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Abstract The family of well-orderly maps is a family of planar maps with the property that
every connected planar graph has at least one plane embedding which is a well-orderly map. We
show that the number of well-orderly maps with n nodes is at most 207+00087) where a &~ 4.91.
A direct consequence of this is a new upper bound on the number p(n) of unlabeled planar graphs
with n nodes, log, p(n) < 4.91n.

The result is then used to show that asymptotically almost all (labeled or unlabeled), (con-
nected or not) planar graphs with n nodes have between 1.85n and 2.44n edges.

Finally we obtain as an outcome of our combinatorial analysis an explicit linear-time encoding
algorithm for unlabeled planar graphs using, in the worst-case, a rate of 4.91 bits per node and
of 2.82 bits per edge.
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1. Introduction

Counting the number of (non-isomorphic) planar graphs with n nodes is a well-known
long-standing unsolved graph-enumeration problem (cf. [LW87]). There is no known closed
formula or asymptotic estimate for the number of unlabeled planar graphs.

There are only upper and lower bounds on the growth rate of the sequence of num-
bers p(n) of unlabeled planar graphs with n nodes. This growth rate, defined as p =
lim,,_,o p(n)'/", currently ranges between 27.2268 and 32.1556 (a superadditivity argu-
ment shows that such a limit exists [DVW96, MSWO05]).

The lower bound on p comes from asymptotics on the number of labeled planar graphs.
This asymptotic is of the form n!A"*+°™) [DVW96, MSW05], and a non trivial estimation of
A has been given in [OPT03]. Recently [GN] completely determined A and gave a precise
estimation of it: A & 27.2268777685. The upper bound on p, due to [BGHO3], comes
from a succinct encoding of planar graphs. More precisely, after a suitable embedding and
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triangulation of the planar graph, it is shown that such embeddings can be represented by
a binary string of length at most 5.007n bits. Such a representation implies that p(n) <
2500 ~ (32.1556)".

Technically, enumerating unlabeled graphs is more difficult than counting the labeled
version. And, as pointed out in [BGW02], almost all labeled 2- and 1-connected planar
graphs have exponentially large automorphism groups. In other words, Wright’s Theo-
rem [Wri71] does not hold for random planar graphs; the asymptotic number of labeled
and unlabeled planar graphs differ in more than the n! factor, i.e., A\ < u. So, an asymptotic
on the number of labeled planar graphs would not give a sharp lower bound on the growth
rate of p(n). The situation with respect of the upper bound is not better. A planar graph
can be embedded in many ways, and to recover the graph from a suitable triangulation
requires a deep understanding of plane triangulations, in particular their enumeration with
respect to several parameters depending on the input graph.

Besides the pure combinatorial aspect, the “encoding” approach is also relevant in Com-
puter Science where a lot of attention is given to the efficient representation of discrete
objects. At least two fields of application of high interest are concerned with succinct planar
graph representation: Computer Graphics [KADS02, KR99, Ros99] and Networking [FJ89,
GH99,Lu02, ThoO01].

1.1. Related Works

Obviously, without a sharp asymptotic formula, properties and behavior of large random
objects cannot be described precisely. For lack of an adequate model, very little is known
about random planar graphs. However, random generation of planar graphs has been in-
vestigated in the last decade.

Using a simple Markov chain, Denis et al. [DVW96] showed that, experimentally, random
labeled planar graphs have 2n edges. In fact, Bodirsky et al. [BGKO03] have designed the first
polynomial-time (uniform) random generator of labeled planar graphs. Although limited
in their experiments (mainly by the time complexity of this algorithm), they showed that
actually the number of edges in a random labeled planar graph is more than 2n. The best
proved bounds on the number of edges in a random labeled planar graph were 1.85n [GMO02]
and 2.54n [BGHO03]; for the unlabeled case these bounds are 1.70n and 2.54n [BGHO03]. Very
recently Giménez and Noy [GN] showed that the number of edges in random labeled planar
graphs is asymptotically normal with linear mean (& 2.21n) and variance.

Succinct representation of n-node m-edge planar graphs has a long history.
Turdn [Tur84] pioneered a 4m-bit encoding that has been improved later by Keeler and
Westbrook [KW95] to 3.58m. Munro and Raman [MR97] then proposed a 2m + 8n bit
encoding based on the 4-page embedding of planar graphs (see [Yan89]). In a series of
articles, Lu et al. [CLLO1,CGH"98]| refined the coding to 4m/3 + 5n thanks to orderly
spanning trees, a generalization of Schnyder’s trees [Sch90].
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1.2. Our Results

Any planar embedding of an n-node planar graph can be seen as a subgraph of an n-node
triangulation of the plane. Given a triangulation and a set of edges to be kept (or removed),
a planar map and the corresponding graph can be constructed. The converse is false in
general. There is no known method to uniquely associate a triangulation to a planar graph.

However, in [BGHO03], a linear-time algorithm is given to construct a triangulation of the
plane in a canonical way for any planar graph, once given a planar embedding. The reader
should keep in mind that there is a-priori no unique embedding of a planar graph. Some pla-
nar embeddings have interesting graph properties based on the Schnyder’s partition [Sch90]
of triangulations into trees. A new class of planar embeddings is proposed in [BGHO03]: the
well-orderly maps, a more restrictive version of the orderly maps of Chuang et al. [CLLO1].
The two main properties of well-orderly maps that can be exploited for graph coding are:
1) every planar graph admits such an embedding, and 2) given a well-orderly map, we can
uniquely associate a triangulation.

The main result of this paper is to give a good approximation for the number of well-
orderly maps. As a by-product, it gives a new upper bound on the number of planar graphs:
p(n) < 30.061". More interestingly, the combinatorial analysis enables us to give an explicit
coding of such maps (and thus of planar graphs) as a function of n and m, the number
of edges: log,(30.061) ~ 4.91 bits per node or 2.82 bits per edge (clearly, 2.82m bits is
always smaller than 4m/3 + 5n bits because, for any connected planar graph with at least
3 vertices, m < 3n — 6). A new bound on the number of edges of a random unlabeled
planar graph is presented as well.

The paper is organized as follows. We describe in Section 2 the relationships between
well-orderly maps, super-triangulations and Schnyder’s trees, also called realizers. The
new coding is presented in Section 3, and in Section 4 the applications to the number of
unlabeled planar graphs and to the number of edges in random planar graphs are given.
Another application of our results is an upper bound on the minimal grid area of a random
triangulation of the plane. We show that plane triangulations can be drawn on grids of
dimensions at most gn X %n using straightlines and %n X %n using polylines.

2. Encoding Planar Graphs with Minimal Realizers

In this section we collect some results from [BGHO03] about planar graphs, well-orderly
maps, super-triangulations and realizers. In the last paragraph, these results are used to
prove a new representation theorem.

2.1. Planar Graphs and Well-Orderly Maps

A planar map (or plane graph) is an embedding of a connected planar graph on the plane
so that edges meet only at their endpoints. When the plane is cut along the edges, the
remaining connected components are called the faces. Apart from the unbounded compo-
nent, all these faces are homeomorphic to discs. A planar map is rooted if one of its edges
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is distinguished and oriented. This determines a root edge, a root node (its origin) and a
root face (to its left), also called the external face or outerface. A triangulation of the plane
(or a maximal plane graph) is a planar map such that all the faces are triangles. In this
paper, only simple planar graphs or maps are considered.

A plane tree is, as usual, a rooted tree (the root is a node) such that the siblings of a
node are linearly ordered. Equivalently, it is a planar map with one face. Among the nodes
of a tree, we distinguish the root, the inner nodes and the leaves. A spanning tree of a
planar map is a subset of its edges that forms a tree connecting all its nodes.

Let T be a rooted spanning tree of a planar map H, and let vy, ..., v, be the clockwise
preordering of the nodes in 7. Two nodes are unrelated if neither of them is an ancestor
of the other in T'. An edge of H is unrelated if its endpoints are unrelated.

A node v; is orderly in H with respect to T if the edges incident to v; in H form the
following four (possibly empty) blocks in clockwise order around v; (see Fig. 2(b)):

— Bp(v;): the edge incident to the parent of v; in T
— B.(v;): edges that are unrelated in T and incident to nodes v; with j < 3;
— B¢ (v;): edges that are incident to the children of v; in T'; and

— B-(v;): edges that are unrelated in T and incident to nodes v; with j > 3.

A node v; is well-orderly if it is orderly and if the clockwise first edge (v;,v;) € Bs(v;), if
it exists, has the property that the parent of v; is an ancestor of v;.

A rooted spanning tree T of H is a well-orderly tree of H if all the nodes of T are
well-orderly in H with respect to 7. A planar map H is a well-orderly map with root v if
it contains a well-orderly tree with root v. Observe that a well-orderly tree is necessarily
spanning.

Theorem 1. ([BGHO03]) Let G be a connected planar graph, and let v be any node of
G. Then G admits a map, computable in linear time, that is a well-orderly map of root v.
Moreover, a well-orderly map of root v has a unique well-orderly tree of root v, which can
also be computed in linear time.

In Fig. 1 two orderly trees T,y span the same triangulation but only one is the well-orderly
tree.

Observe that by definition of well-orderly nodes, an edge of H which is related with
respect to a well-orderly tree T' (i.e. one endpoint is a descendant of the other one in T)
must belong to the tree T': indeed all edges are either unrelated or connect a node to its
father. In particular all the edges incident in H to the root of T are in T

2.2. Minimal Realizers and Super-Triangulations

A realizer of a triangulation is a partition of its interior edges (the edges that do not lie
on the external face) into three sets Ty, Ty, T of directed edges such that the following
conditions hold for each interior node v (see Fig. 2(a)):

— the clockwise order of the edges incident with v is: leaving in Ty, entering in 7}, leaving
in T5, entering in T}, leaving in 7} and entering in Ty;
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Figure 1. Two realizers for a triangulation. The tree T rooted in 7q (the tree with bold edges
augmented with the edges (rg,71) and (rg,r2)) is well-orderly in (b), but only orderly in (a) since
node v is not well-orderly
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Figure 2. Relationship between realizer and orderly tree: (a) edge-orientation rule around a node
for a realizer, and (b) blocks ordering around an orderly node

— there is exactly one leaving edge incident with v in each of the sets Tg, T}, and Ts.

Hereafter, when R = (Tp, T1,T5) is a realizer, R also denotes the underlying triangulation.
The edges of a tree T; are given the color ¢ for i = 0,1, 2.

Observe that if (Ty, Ty, Ts) is a realizer, then (T}, Ty, Ty) and (T3, Ty, T1) are also realizers.
This cyclic permutation of the three sets of edges does not in general provide all the distinct
realizers of a given triangulation. Fig. 1 depicts two realizers for the same triangulation.

Actually, the number of n-node realizers is asymptotically 2'+00oen) (c¢f. [Bon02]),
whereas the number of triangulations is only (256/27)"t00°e™) (cf. [Tut62]).

Schnyder showed in [Sch90] that if (71, T, T3) is a realizer then each set T; induces a
tree rooted in one node of the external face and spanning all interior nodes. Moreover, for
each T}, we denote by T; the tree composed of T; augmented with the two edges of the
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external face incident to the root of T;. For every non-root node u € T;, we denote by p;(u)
the parent of u in T;.

A realizer S = (Ty, 11, Ty) is a super-triangulation of a graph G if:

V(S) =V(G) and E(G) C E(S);

E(Ty) € E(G);

T, is a well-orderly tree of S; and

for every inner node v of Ty, (v,pi(v)) € E(Q).

=L =

U1

Figure 3. (a) A planar graph G with an embedding which is not well-orderly. An easy way to see
that it is not a well-orderly is to observe that the edges (v1,v9), (v1,v3), (v1,v4), (v2,vg) must be
in any spanning tree of G rooted at v; such that G has only parent edges and unrelated edges. In
such trees, v9 is clearly not an orderly node. (b) A well-orderly map of G. (¢) A super-triangulation
of G (dotted edges are not in G)

Lemma 1. ([BGHO03|) Let H be a well-orderly map, and T its unique well-orderly tree
of root rq. Assume that T has at least two leaves. Let ro and ry be the clockwise first and
last leaves of T respectively. Then, there is a unique super-triangulation (Ty, Ty, Ty) of the
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underlying graph of H preserving the embedding H, and such that each T; has root r;.
Moreover, Ty =T \ {r1,r2} and the super-triangulation is computable in linear time.

There is an alternative characterization of super-triangulation in terms of minimal re-
alizers. A cw-triangle (or clockwise triangle), is a triple of nodes (u,v,w) (not necessarily
corresponding to a face) of a realizer such that py(u) = v, p1(v) = w, and po(w) = u. A
minimal realizer is a realizer that does not contain any clockwise triangle. In the realizer
depicted in Fig. 1(a), (u, v, w) forms a cw-triangle, whereas the realizer of Fig. 1(b) has no
cw-triangle.

Lemma 2. ([BGHO03]) Let S = (Ty,T1,T3) be any realizer. The following statements are
equivalent:

1. S is a super-triangulation for some graph G.
2.5 1s a minimal realizer.
3. The tree T; is well-orderly in S, for every i € {0,1,2}.

2.3. Results of the Paper

Theorem 2. (Coding version [BGHO03]) The following encoding sequence holds:

— Any connected planar graph can be embedded as a well-orderly map.

— Any well-orderly map can be represented as a minimal realizer (Ty, Ty, Ts) with a subset
of marked edges each of which is either in Ty or is an edge (u,v) of Ty such that u is a
leaf of T .

Our first new result in this paper is that in fact the second encoding is almost tight.

Theorem 3. (Counting version) Let H,, (resp. H,, ) denote the set of well-orderly maps
with n nodes (resp. with n nodes and m edges), and R, ; denote the set of minimal realizers
(To, T, Ty) with n nodes and 1 leaves in Ty. Then

n—3 n—3
1
S D Bug2 < HL < Y[R g2
=1 =1
1 3 n+/ 3 n4+/¢
D DRV S TR DR V] SR

{=max{1,2n—m—6} {=max{1,2n—m—6}

Proof (Theorem 3) . Let S = (Ty,T,T>) be an element of R, ,, and G be a connected
planar graph such that S is a super-triangulation of G i.e. E(Ty) C E(G). The number
of edges of a triangulation with n nodes is 3n — 6. Among the 3n — 6 edges of S, there
are (n — 3) edges that belong to Ty and n — 3 — £ edges (v, p1(v)) such that v is an inner
node of T, (recall that 7; does not contain the roots of T},;). All these edges belong also
to G (see the definition of super-triangulations). In S there are n + ¢ other edges; so there

are at most 2" subgraphs of S satisfying the previous conditions and (m_g:fGH) m-edge
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subgraphs of S also satisfying the previous conditions. This inequality implies the upper
bounds.

Since a well-orderly map admits a unique super-triangulation (see Lemma 1), the lower
bounds in Theorem 3 will follow once we prove that for each realizer S € R,,;, the number
of well-orderly maps that admit S as a super-triangulation is at least 2”73, among which
(m_;’:fGH) have m edges. Let

E' = E(S)\ (E(To) U{(v,pi(v)) | v is an inner node of T5} U {(r1,72)})

Since the cardinality of E' is 3n —6) — (n—1) = (n—3—-4) —1 =n+ (-3, it is
sufficient to prove that by removing any subset of edges of E' we obtain a different well-
orderly map. First we observe that by removing different subsets of edges, we clearly obtain
different maps since the spanning tree 7Ty is always kept. It remains to check the well-orderly
condition.

Since S is a well-orderly map, the property is true when no edges are removed. Let us
assume that the submap G of S obtained by removing some edges of E’ is well-orderly
and consider the submap G5 obtained by removing one more edge (u,v) € E'. In Gy, T is
a well orderly tree, and (u, v) is unrelated edge with respect to T, so that T is an orderly
spanning tree of G5. It remains to check that v and v are well-orderly. We distinguish two
cases:

— (u,v) € Ty: node v was an inner node of the tree T in Gy, hence the edge ' = (v, p;1(v))
belongs to G and to Gs. Since the edge €' is the clockwise first edge of B (v) and the
node po(p;(v)) is still an ancestor of v in Ty, v is well-orderly. As for the node u, since
no edge of the block B (u) has changed between G and G, u is still well-orderly.

— (u,v) € Ty: this implies that u is a leaf of the tree Ty in G4 and in Gy. It follows that
Bs(u) = {(u,v)} in G, and Bs(u) = @ in G,. By definition, u (and also T, since
B (v) is the same in G as in Gs) is well-orderly.

3. Counting and Coding Trees

In this section we briefly recall a result from [PS03] about minimal realizers and plane
trees. An encoding of well-orderly maps follows.

3.1. Minimal Realizers and Plane Trees

A tree is planted if it is rooted on a leaf. Let B, be the set of planted plane trees with n
nodes and 2n leaves such that each node is adjacent to 2 leaves. Given a planted plane tree
T in B,, its canonical orientation shall be toward the root for all inner edges, and toward
the leaf for all dangling edges.

A triple (eq, ez, e3) of edges of a map M is an admissible triple if e; = (vg,vy), €3 =
(v1,v9) and e3 = (vq, v3) appear consecutively in the clockwise direction around the infinite
face and if vz is a vertex of degree 1. The local closure of M at the admissible triple
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TR

Figure 4. On the left, a planted tree of B, (the root is indicated by a square). Then from left
to right, the partial closure of the tree

v4 v2 v1
!
! ! v
l@ 0
s h
Vo
[

(a) (b)

Figure 5. The structure after a partial closure, and the complete closure

(e1,€9,e3) is obtained by fusing the leaf vz on node vy so as to create triangular face.
Observe that by construction the orientation of the dangling edge prevents the formation
of cw-triangles.

The local closure of a tree T of B,, is the map obtained by performing iteratively the
local closure of any available admissible triple in a greedy way. As shown in [PS03], the
local closure is well defined independently of the order of local closures. Moreover all the
bounded faces of the resulting map are triangular and the outer face has the structure
shown on Fig. 5 (a). In particular there are exactly two canonical dangling edges in the
infinite face that are immediately followed by dangling edges in the clockwise direction
around the infinite face. A tree T is balanced if its root is one of the two canonical leaves.
Finally, the complete closure of a balanced tree T is the map obtained from the partial
closure of T" by fusing each remaining non-canonical leaf with following canonical leaf in
the clockwise direction and adding a root edge, as illustrated by Fig. 5 (b).

Theorem 4. ([PS03]) Complete closure is one-to-one correspondence between balanced
trees with n—2 and triangulations with n nodes. Moreover, the orientation of inner edges of
the triangulation that is induced by the tree corresponds, via the coloration rule of Fig. 2(a)
to a minimal realizer of the triangulation.
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Observe that the color of the edges can be deduced from their orientation directly on the
balanced tree from the application of the rule of Fig. 2(a).

The following new lemma will serve to predict the entering edges created by complete
closure at a node.

Lemma 3. Let v be an inner node of a balanced tree B. Let e; = (v, u) and ey = (v, w) be
two consecutive edges around v in clockwise order. During the closure algorithm, no edges
will be inserted between e; and ey if and only if:

(a) w is a leaf of B, or

(b) w is an inner node of B and the node t such that the edge e3 = (w,t) is the next
edge around w after es in clockwise order is a leaf of B.

Proof . Let v an inner node of a balanced tree B. Let us consider two consecutive edges
(v,u), (v,w) around v in clockwise order. If w is a leaf, then during the closure it will
merge with a node w’ and close a triangular face enclosing the corner between (v, u) and
(v, w). No other edge can thus arrive at this corner. Assume now that w is an inner node
of B. Let (w, t) be the next edge around w in clockwise order. If ¢ is a leaf of B then it will
merge with v to form a triangular face and again no edge can arrive in the corner between
(v,u) and (v, w). In the other cases, (v, w) is an inner edge followed by another inner edge
(w, t). Since an edge that forming a triangular face that encloses the corner between (v, u)
and (v, w) must from w, the corner is not enclosed. But at the end of the partial closure,
there are no more pairs of consecutive inner edges: some edge must have arrived in the
corner.

Lemma 4. Let R = (Ty,T1,T3) be the minimal realizer encoded by a balanced tree B. A
node v of B is a leaf of Ty if and only if v has no incoming edge colored 2 in B and,

1. the parent edge of v in B s colored 2, or

2. the parent edge of v in B is colored 1, or

3. the parent edge of v in B is colored 0 and v is the last child with an edge colored 0 in
clockwise order around Pg(v) and
(a) the parent edge of Pg(v) is colored 0, or
(b) the parent edge of Pg(v) is colored 2.

The number of vertices of B satisfying these conditions is denoted ¢(B).

Proof . For the node v to be a leaf in Ty, it must have no incoming edge of color 2 in B,
and no edge must be inserted between its outgoing edges of color 0 and 1. When the parent
edge of v has color 2 or 1, the outgoing edge of color 0 connects to a leaf and Case (a) of
the previous lemma ensures that no edge arrives between this outgoing edge of color 0 and
the outgoing edge of color 1. When the parent edge of v has color 0, if the next edge in
clockwise order around the parent Pg(v) of v in B is an outgoing edge (of color 1), then
Case (b) of the previous lemma ensures that no edge of color 2 arrives.

Finally we need to check in the remaining cases that an incoming edge of color 2 indeed
arrives between the two outgoing edges of color 0 and 1. This could happen if the corner
we consider was part of the unbounded face after the partial closure. But in the remaining
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cases, both the edge (v, Pg(v)) and the next edge in clockwise order around Pg(v) are
incoming. Since the form of the boundary after partial closure prohibits two consecutive
incoming edges, the proof of the lemma is complete.

From Lemma 4 and Theorem 2, we obtain:

Theorem 5. Any well-orderly map with n nodes can be coded by a pair (B, W) where B is
balanced tree of By_o and W a bit string of length n 4+ ¢(B). Encoding and decoding takes
linear time.

3.2. A Context-Free Grammar for Colored Trees

We shall now give a recursive decomposition of trees in which the parameter ¢ of Lemma 4
can be followed.

To do this we consider the three sets F;, for : = 0, 1, 2 of trees with a root edge of color
i. To a tree T of F;, i = 1,2, we associate the parameter k(T') = ¢(T'). To a tree T of Fy we
associate the parameter k(7T') defined as ¢(T) except for the root node which contributes
to k(T) if it has no incoming edge of color 2, and a second parameter k'(T") defined as ¢(7T)
except for the root node which never contributes.

The decomposition is obtained, classically, at the root node: a tree with root edge of
color 0 consists of a root node that carries, in clockwise order, a sequence of subtrees of root
color 1, an outgoing edge of color 2, a sequence of subtrees of root color 0, an outgoing edge
of color 1, and a sequence of subtrees of root color 2. The parameter ¢ is almost additive
on subtrees. However, due to Rule 3 in Lemma 4, the root of a subtree with root edge of
color 0 may or may not be susceptible to contribute depending upon how it is attached.
In other terms, depending of how it is attached, a subtree T" with root color 0 contributes
k(T") or K'(T").

In Fig. 6 the decomposition is pictured schematically: an incoming edge represents a
tree, a triangle represents a possibly empty sequence of subtrees, and colors correspond
to root colors. For color 0, plain and dashed lines respectively indicate positions where
the contribution is given by parameters k or k'. Finally root nodes that contribute to the
parameters are pictured in a box.

3.3. Generating Functions of Trees and the Asymptotic Number of Well-Orderly Maps

The reader can refer to [GJ83] for a general presentation of the enumeration of decompos-
able structures using grammars and generating series.

We consider the generating functions Fj(z, u) of trees with root color i, i = 0,1, 2, with
respect to the number of edges and the parameter k, and F{(z,u) of trees with root color
0 with respect to the number of edges and the parameter k'

Fr=Fzu) =Y T and  Fy=Fyzu)= Y 2T,
Ter TeFo
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Figure 6. A decomposition of colored trees allowing to track the contributions to £

Recall that with respect to additive parameters, the generating function of a possibly empty
sequence of elements of a set S is the quasi-inverse 1/(1— f) of the generating function f of
S. Therefore the previous decomposition translates into the following system of equations:

(Fg: Z(1+1f%0) ( i
-F~F) o ()

(o) (1+ ) TR - Ry

< ' 1FfF1 or <F1: Z<u+1—%2

- 2 (u+ 1) (-F)0-E)
(-F)0-R) L (w+5) (1+15)

F2:z u+1_}2> <1+1_%0> [ 2 1— F ’

\ 1-F ’

where the observation that Fj(z,u) = Fy(z,u) in the left hand side system yields the right
hand side one. This system of equations completely defines the generating series Fy(z, u).
Algebraic elimination (see [FS, Appendix B1]) in this system leads immediately (using a
computer algebra software) to an algebraic equation ®@q(z, u, Fy(z,u)) = 0 of degree 4 for
Fo(z,u).

We are particularly interested in specialization of this equation to the case u = 2, since
the coefficient f, of 2" in

F(z) = Fy(z.2) = Y _ 272D,

TeFo
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counts n-node trees weighted by 2/ and thus overcounts n-nodes balanced trees with
the same weight. According to Theorem 3, upon multiplying by 2", this yields an upper
bound on the number of well-orderly maps with n nodes.

From elementary complex analysis, we have that log f,, ~ log(p™™), where p is the radius
of convergence of the series F'(z) = > f,2". Applying the implicit function theorem (see
[F'S, Appendix B4]) to the (algebraic) equation &(z, F(z)) = 0 defining F(z), we can

compute its radius of convergence by means of the roots of g—f;, and finally obtain:

p=(\/189 + 114V3 — 6v3 — 9) /4 ~ 15.0306.

From Theorem 5 we obtain:

Theorem 6. The number of well-orderly maps with n nodes satisfies

1
—log, |[H,| < 1+1logy1/p+ o(1) ~ 4.9098.
n

3.4. A Code for Colored Trees

Let S be a binary string. We denote by #S the number of binary strings having the same
length and the same number of 1’s as S. More precisely, if S is of length x and has y 1’s,
then we set #5 := (;) The following lemma is proved in [BGHO02].

Lemma 5. Any binary string S of length n can be coded into a binary string of length
log, (#S) + o(n). Moreover, knowing n, coding and decoding S can be done in linear time,
assuming a RAM model of computation on 2(logn) bit words.

Lemma 6. Let B be a balanced tree such that the corresponding realizer R = (Ty, Ty, T5)
has io inner nodes in the tree T,. The balanced tree B can be encoded with 5 binary strings
S1,S2,S3,S4 and S5 and 4 integers ay, ay, ay,is < n such that:

#S1 = (1700), #S2 = (n;ézl)’ #53 = (nj;al)’ #S, = (a1+22+a6) and #Ss5 = ( n—ai—ap ).

ia—aq n—aj—ag—is

Proof . Let B be a colored balanced tree. We partition the nodes of B in the following
way:

— A;: the set of nodes v such that the edge (v, Pg(v)) is colored 1.

— As: the set of nodes v such that the edge (v, Pg(v)) is colored 2.

— Aj: the set of nodes v and such that the edge (Pg(v), Pg(Pp(v)) is colored either 0 or 2,
and such that v is the last child in clockwise order with the edge (v, Pg(v)) is colored 0.

— Ap: the set of nodes that are not in the previous sets.

Note that the root of B is in Ay and for every node v of Ay, the edge (v, Pg(v)) is colored
0. If we consider the grammar of the Fig. 6, the set A corresponds to the nodes that have
been generated with the “dashed-line” rules. Let aq (resp. af, ai, as,is) be the number of
nodes of Ay (resp. Af, A1, Ag, I). Assume that we are coding the balanced tree B. The
only information we need, for each node in the prefix clockwise order, is its number of
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children in A, in Aj, in A; and in A,. In order to encode efficiently a well-orderly map,
we need to introduce another parameter in our encoding. Let I; be the set of nodes of B
that will be inner nodes in the tree T5 of the corresponding realizer R = (Ty, Ty, Ts).

We give some preliminary remarks:

Nodes of A; can not have children in Aj.

Every node of Ay J Af J A2 has at most one child in Aj.

Ag C I, (see Lemma 4).

Every node of Af | J A; | A2 which is also in I has at least one child in A (see Lemma 4).
Every node of V'\ A; can have children in Ay only if it has a child in Aj.

Only nodes of I, can have children in 75.

SR A

To encode the balanced tree, we will build 5 binary strings. With these strings we will
determine, for each node, its number of children in each subset.

In the first string, Sy, tells which node belongs to ;. Since all the nodes of Ay are in
I, (see remark 3), S; stores the information for all the other nodes. So for each node of
V'\ Ay, the corresponding bit is set to 1 if the node belongs to I and is set to 0 otherwise.
Hence the string S; contains n — ag bits and is — ag 1’s.

The second string Sy, is used to determine whether or not a node has a child in Aj.
Since all the nodes of A; have a child in A (see remark 1), S, stores this information for
all the other nodes: the corresponding bit is set to 1 if the node has one child in Aj and to
0 otherwise. Hence the string S, contains n — a; bits and ag 1’s.

The string S5 stores, for each node, its number of children in A; in a “Lukasiewicz” way.
For each v node of B in the prefix clockwise order, we append to S; as many 1’s as the
number of children of v in A; and then we insert a 0. Hence the string S; contains n + a,
bits and a; 1’s.

The string Sy stores the number of children in A,. This information has to be stored
for each node of A; and for each node that has a child in Af (see remark 5). So for each
of these nodes, we proceed as for the string S3. Hence the string Sy contains ay + ag + ag
bits and aq 1’s.

The string S5 helps to determine the number of children in A;. We only need to store
this information for the nodes of I, (see remark 6). Moreover, for these nodes that are in
A AL U As, we already know that they have at least one child in As; so we only need to
count the other 1’s. So for each of these nodes, we proceed as for the strings S3 and S;. We
obtain a string is + (ag — (ia — ag)) = n — ay — ay bits with ay — (iy — ag) = n—a; — aj — iy
1’s.

Lemma 7. Let H be a well-orderly map with n nodes and m edges. H can be encoded with
6 binary strings (5 for the minimal realizer and a last one to store the missing edges) and
4 integers ag,ay,ay,is € [0,n] such that: #S; = (n—ao)’ 45, = (n—al), 45, = (n+a1),

: /
19—ag aq ai

#5a = (") L S5 = (1), #56 = ()

n—ai—ag—iz

Proof . With S; — S5 a minimal realizer is encoded (Lemma 6). The last string indicates
the edges to delete in order to rebuild the well-orderly map: for each v, one bit is used to
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indicate if the edge (v, ps(v)) has to be removed and for each leaf v of T5, one bit is used
to indicate if the edge (v,p;(v)) has to be removed.

4. Applications

In view of Theorems 2 and 6, the number of connected planar graphs is at most 249097
As shown in [BGHO3], the numbers of connected and general planar graphs differ by at
most a polynomial factor in n.

Theorem 7. The number p(n) of unlabeled planar graphs on n nodes satisfies, for every n
large enough:
log, p(n) < an+ O(logn)  with o~ 4.9098.

This result is completed by the lower bound log, p(n) > fn + O(logn), with § ~ 4.767
coming from asymptotics of labeled planar graphs [GN].

The length of the coding of well-orderly map depends of the number of the edges of the
well-orderly map.

The following two results are obtained from the analysis of the length of the code of
Lemma 7. The length of this code depends on the number of edges of the well-orderly map
(see Fig. 7).

45

35 F

25

2 L L L L L L L L L 1 L L L L L L L L L
1 12 14 16 18 2 22 2.4 26 28 3 1 12 14 16 18 2 22 2.4 26 28 3

Figure 7. (a) Number of bits necessary to encode a well-orderly map with m = an edges, where
1 < @ < 3. (b) Coding analysis: Number of bits per edges of a well-orderly map with m = an
edges, where 1 < a < 3

Theorem 8. Fvery connected planar graph with n nodes and m edges can be encoded in
linear time with at most 4.91n + o(n) bits or 2.82m + o(m) bits.

Proof . Combining Theorem 2 and Lemma 7, we obtain an explicit coding with at most
W =W (n,m) = logy(#51) + log, (#:52) + logy (#S53) + 10g, (#54) log, (#:S55) + log, (#Ss) +
O(log(n)) bits where Sy, ..., Sg are given in Lemma 7. Thanks to Lemma 5 we can encode
in linear time a planar graph with W + o(n) bits, which is W + o(n) bits or W + o(m)
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bits (since G is connected, we have n —1 < m < 3n — 6 and so logn = logm + O(1)).
Analyzing the maximum length of the codes (over all parameters ag, a1, ..., i and m or n),
we obtain that W < 4,91n + o(n) or W < 2,28m + o(m) (See Fig. 7 (a) and Fig. 7 (b)).

Theorem 9. Almost all unlabeled planar graphs on n nodes have at least 1.85n edges and
at most 2.44n edges. Moreover, the result holds also for unlabeled connected planar graphs.

Proof (sketch). Our code can be parameterized with the number of edges. The length
of the coding is no more than W (m,n) + O(logn) bits. Using a reduction from arbitrary
planar graphs to connected planar graphs, we can apply our upper bound. Combined with
the 4.767n bit lower bound of [GN], we derive two numbers p; = 1.85 and uy = 2.44 such
that our representation is below 4.767 (See Fig. 7 (a)).

5. The Average Size of Planar Drawings

Theorem 10. The average number of leaves in a tree of a minimal realizer is 5n/8 + o(n)
and the average number of 3-colored faces in a minimal realizer is n/8 + o(n).

Proof . Using classical techniques on generating function, we obtain that the average
number of leaves of the tree Ty of a minimal realizer is 5n/8 + o(n). By symmetry,
this result is clearly true for the two other trees of the realizer. Since for any realizer,
by + 01 + Uy + A = 2n — 5, where ¢; is the number of leaves in T; and A is the number of
3-colored faces of the realizer [BLSMO02b], the second result follows directly.

In [ZH03] a straight-line drawing algorithm based on minimal realizers is presented.
This algorithm first computes the minimal realizer of a triangulation of the graph. Then
the graph is drawn on a grid of dimensions (n — 1 — A) x (n — 1 — A), where A is the
number of 3-colored faces of the so obtained minimal realizer. Our analysis gives an average
complexity of such drawings:

Corollary 1. The average grid size required (i.e., the average width and the average height)
to draw a triangulation is at most (% + o(n)) x (2 + o(n)).

In [BLSMO02a] a polyline drawing algorithm also based on minimal realizers is proposed.
The graph is then drawn on a grid (n — [£] — 1) x ¢, where ¢ is the number of leaves of
the tree Ty of the obtained minimal realizer R = (Tp, T, T5). Our analysis gives an average
complexity of such drawings:

Corollary 2. The average grid size required to draw a triangulation is at most (111—6" +
o(n)) x (F +o(n)).
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