boundary after partial losure prohibits two onseutiveinoming edges, the proof of the lemma is omplete.From Lemma 4 and Theorem 2, we obtain:Theorem 5. Any well-orderly map with n nodes an be oded by a pair (B;W ) where B isbalaned tree of Bn�2 and W a bit string of length n + `(B). Enoding and deoding takeslinear time.3.2. A Context-Free Grammar for Colored TreesWe shall now give a reursive deomposition of trees in whih the parameter ` of Lemma 4an be followed.To do this we onsider the three sets Fi, for i = 0; 1; 2 of trees with a root edge of olori. To a tree T of Fi, i = 1; 2, we assoiate the parameter k(T ) = `(T ). To a tree T of F0 weassoiate the parameter k(T ) de�ned as `(T ) exept for the root node whih ontributesto k(T ) if it has no inoming edge of olor 2, and a seond parameter k0(T ) de�ned as `(T )exept for the root node whih never ontributes.The deomposition is obtained, lassially, at the root node: a tree with root edge ofolor 0 onsists of a root node that arries, in lokwise order, a sequene of subtrees of rootolor 1, an outgoing edge of olor 2, a sequene of subtrees of root olor 0, an outgoing edgeof olor 1, and a sequene of subtrees of root olor 2. The parameter ` is almost additiveon subtrees. However, due to Rule 3 in Lemma 4, the root of a subtree with root edge ofolor 0 may or may not be suseptible to ontribute depending upon how it is attahed.In other terms, depending of how it is attahed, a subtree T 0 with root olor 0 ontributesk(T 0) or k0(T 0).In Fig. 6 the deomposition is pitured shematially: an inoming edge represents atree, a triangle represents a possibly empty sequene of subtrees, and olors orrespondto root olors. For olor 0, plain and dashed lines respetively indiate positions wherethe ontribution is given by parameters k or k0. Finally root nodes that ontribute to theparameters are pitured in a box.3.3. Generating Funtions of Trees and the Asymptoti Number of Well-Orderly MapsThe reader an refer to [GJ83℄ for a general presentation of the enumeration of deompos-able strutures using grammars and generating series.We onsider the generating funtions Fi(z; u) of trees with root olor i, i = 0; 1; 2, withrespet to the number of edges and the parameter k, and F 00(z; u) of trees with root olor0 with respet to the number of edges and the parameter k0:Fi � Fi(z; u) = XT2Fi zjT juk(T ) and F 00 � F 00(z; u) = XT2F0 zjT juk0(T ):
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+ +Figure 6. A deomposition of olored trees allowing to trak the ontributions to `Reall that with respet to additive parameters, the generating funtion of a possibly emptysequene of elements of a set S is the quasi-inverse 1=(1�f) of the generating funtion f ofS. Therefore the previous deomposition translates into the following system of equations:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
F0 = z �1 + F 001�F0�(1� F1)(1� F2) ;F 00 = z �u+ F21�F2��1 + F 001�F0�1� F1F1 = z �u+ F21�F2�(1� F1)(1� F0) ;F2 = z �u+ F21�F2��1 + F 001�F0�1� F1 ;

or 8>>>>>>>>><>>>>>>>>>:
F0 = z �1 + F21�F0�(1� F1)(1� F2) ;F1 = z �u+ F21�F2�(1� F1)(1� F0) ;F2 = z �u+ F21�F2��1 + F21�F0�1� F1 ;where the observation that F 00(z; u) = F2(z; u) in the left hand side system yields the righthand side one. This system of equations ompletely de�nes the generating series F0(z; u).Algebrai elimination (see [FS, Appendix B1℄) in this system leads immediately (using aomputer algebra software) to an algebrai equation �0(z; u; F0(z; u)) = 0 of degree 4 forF0(z; u).We are partiularly interested in speialization of this equation to the ase u = 2, sinethe oeÆient fn of zn in F (z) = F0(z; 2) = XT2F0 zjT j2`(T );



Planar Graphs, via Well-Orderly Maps and Trees 13ounts n-node trees weighted by 2`(u), and thus overounts n-nodes balaned trees withthe same weight. Aording to Theorem 3, upon multiplying by 2n, this yields an upperbound on the number of well-orderly maps with n nodes.From elementary omplex analysis, we have that log fn � log(��n), where � is the radiusof onvergene of the series F (z) =Pn fnzn. Applying the impliit funtion theorem (see[FS, Appendix B4℄) to the (algebrai) equation �(z; F (z)) = 0 de�ning F (z), we anompute its radius of onvergene by means of the roots of ���F , and �nally obtain:� = (q189 + 114p3� 6p3� 9)=4 � 15:0306:From Theorem 5 we obtain:Theorem 6. The number of well-orderly maps with n nodes satis�es1n log2 jHnj 6 1 + log2 1=�+ o(1) � 4:9098:3.4. A Code for Colored TreesLet S be a binary string. We denote by #S the number of binary strings having the samelength and the same number of 1's as S. More preisely, if S is of length x and has y 1's,then we set #S := �xy�. The following lemma is proved in [BGH02℄.Lemma 5. Any binary string S of length n an be oded into a binary string of lengthlog2(#S) + o(n). Moreover, knowing n, oding and deoding S an be done in linear time,assuming a RAM model of omputation on 
(logn) bit words.Lemma 6. Let B be a balaned tree suh that the orresponding realizer R = (T0; T1; T2)has i2 inner nodes in the tree T2. The balaned tree B an be enoded with 5 binary stringsS1; S2; S3; S4 and S5 and 4 integers a0; a00; a1; i2 6 n suh that:#S1 = �n�a0i2�a0�, #S2 = �n�a1a00 �, #S3 = �n+a1a1 �, #S4 = �a1+a0+a00a0 � and #S5 = � n�a1�a00n�a1�a00�i2�.Proof . Let B be a olored balaned tree. We partition the nodes of B in the followingway:{ A1: the set of nodes v suh that the edge (v; PB(v)) is olored 1.{ A2: the set of nodes v suh that the edge (v; PB(v)) is olored 2.{ A00: the set of nodes v and suh that the edge (PB(v); PB(PB(v)) is olored either 0 or 2,and suh that v is the last hild in lokwise order with the edge (v; PB(v)) is olored 0.{ A0: the set of nodes that are not in the previous sets.Note that the root of B is in A0 and for every node v of A0, the edge (v; PB(v)) is olored0. If we onsider the grammar of the Fig. 6, the set A00 orresponds to the nodes that havebeen generated with the \dashed-line" rules. Let a0 (resp. a00; a1; a2; i2) be the number ofnodes of A0 (resp. A00; A1; A2; I2). Assume that we are oding the balaned tree B. Theonly information we need, for eah node in the pre�x lokwise order, is its number of



14 Niolas Bonihon et al.hildren in A0, in A00, in A1 and in A2. In order to enode eÆiently a well-orderly map,we need to introdue another parameter in our enoding. Let I2 be the set of nodes of Bthat will be inner nodes in the tree T2 of the orresponding realizer R = (T0; T1; T2).We give some preliminary remarks:1. Nodes of A1 an not have hildren in A00.2. Every node of A0SA00SA2 has at most one hild in A00.3. A0 � I2 (see Lemma 4).4. Every node of A00SA1SA2 whih is also in I2 has at least one hild in A2 (see Lemma 4).5. Every node of V nA1 an have hildren in A0 only if it has a hild in A00.6. Only nodes of I2 an have hildren in T2.To enode the balaned tree, we will build 5 binary strings. With these strings we willdetermine, for eah node, its number of hildren in eah subset.In the �rst string, S1, tells whih node belongs to I2. Sine all the nodes of A0 are inI2 (see remark 3), S1 stores the information for all the other nodes. So for eah node ofV nA0, the orresponding bit is set to 1 if the node belongs to I2 and is set to 0 otherwise.Hene the string S1 ontains n� a0 bits and i2 � a0 1's.The seond string S2, is used to determine whether or not a node has a hild in A00.Sine all the nodes of A1 have a hild in A00 (see remark 1), S2 stores this information forall the other nodes: the orresponding bit is set to 1 if the node has one hild in A00 and to0 otherwise. Hene the string S2 ontains n� a1 bits and a00 1's.The string S3 stores, for eah node, its number of hildren in A1 in a \Lukasiewiz" way.For eah v node of B in the pre�x lokwise order, we append to S3 as many 1's as thenumber of hildren of v in A1 and then we insert a 0. Hene the string S3 ontains n+ a1bits and a1 1's.The string S4 stores the number of hildren in A0. This information has to be storedfor eah node of A1 and for eah node that has a hild in A00 (see remark 5). So for eahof these nodes, we proeed as for the string S3. Hene the string S4 ontains a1 + a00 + a0bits and a0 1's.The string S5 helps to determine the number of hildren in A2. We only need to storethis information for the nodes of I2 (see remark 6). Moreover, for these nodes that are inA0SA00SA2, we already know that they have at least one hild in A2; so we only need toount the other 1's. So for eah of these nodes, we proeed as for the strings S3 and S4. Weobtain a string i2+(a2� (i2� a0)) = n� a1� a00 bits with a2� (i2� a0) = n� a1� a00� i21's.Lemma 7. Let H be a well-orderly map with n nodes and m edges. H an be enoded with6 binary strings (5 for the minimal realizer and a last one to store the missing edges) and4 integers a0; a1; a00; i2 2 [0; n℄ suh that: #S1 = �n�a0i2�a0�, #S2 = �n�a1a00 �, #S3 = �n+a1a1 �,#S4 = �a1+a0+a00a0 � , #S5 = � n�a1�a00n�a1�a00�i2�, #S6 = � 2n�i2m�n�i2�.Proof . With S1 � S5 a minimal realizer is enoded (Lemma 6). The last string indiatesthe edges to delete in order to rebuild the well-orderly map: for eah v, one bit is used to



Planar Graphs, via Well-Orderly Maps and Trees 15indiate if the edge (v; p2(v)) has to be removed and for eah leaf v of T2, one bit is usedto indiate if the edge (v; p1(v)) has to be removed.4. AppliationsIn view of Theorems 2 and 6, the number of onneted planar graphs is at most 24:9098n.As shown in [BGH03℄, the numbers of onneted and general planar graphs di�er by atmost a polynomial fator in n.Theorem 7. The number p(n) of unlabeled planar graphs on n nodes satis�es, for every nlarge enough: log2 p(n) 6 �n+O(logn) with � � 4:9098.This result is ompleted by the lower bound log2 p(n) > �n + O(logn), with � � 4:767oming from asymptotis of labeled planar graphs [GN℄.The length of the oding of well-orderly map depends of the number of the edges of thewell-orderly map.The following two results are obtained from the analysis of the length of the ode ofLemma 7. The length of this ode depends on the number of edges of the well-orderly map(see Fig. 7).
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 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3Figure 7. (a) Number of bits neessary to enode a well-orderly map with m = �n edges, where1 6 � 6 3. (b) Coding analysis: Number of bits per edges of a well-orderly map with m = �nedges, where 1 6 � 6 3Theorem 8. Every onneted planar graph with n nodes and m edges an be enoded inlinear time with at most 4:91n+ o(n) bits or 2:82m+ o(m) bits.Proof . Combining Theorem 2 and Lemma 7, we obtain an expliit oding with at mostW = W (n;m) = log2(#S1) + log2(#S2) + log2(#S3) + log2(#S4) log2(#S5) + log2(#S6) +O(log(n)) bits where S1; :::; S6 are given in Lemma 7. Thanks to Lemma 5 we an enodein linear time a planar graph with W + o(n) bits, whih is W + o(n) bits or W + o(m)



16 Niolas Bonihon et al.bits (sine G is onneted, we have n � 1 6 m 6 3n � 6 and so logn = logm + O(1)).Analyzing the maximum length of the odes (over all parameters a0; a1; :::; i2 and m or n),we obtain that W 6 4; 91n+ o(n) or W 6 2; 28m+ o(m) (See Fig. 7 (a) and Fig. 7 (b)).Theorem 9. Almost all unlabeled planar graphs on n nodes have at least 1:85n edges andat most 2:44n edges. Moreover, the result holds also for unlabeled onneted planar graphs.Proof (sketh). Our ode an be parameterized with the number of edges. The lengthof the oding is no more than W (m;n) + O(logn) bits. Using a redution from arbitraryplanar graphs to onneted planar graphs, we an apply our upper bound. Combined withthe 4:767n bit lower bound of [GN℄, we derive two numbers �1 = 1:85 and �2 = 2:44 suhthat our representation is below 4:767 (See Fig. 7 (a)).5. The Average Size of Planar DrawingsTheorem 10. The average number of leaves in a tree of a minimal realizer is 5n=8+ o(n)and the average number of 3-olored faes in a minimal realizer is n=8 + o(n).Proof . Using lassial tehniques on generating funtion, we obtain that the averagenumber of leaves of the tree T0 of a minimal realizer is 5n=8 + o(n). By symmetry,this result is learly true for the two other trees of the realizer. Sine for any realizer,`0 + `1 + `2 +� = 2n� 5, where `i is the number of leaves in Ti and � is the number of3-olored faes of the realizer [BLSM02b℄, the seond result follows diretly.In [ZH03℄ a straight-line drawing algorithm based on minimal realizers is presented.This algorithm �rst omputes the minimal realizer of a triangulation of the graph. Thenthe graph is drawn on a grid of dimensions (n � 1 � �) � (n � 1 � �), where � is thenumber of 3-olored faes of the so obtained minimal realizer. Our analysis gives an averageomplexity of suh drawings:Corollary 1. The average grid size required (i.e., the average width and the average height)to draw a triangulation is at most (7n8 + o(n))� (7n8 + o(n)).In [BLSM02a℄ a polyline drawing algorithm also based on minimal realizers is proposed.The graph is then drawn on a grid (n � � 2̀� � 1) � `, where ` is the number of leaves ofthe tree T0 of the obtained minimal realizer R = (T0; T1; T2). Our analysis gives an averageomplexity of suh drawings:Corollary 2. The average grid size required to draw a triangulation is at most (11n16 +o(n))� (5n8 + o(n)).
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