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t The family of well-orderly maps is a family of planar maps with the property thatevery 
onne
ted planar graph has at least one plane embedding whi
h is a well-orderly map. Weshow that the number of well-orderly maps with n nodes is at most 2�n+O(log n), where � � 4:91.A dire
t 
onsequen
e of this is a new upper bound on the number p(n) of unlabeled planar graphswith n nodes, log2 p(n) 6 4:91n.The result is then used to show that asymptoti
ally almost all (labeled or unlabeled), (
on-ne
ted or not) planar graphs with n nodes have between 1:85n and 2:44n edges.Finally we obtain as an out
ome of our 
ombinatorial analysis an expli
it linear-time en
odingalgorithm for unlabeled planar graphs using, in the worst-
ase, a rate of 4:91 bits per node andof 2:82 bits per edge.Key words. planar graph, triangulation, realizer, well-orderly1. Introdu
tionCounting the number of (non-isomorphi
) planar graphs with n nodes is a well-knownlong-standing unsolved graph-enumeration problem (
f. [LW87℄). There is no known 
losedformula or asymptoti
 estimate for the number of unlabeled planar graphs.There are only upper and lower bounds on the growth rate of the sequen
e of num-bers p(n) of unlabeled planar graphs with n nodes. This growth rate, de�ned as � =limn!1 p(n)1=n, 
urrently ranges between 27.2268 and 32.1556 (a superadditivity argu-ment shows that su
h a limit exists [DVW96,MSW05℄).The lower bound on � 
omes from asymptoti
s on the number of labeled planar graphs.This asymptoti
 is of the form n!�n+o(n) [DVW96,MSW05℄, and a non trivial estimation of� has been given in [OPT03℄. Re
ently [GN℄ 
ompletely determined � and gave a pre
iseestimation of it: � � 27:2268777685. The upper bound on �, due to [BGH03℄, 
omesfrom a su

in
t en
oding of planar graphs. More pre
isely, after a suitable embedding and
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hon et al.triangulation of the planar graph, it is shown that su
h embeddings 
an be represented bya binary string of length at most 5:007n bits. Su
h a representation implies that p(n) 625:007n � (32:1556)n.Te
hni
ally, enumerating unlabeled graphs is more diÆ
ult than 
ounting the labeledversion. And, as pointed out in [BGW02℄, almost all labeled 2- and 1-
onne
ted planargraphs have exponentially large automorphism groups. In other words, Wright's Theo-rem [Wri71℄ does not hold for random planar graphs; the asymptoti
 number of labeledand unlabeled planar graphs di�er in more than the n! fa
tor, i.e., � < �. So, an asymptoti
on the number of labeled planar graphs would not give a sharp lower bound on the growthrate of p(n). The situation with respe
t of the upper bound is not better. A planar graph
an be embedded in many ways, and to re
over the graph from a suitable triangulationrequires a deep understanding of plane triangulations, in parti
ular their enumeration withrespe
t to several parameters depending on the input graph.Besides the pure 
ombinatorial aspe
t, the \en
oding" approa
h is also relevant in Com-puter S
ien
e where a lot of attention is given to the eÆ
ient representation of dis
reteobje
ts. At least two �elds of appli
ation of high interest are 
on
erned with su

in
t planargraph representation: Computer Graphi
s [KADS02,KR99,Ros99℄ and Networking [FJ89,GH99,Lu02,Tho01℄.1.1. Related WorksObviously, without a sharp asymptoti
 formula, properties and behavior of large randomobje
ts 
annot be des
ribed pre
isely. For la
k of an adequate model, very little is knownabout random planar graphs. However, random generation of planar graphs has been in-vestigated in the last de
ade.Using a simple Markov 
hain, Denis et al. [DVW96℄ showed that, experimentally, randomlabeled planar graphs have 2n edges. In fa
t, Bodirsky et al. [BGK03℄ have designed the �rstpolynomial-time (uniform) random generator of labeled planar graphs. Although limitedin their experiments (mainly by the time 
omplexity of this algorithm), they showed thata
tually the number of edges in a random labeled planar graph is more than 2n. The bestproved bounds on the number of edges in a random labeled planar graph were 1:85n [GM02℄and 2:54n [BGH03℄; for the unlabeled 
ase these bounds are 1:70n and 2:54n [BGH03℄. Veryre
ently Gim�enez and Noy [GN℄ showed that the number of edges in random labeled planargraphs is asymptoti
ally normal with linear mean (� 2:21n) and varian
e.Su

in
t representation of n-node m-edge planar graphs has a long history.Tur�an [Tur84℄ pioneered a 4m-bit en
oding that has been improved later by Keeler andWestbrook [KW95℄ to 3:58m. Munro and Raman [MR97℄ then proposed a 2m + 8n biten
oding based on the 4-page embedding of planar graphs (see [Yan89℄). In a series ofarti
les, Lu et al. [CLL01,CGH+98℄ re�ned the 
oding to 4m=3 + 5n thanks to orderlyspanning trees, a generalization of S
hnyder's trees [S
h90℄.



Planar Graphs, via Well-Orderly Maps and Trees 31.2. Our ResultsAny planar embedding of an n-node planar graph 
an be seen as a subgraph of an n-nodetriangulation of the plane. Given a triangulation and a set of edges to be kept (or removed),a planar map and the 
orresponding graph 
an be 
onstru
ted. The 
onverse is false ingeneral. There is no known method to uniquely asso
iate a triangulation to a planar graph.However, in [BGH03℄, a linear-time algorithm is given to 
onstru
t a triangulation of theplane in a 
anoni
al way for any planar graph, on
e given a planar embedding. The readershould keep in mind that there is a-priori no unique embedding of a planar graph. Some pla-nar embeddings have interesting graph properties based on the S
hnyder's partition [S
h90℄of triangulations into trees. A new 
lass of planar embeddings is proposed in [BGH03℄: thewell-orderly maps, a more restri
tive version of the orderly maps of Chuang et al. [CLL01℄.The two main properties of well-orderly maps that 
an be exploited for graph 
oding are:1) every planar graph admits su
h an embedding, and 2) given a well-orderly map, we 
anuniquely asso
iate a triangulation.The main result of this paper is to give a good approximation for the number of well-orderly maps. As a by-produ
t, it gives a new upper bound on the number of planar graphs:p(n) 6 30:061n. More interestingly, the 
ombinatorial analysis enables us to give an expli
it
oding of su
h maps (and thus of planar graphs) as a fun
tion of n and m, the numberof edges: log2(30:061) � 4:91 bits per node or 2:82 bits per edge (
learly, 2:82m bits isalways smaller than 4m=3+ 5n bits be
ause, for any 
onne
ted planar graph with at least3 verti
es, m 6 3n � 6). A new bound on the number of edges of a random unlabeledplanar graph is presented as well.The paper is organized as follows. We des
ribe in Se
tion 2 the relationships betweenwell-orderly maps, super-triangulations and S
hnyder's trees, also 
alled realizers. Thenew 
oding is presented in Se
tion 3, and in Se
tion 4 the appli
ations to the number ofunlabeled planar graphs and to the number of edges in random planar graphs are given.Another appli
ation of our results is an upper bound on the minimal grid area of a randomtriangulation of the plane. We show that plane triangulations 
an be drawn on grids ofdimensions at most 78n� 78n using straightlines and 1116n� 56n using polylines.2. En
oding Planar Graphs with Minimal RealizersIn this se
tion we 
olle
t some results from [BGH03℄ about planar graphs, well-orderlymaps, super-triangulations and realizers. In the last paragraph, these results are used toprove a new representation theorem.2.1. Planar Graphs and Well-Orderly MapsA planar map (or plane graph) is an embedding of a 
onne
ted planar graph on the planeso that edges meet only at their endpoints. When the plane is 
ut along the edges, theremaining 
onne
ted 
omponents are 
alled the fa
es. Apart from the unbounded 
ompo-nent, all these fa
es are homeomorphi
 to dis
s. A planar map is rooted if one of its edges



4 Ni
olas Boni
hon et al.is distinguished and oriented. This determines a root edge, a root node (its origin) and aroot fa
e (to its left), also 
alled the external fa
e or outerfa
e. A triangulation of the plane(or a maximal plane graph) is a planar map su
h that all the fa
es are triangles. In thispaper, only simple planar graphs or maps are 
onsidered.A plane tree is, as usual, a rooted tree (the root is a node) su
h that the siblings of anode are linearly ordered. Equivalently, it is a planar map with one fa
e. Among the nodesof a tree, we distinguish the root, the inner nodes and the leaves. A spanning tree of aplanar map is a subset of its edges that forms a tree 
onne
ting all its nodes.Let T be a rooted spanning tree of a planar map H, and let v1; : : : ; vn be the 
lo
kwisepreordering of the nodes in T . Two nodes are unrelated if neither of them is an an
estorof the other in T . An edge of H is unrelated if its endpoints are unrelated.A node vi is orderly in H with respe
t to T if the edges in
ident to vi in H form thefollowing four (possibly empty) blo
ks in 
lo
kwise order around vi (see Fig. 2(b)):{ BP (vi): the edge in
ident to the parent of vi in T ;{ B<(vi): edges that are unrelated in T and in
ident to nodes vj with j < i;{ BC(vi): edges that are in
ident to the 
hildren of vi in T ; and{ B>(vi): edges that are unrelated in T and in
ident to nodes vj with j > i.A node vi is well-orderly if it is orderly and if the 
lo
kwise �rst edge (vi; vj) 2 B>(vi), ifit exists, has the property that the parent of vj is an an
estor of vi.A rooted spanning tree T of H is a well-orderly tree of H if all the nodes of T arewell-orderly in H with respe
t to T . A planar map H is a well-orderly map with root v ifit 
ontains a well-orderly tree with root v. Observe that a well-orderly tree is ne
essarilyspanning.Theorem 1. ([BGH03℄) Let G be a 
onne
ted planar graph, and let v be any node ofG. Then G admits a map, 
omputable in linear time, that is a well-orderly map of root v.Moreover, a well-orderly map of root v has a unique well-orderly tree of root v, whi
h 
analso be 
omputed in linear time.In Fig. 1 two orderly trees T 0 span the same triangulation but only one is the well-orderlytree.Observe that by de�nition of well-orderly nodes, an edge of H whi
h is related withrespe
t to a well-orderly tree T (i.e. one endpoint is a des
endant of the other one in T )must belong to the tree T : indeed all edges are either unrelated or 
onne
t a node to itsfather. In parti
ular all the edges in
ident in H to the root of T are in T .2.2. Minimal Realizers and Super-TriangulationsA realizer of a triangulation is a partition of its interior edges (the edges that do not lieon the external fa
e) into three sets T0, T1, T2 of dire
ted edges su
h that the following
onditions hold for ea
h interior node v (see Fig. 2(a)):{ the 
lo
kwise order of the edges in
ident with v is: leaving in T0, entering in T1, leavingin T2, entering in T0, leaving in T1 and entering in T2;
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Figure 1. Two realizers for a triangulation. The tree T 0 rooted in r0 (the tree with bold edgesaugmented with the edges (r0; r1) and (r0; r2)) is well-orderly in (b), but only orderly in (a) sin
enode v is not well-orderly

T2T1 T0
T1T2 (b)(a)

BP
BC

B>B<
T0

Figure 2. Relationship between realizer and orderly tree: (a) edge-orientation rule around a nodefor a realizer, and (b) blo
ks ordering around an orderly node{ there is exa
tly one leaving edge in
ident with v in ea
h of the sets T0, T1, and T2.Hereafter, when R = (T0; T1; T2) is a realizer, R also denotes the underlying triangulation.The edges of a tree Ti are given the 
olor i for i = 0; 1; 2.Observe that if (T0; T1; T2) is a realizer, then (T1; T2; T0) and (T2; T0; T1) are also realizers.This 
y
li
 permutation of the three sets of edges does not in general provide all the distin
trealizers of a given triangulation. Fig. 1 depi
ts two realizers for the same triangulation.A
tually, the number of n-node realizers is asymptoti
ally 24n+O(logn) (
f. [Bon02℄),whereas the number of triangulations is only (256=27)n+O(logn) (
f. [Tut62℄).S
hnyder showed in [S
h90℄ that if (T1; T2; T3) is a realizer then ea
h set Ti indu
es atree rooted in one node of the external fa
e and spanning all interior nodes. Moreover, forea
h Ti, we denote by T i the tree 
omposed of Ti augmented with the two edges of the
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olas Boni
hon et al.external fa
e in
ident to the root of Ti. For every non-root node u 2 Ti, we denote by pi(u)the parent of u in Ti.A realizer S = (T0; T1; T2) is a super-triangulation of a graph G if:1. V (S) = V (G) and E(G) � E(S);2. E(T0) � E(G);3. T 0 is a well-orderly tree of S; and4. for every inner node v of T2, (v; p1(v)) 2 E(G).
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Figure 3. (a) A planar graph G with an embedding whi
h is not well-orderly. An easy way to seethat it is not a well-orderly is to observe that the edges (v1; v2); (v1; v3); (v1; v4); (v2; v6) must bein any spanning tree of G rooted at v1 su
h that G has only parent edges and unrelated edges. Insu
h trees, v2 is 
learly not an orderly node. (b) A well-orderly map of G. (
) A super-triangulationof G (dotted edges are not in G)Lemma 1. ([BGH03℄) Let H be a well-orderly map, and T its unique well-orderly treeof root r0. Assume that T has at least two leaves. Let r2 and r1 be the 
lo
kwise �rst andlast leaves of T respe
tively. Then, there is a unique super-triangulation (T0; T1; T2) of the



Planar Graphs, via Well-Orderly Maps and Trees 7underlying graph of H preserving the embedding H, and su
h that ea
h Ti has root ri.Moreover, T0 = T n fr1; r2g and the super-triangulation is 
omputable in linear time.There is an alternative 
hara
terization of super-triangulation in terms of minimal re-alizers. A 
w-triangle (or 
lo
kwise triangle), is a triple of nodes (u; v; w) (not ne
essarily
orresponding to a fa
e) of a realizer su
h that p2(u) = v, p1(v) = w, and p0(w) = u. Aminimal realizer is a realizer that does not 
ontain any 
lo
kwise triangle. In the realizerdepi
ted in Fig. 1(a), (u; v; w) forms a 
w-triangle, whereas the realizer of Fig. 1(b) has no
w-triangle.Lemma 2. ([BGH03℄) Let S = (T0; T1; T2) be any realizer. The following statements areequivalent:1. S is a super-triangulation for some graph G.2. S is a minimal realizer.3. The tree T i is well-orderly in S, for every i 2 f0; 1; 2g.2.3. Results of the PaperTheorem 2. (Coding version [BGH03℄) The following en
oding sequen
e holds:{ Any 
onne
ted planar graph 
an be embedded as a well-orderly map.{ Any well-orderly map 
an be represented as a minimal realizer (T1; T2; T3) with a subsetof marked edges ea
h of whi
h is either in T2 or is an edge (u; v) of T1 su
h that u is aleaf of T1.Our �rst new result in this paper is that in fa
t the se
ond en
oding is almost tight.Theorem 3. (Counting version) Let Hn (resp. Hn;m) denote the set of well-orderly mapswith n nodes (resp. with n nodes and m edges), and Rn;` denote the set of minimal realizers(T0; T1; T2) with n nodes and l leaves in T2. Then18 n�3X̀=1 jRn;`j2n+` 6 jHnj 6 n�3X̀=1 jRn;`j2n+`;18 n�3X`=maxf1;2n�m�6g jRn;`j� n+ `m� 2n + 6 + `� 6 jHn;mj 6 n�3X`=maxf1;2n�m�6g jRn;`j� n+ `m� 2n+ 6 + `�:Proof (Theorem 3) . Let S = (T0; T1; T2) be an element of Rn;`, and G be a 
onne
tedplanar graph su
h that S is a super-triangulation of G i.e. E(T0) � E(G). The numberof edges of a triangulation with n nodes is 3n � 6. Among the 3n � 6 edges of S, thereare (n � 3) edges that belong to T0 and n � 3� ` edges (v; p1(v)) su
h that v is an innernode of T2 (re
all that Ti does not 
ontain the roots of Tj 6=i). All these edges belong alsoto G (see the de�nition of super-triangulations). In S there are n+ ` other edges; so thereare at most 2n+` subgraphs of S satisfying the previous 
onditions and � n+`m�2n+6+`� m-edge
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olas Boni
hon et al.subgraphs of S also satisfying the previous 
onditions. This inequality implies the upperbounds.Sin
e a well-orderly map admits a unique super-triangulation (see Lemma 1), the lowerbounds in Theorem 3 will follow on
e we prove that for ea
h realizer S 2 Rn;l, the numberof well-orderly maps that admit S as a super-triangulation is at least 2n+`�3, among whi
h� n+`m�2n+6+`� have m edges. LetE 0 = E(S) n �E(T 0) [ f(v; p1(v)) j v is an inner node of T2g [ f(r1; r2)g�Sin
e the 
ardinality of E 0 is (3n � 6) � (n � 1) � (n � 3 � `) � 1 = n + ` � 3, it issuÆ
ient to prove that by removing any subset of edges of E 0 we obtain a di�erent well-orderly map. First we observe that by removing di�erent subsets of edges, we 
learly obtaindi�erent maps sin
e the spanning tree T0 is always kept. It remains to 
he
k the well-orderly
ondition.Sin
e S is a well-orderly map, the property is true when no edges are removed. Let usassume that the submap G1 of S obtained by removing some edges of E 0 is well-orderlyand 
onsider the submap G2 obtained by removing one more edge (u; v) 2 E 0. In G1, T 0 isa well orderly tree, and (u; v) is unrelated edge with respe
t to T 0, so that T 0 is an orderlyspanning tree of G2. It remains to 
he
k that u and v are well-orderly. We distinguish two
ases:{ (u; v) 2 T2: node v was an inner node of the tree T2 in G1, hen
e the edge e0 = (v; p1(v))belongs to G1 and to G2. Sin
e the edge e0 is the 
lo
kwise �rst edge of B>(v) and thenode p0(p1(v)) is still an an
estor of v in T0, v is well-orderly. As for the node u, sin
eno edge of the blo
k B>(u) has 
hanged between G1 and G2, u is still well-orderly.{ (u; v) 2 T1: this implies that u is a leaf of the tree T2 in G1 and in G2. It follows thatB>(u) = f(u; v)g in G1 and B>(u) = ? in G2. By de�nition, u (and also T 0, sin
eB>(v) is the same in G1 as in G2) is well-orderly.3. Counting and Coding TreesIn this se
tion we brie
y re
all a result from [PS03℄ about minimal realizers and planetrees. An en
oding of well-orderly maps follows.3.1. Minimal Realizers and Plane TreesA tree is planted if it is rooted on a leaf. Let Bn be the set of planted plane trees with nnodes and 2n leaves su
h that ea
h node is adja
ent to 2 leaves. Given a planted plane treeT in Bn, its 
anoni
al orientation shall be toward the root for all inner edges, and towardthe leaf for all dangling edges.A triple (e1; e2; e3) of edges of a map M is an admissible triple if e1 = (v0; v1), e2 =(v1; v2) and e3 = (v2; v3) appear 
onse
utively in the 
lo
kwise dire
tion around the in�nitefa
e and if v3 is a vertex of degree 1. The lo
al 
losure of M at the admissible triple
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Figure 4. On the left, a planted tree of Bn (the root is indi
ated by a square). Then from leftto right, the partial 
losure of the tree

(b)
l02
l2

v00
v0 l1

v1v2
v0
v00

(a)
l01

Figure 5. The stru
ture after a partial 
losure, and the 
omplete 
losure(e1; e2; e3) is obtained by fusing the leaf v3 on node v0 so as to 
reate triangular fa
e.Observe that by 
onstru
tion the orientation of the dangling edge prevents the formationof 
w-triangles.The lo
al 
losure of a tree T of Bn is the map obtained by performing iteratively thelo
al 
losure of any available admissible triple in a greedy way. As shown in [PS03℄, thelo
al 
losure is well de�ned independently of the order of lo
al 
losures. Moreover all thebounded fa
es of the resulting map are triangular and the outer fa
e has the stru
tureshown on Fig. 5 (a). In parti
ular there are exa
tly two 
anoni
al dangling edges in thein�nite fa
e that are immediately followed by dangling edges in the 
lo
kwise dire
tionaround the in�nite fa
e. A tree T is balan
ed if its root is one of the two 
anoni
al leaves.Finally, the 
omplete 
losure of a balan
ed tree T is the map obtained from the partial
losure of T by fusing ea
h remaining non-
anoni
al leaf with following 
anoni
al leaf inthe 
lo
kwise dire
tion and adding a root edge, as illustrated by Fig. 5 (b).Theorem 4. ([PS03℄) Complete 
losure is one-to-one 
orresponden
e between balan
edtrees with n�2 and triangulations with n nodes. Moreover, the orientation of inner edges ofthe triangulation that is indu
ed by the tree 
orresponds, via the 
oloration rule of Fig. 2(a)to a minimal realizer of the triangulation.



10 Ni
olas Boni
hon et al.Observe that the 
olor of the edges 
an be dedu
ed from their orientation dire
tly on thebalan
ed tree from the appli
ation of the rule of Fig. 2(a).The following new lemma will serve to predi
t the entering edges 
reated by 
omplete
losure at a node.Lemma 3. Let v be an inner node of a balan
ed tree B. Let e1 = (v; u) and e2 = (v; w) betwo 
onse
utive edges around v in 
lo
kwise order. During the 
losure algorithm, no edgeswill be inserted between e1 and e2 if and only if:(a) w is a leaf of B, or(b) w is an inner node of B and the node t su
h that the edge e3 = (w; t) is the nextedge around w after e2 in 
lo
kwise order is a leaf of B.Proof . Let v an inner node of a balan
ed tree B. Let us 
onsider two 
onse
utive edges(v; u), (v; w) around v in 
lo
kwise order. If w is a leaf, then during the 
losure it willmerge with a node w0 and 
lose a triangular fa
e en
losing the 
orner between (v; u) and(v; w). No other edge 
an thus arrive at this 
orner. Assume now that w is an inner nodeof B. Let (w; t) be the next edge around w in 
lo
kwise order. If t is a leaf of B then it willmerge with u to form a triangular fa
e and again no edge 
an arrive in the 
orner between(v; u) and (v; w). In the other 
ases, (v; w) is an inner edge followed by another inner edge(w; t). Sin
e an edge that forming a triangular fa
e that en
loses the 
orner between (v; u)and (v; w) must from w, the 
orner is not en
losed. But at the end of the partial 
losure,there are no more pairs of 
onse
utive inner edges: some edge must have arrived in the
orner.Lemma 4. Let R = (T0; T1; T2) be the minimal realizer en
oded by a balan
ed tree B. Anode v of B is a leaf of T2 if and only if v has no in
oming edge 
olored 2 in B and,1. the parent edge of v in B is 
olored 2, or2. the parent edge of v in B is 
olored 1, or3. the parent edge of v in B is 
olored 0 and v is the last 
hild with an edge 
olored 0 in
lo
kwise order around PB(v) and(a) the parent edge of PB(v) is 
olored 0, or(b) the parent edge of PB(v) is 
olored 2.The number of verti
es of B satisfying these 
onditions is denoted `(B).Proof . For the node v to be a leaf in T2, it must have no in
oming edge of 
olor 2 in B,and no edge must be inserted between its outgoing edges of 
olor 0 and 1. When the parentedge of v has 
olor 2 or 1, the outgoing edge of 
olor 0 
onne
ts to a leaf and Case (a) ofthe previous lemma ensures that no edge arrives between this outgoing edge of 
olor 0 andthe outgoing edge of 
olor 1. When the parent edge of v has 
olor 0, if the next edge in
lo
kwise order around the parent PB(v) of v in B is an outgoing edge (of 
olor 1), thenCase (b) of the previous lemma ensures that no edge of 
olor 2 arrives.Finally we need to 
he
k in the remaining 
ases that an in
oming edge of 
olor 2 indeedarrives between the two outgoing edges of 
olor 0 and 1. This 
ould happen if the 
ornerwe 
onsider was part of the unbounded fa
e after the partial 
losure. But in the remaining
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ases, both the edge (v; PB(v)) and the next edge in 
lo
kwise order around PB(v) arein
oming. Sin
e the form of the boundary after partial 
losure prohibits two 
onse
utivein
oming edges, the proof of the lemma is 
omplete.From Lemma 4 and Theorem 2, we obtain:Theorem 5. Any well-orderly map with n nodes 
an be 
oded by a pair (B;W ) where B isbalan
ed tree of Bn�2 and W a bit string of length n + `(B). En
oding and de
oding takeslinear time.3.2. A Context-Free Grammar for Colored TreesWe shall now give a re
ursive de
omposition of trees in whi
h the parameter ` of Lemma 4
an be followed.To do this we 
onsider the three sets Fi, for i = 0; 1; 2 of trees with a root edge of 
olori. To a tree T of Fi, i = 1; 2, we asso
iate the parameter k(T ) = `(T ). To a tree T of F0 weasso
iate the parameter k(T ) de�ned as `(T ) ex
ept for the root node whi
h 
ontributesto k(T ) if it has no in
oming edge of 
olor 2, and a se
ond parameter k0(T ) de�ned as `(T )ex
ept for the root node whi
h never 
ontributes.The de
omposition is obtained, 
lassi
ally, at the root node: a tree with root edge of
olor 0 
onsists of a root node that 
arries, in 
lo
kwise order, a sequen
e of subtrees of root
olor 1, an outgoing edge of 
olor 2, a sequen
e of subtrees of root 
olor 0, an outgoing edgeof 
olor 1, and a sequen
e of subtrees of root 
olor 2. The parameter ` is almost additiveon subtrees. However, due to Rule 3 in Lemma 4, the root of a subtree with root edge of
olor 0 may or may not be sus
eptible to 
ontribute depending upon how it is atta
hed.In other terms, depending of how it is atta
hed, a subtree T 0 with root 
olor 0 
ontributesk(T 0) or k0(T 0).In Fig. 6 the de
omposition is pi
tured s
hemati
ally: an in
oming edge represents atree, a triangle represents a possibly empty sequen
e of subtrees, and 
olors 
orrespondto root 
olors. For 
olor 0, plain and dashed lines respe
tively indi
ate positions wherethe 
ontribution is given by parameters k or k0. Finally root nodes that 
ontribute to theparameters are pi
tured in a box.3.3. Generating Fun
tions of Trees and the Asymptoti
 Number of Well-Orderly MapsThe reader 
an refer to [GJ83℄ for a general presentation of the enumeration of de
ompos-able stru
tures using grammars and generating series.We 
onsider the generating fun
tions Fi(z; u) of trees with root 
olor i, i = 0; 1; 2, withrespe
t to the number of edges and the parameter k, and F 00(z; u) of trees with root 
olor0 with respe
t to the number of edges and the parameter k0:Fi � Fi(z; u) = XT2Fi zjT juk(T ) and F 00 � F 00(z; u) = XT2F0 zjT juk0(T ):
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= +

= +

= +

= +

+ +

+ +Figure 6. A de
omposition of 
olored trees allowing to tra
k the 
ontributions to `Re
all that with respe
t to additive parameters, the generating fun
tion of a possibly emptysequen
e of elements of a set S is the quasi-inverse 1=(1�f) of the generating fun
tion f ofS. Therefore the previous de
omposition translates into the following system of equations:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
F0 = z �1 + F 001�F0�(1� F1)(1� F2) ;F 00 = z �u+ F21�F2��1 + F 001�F0�1� F1F1 = z �u+ F21�F2�(1� F1)(1� F0) ;F2 = z �u+ F21�F2��1 + F 001�F0�1� F1 ;

or 8>>>>>>>>><>>>>>>>>>:
F0 = z �1 + F21�F0�(1� F1)(1� F2) ;F1 = z �u+ F21�F2�(1� F1)(1� F0) ;F2 = z �u+ F21�F2��1 + F21�F0�1� F1 ;where the observation that F 00(z; u) = F2(z; u) in the left hand side system yields the righthand side one. This system of equations 
ompletely de�nes the generating series F0(z; u).Algebrai
 elimination (see [FS, Appendix B1℄) in this system leads immediately (using a
omputer algebra software) to an algebrai
 equation �0(z; u; F0(z; u)) = 0 of degree 4 forF0(z; u).We are parti
ularly interested in spe
ialization of this equation to the 
ase u = 2, sin
ethe 
oeÆ
ient fn of zn in F (z) = F0(z; 2) = XT2F0 zjT j2`(T );
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ounts n-node trees weighted by 2`(u), and thus over
ounts n-nodes balan
ed trees withthe same weight. A

ording to Theorem 3, upon multiplying by 2n, this yields an upperbound on the number of well-orderly maps with n nodes.From elementary 
omplex analysis, we have that log fn � log(��n), where � is the radiusof 
onvergen
e of the series F (z) =Pn fnzn. Applying the impli
it fun
tion theorem (see[FS, Appendix B4℄) to the (algebrai
) equation �(z; F (z)) = 0 de�ning F (z), we 
an
ompute its radius of 
onvergen
e by means of the roots of ���F , and �nally obtain:� = (q189 + 114p3� 6p3� 9)=4 � 15:0306:From Theorem 5 we obtain:Theorem 6. The number of well-orderly maps with n nodes satis�es1n log2 jHnj 6 1 + log2 1=�+ o(1) � 4:9098:3.4. A Code for Colored TreesLet S be a binary string. We denote by #S the number of binary strings having the samelength and the same number of 1's as S. More pre
isely, if S is of length x and has y 1's,then we set #S := �xy�. The following lemma is proved in [BGH02℄.Lemma 5. Any binary string S of length n 
an be 
oded into a binary string of lengthlog2(#S) + o(n). Moreover, knowing n, 
oding and de
oding S 
an be done in linear time,assuming a RAM model of 
omputation on 
(logn) bit words.Lemma 6. Let B be a balan
ed tree su
h that the 
orresponding realizer R = (T0; T1; T2)has i2 inner nodes in the tree T2. The balan
ed tree B 
an be en
oded with 5 binary stringsS1; S2; S3; S4 and S5 and 4 integers a0; a00; a1; i2 6 n su
h that:#S1 = �n�a0i2�a0�, #S2 = �n�a1a00 �, #S3 = �n+a1a1 �, #S4 = �a1+a0+a00a0 � and #S5 = � n�a1�a00n�a1�a00�i2�.Proof . Let B be a 
olored balan
ed tree. We partition the nodes of B in the followingway:{ A1: the set of nodes v su
h that the edge (v; PB(v)) is 
olored 1.{ A2: the set of nodes v su
h that the edge (v; PB(v)) is 
olored 2.{ A00: the set of nodes v and su
h that the edge (PB(v); PB(PB(v)) is 
olored either 0 or 2,and su
h that v is the last 
hild in 
lo
kwise order with the edge (v; PB(v)) is 
olored 0.{ A0: the set of nodes that are not in the previous sets.Note that the root of B is in A0 and for every node v of A0, the edge (v; PB(v)) is 
olored0. If we 
onsider the grammar of the Fig. 6, the set A00 
orresponds to the nodes that havebeen generated with the \dashed-line" rules. Let a0 (resp. a00; a1; a2; i2) be the number ofnodes of A0 (resp. A00; A1; A2; I2). Assume that we are 
oding the balan
ed tree B. Theonly information we need, for ea
h node in the pre�x 
lo
kwise order, is its number of
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hildren in A0, in A00, in A1 and in A2. In order to en
ode eÆ
iently a well-orderly map,we need to introdu
e another parameter in our en
oding. Let I2 be the set of nodes of Bthat will be inner nodes in the tree T2 of the 
orresponding realizer R = (T0; T1; T2).We give some preliminary remarks:1. Nodes of A1 
an not have 
hildren in A00.2. Every node of A0SA00SA2 has at most one 
hild in A00.3. A0 � I2 (see Lemma 4).4. Every node of A00SA1SA2 whi
h is also in I2 has at least one 
hild in A2 (see Lemma 4).5. Every node of V nA1 
an have 
hildren in A0 only if it has a 
hild in A00.6. Only nodes of I2 
an have 
hildren in T2.To en
ode the balan
ed tree, we will build 5 binary strings. With these strings we willdetermine, for ea
h node, its number of 
hildren in ea
h subset.In the �rst string, S1, tells whi
h node belongs to I2. Sin
e all the nodes of A0 are inI2 (see remark 3), S1 stores the information for all the other nodes. So for ea
h node ofV nA0, the 
orresponding bit is set to 1 if the node belongs to I2 and is set to 0 otherwise.Hen
e the string S1 
ontains n� a0 bits and i2 � a0 1's.The se
ond string S2, is used to determine whether or not a node has a 
hild in A00.Sin
e all the nodes of A1 have a 
hild in A00 (see remark 1), S2 stores this information forall the other nodes: the 
orresponding bit is set to 1 if the node has one 
hild in A00 and to0 otherwise. Hen
e the string S2 
ontains n� a1 bits and a00 1's.The string S3 stores, for ea
h node, its number of 
hildren in A1 in a \Lukasiewi
z" way.For ea
h v node of B in the pre�x 
lo
kwise order, we append to S3 as many 1's as thenumber of 
hildren of v in A1 and then we insert a 0. Hen
e the string S3 
ontains n+ a1bits and a1 1's.The string S4 stores the number of 
hildren in A0. This information has to be storedfor ea
h node of A1 and for ea
h node that has a 
hild in A00 (see remark 5). So for ea
hof these nodes, we pro
eed as for the string S3. Hen
e the string S4 
ontains a1 + a00 + a0bits and a0 1's.The string S5 helps to determine the number of 
hildren in A2. We only need to storethis information for the nodes of I2 (see remark 6). Moreover, for these nodes that are inA0SA00SA2, we already know that they have at least one 
hild in A2; so we only need to
ount the other 1's. So for ea
h of these nodes, we pro
eed as for the strings S3 and S4. Weobtain a string i2+(a2� (i2� a0)) = n� a1� a00 bits with a2� (i2� a0) = n� a1� a00� i21's.Lemma 7. Let H be a well-orderly map with n nodes and m edges. H 
an be en
oded with6 binary strings (5 for the minimal realizer and a last one to store the missing edges) and4 integers a0; a1; a00; i2 2 [0; n℄ su
h that: #S1 = �n�a0i2�a0�, #S2 = �n�a1a00 �, #S3 = �n+a1a1 �,#S4 = �a1+a0+a00a0 � , #S5 = � n�a1�a00n�a1�a00�i2�, #S6 = � 2n�i2m�n�i2�.Proof . With S1 � S5 a minimal realizer is en
oded (Lemma 6). The last string indi
atesthe edges to delete in order to rebuild the well-orderly map: for ea
h v, one bit is used to
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ate if the edge (v; p2(v)) has to be removed and for ea
h leaf v of T2, one bit is usedto indi
ate if the edge (v; p1(v)) has to be removed.4. Appli
ationsIn view of Theorems 2 and 6, the number of 
onne
ted planar graphs is at most 24:9098n.As shown in [BGH03℄, the numbers of 
onne
ted and general planar graphs di�er by atmost a polynomial fa
tor in n.Theorem 7. The number p(n) of unlabeled planar graphs on n nodes satis�es, for every nlarge enough: log2 p(n) 6 �n+O(logn) with � � 4:9098.This result is 
ompleted by the lower bound log2 p(n) > �n + O(logn), with � � 4:767
oming from asymptoti
s of labeled planar graphs [GN℄.The length of the 
oding of well-orderly map depends of the number of the edges of thewell-orderly map.The following two results are obtained from the analysis of the length of the 
ode ofLemma 7. The length of this 
ode depends on the number of edges of the well-orderly map(see Fig. 7).
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essary to en
ode a well-orderly map with m = �n edges, where1 6 � 6 3. (b) Coding analysis: Number of bits per edges of a well-orderly map with m = �nedges, where 1 6 � 6 3Theorem 8. Every 
onne
ted planar graph with n nodes and m edges 
an be en
oded inlinear time with at most 4:91n+ o(n) bits or 2:82m+ o(m) bits.Proof . Combining Theorem 2 and Lemma 7, we obtain an expli
it 
oding with at mostW = W (n;m) = log2(#S1) + log2(#S2) + log2(#S3) + log2(#S4) log2(#S5) + log2(#S6) +O(log(n)) bits where S1; :::; S6 are given in Lemma 7. Thanks to Lemma 5 we 
an en
odein linear time a planar graph with W + o(n) bits, whi
h is W + o(n) bits or W + o(m)



16 Ni
olas Boni
hon et al.bits (sin
e G is 
onne
ted, we have n � 1 6 m 6 3n � 6 and so logn = logm + O(1)).Analyzing the maximum length of the 
odes (over all parameters a0; a1; :::; i2 and m or n),we obtain that W 6 4; 91n+ o(n) or W 6 2; 28m+ o(m) (See Fig. 7 (a) and Fig. 7 (b)).Theorem 9. Almost all unlabeled planar graphs on n nodes have at least 1:85n edges andat most 2:44n edges. Moreover, the result holds also for unlabeled 
onne
ted planar graphs.Proof (sket
h). Our 
ode 
an be parameterized with the number of edges. The lengthof the 
oding is no more than W (m;n) + O(logn) bits. Using a redu
tion from arbitraryplanar graphs to 
onne
ted planar graphs, we 
an apply our upper bound. Combined withthe 4:767n bit lower bound of [GN℄, we derive two numbers �1 = 1:85 and �2 = 2:44 su
hthat our representation is below 4:767 (See Fig. 7 (a)).5. The Average Size of Planar DrawingsTheorem 10. The average number of leaves in a tree of a minimal realizer is 5n=8+ o(n)and the average number of 3-
olored fa
es in a minimal realizer is n=8 + o(n).Proof . Using 
lassi
al te
hniques on generating fun
tion, we obtain that the averagenumber of leaves of the tree T0 of a minimal realizer is 5n=8 + o(n). By symmetry,this result is 
learly true for the two other trees of the realizer. Sin
e for any realizer,`0 + `1 + `2 +� = 2n� 5, where `i is the number of leaves in Ti and � is the number of3-
olored fa
es of the realizer [BLSM02b℄, the se
ond result follows dire
tly.In [ZH03℄ a straight-line drawing algorithm based on minimal realizers is presented.This algorithm �rst 
omputes the minimal realizer of a triangulation of the graph. Thenthe graph is drawn on a grid of dimensions (n � 1 � �) � (n � 1 � �), where � is thenumber of 3-
olored fa
es of the so obtained minimal realizer. Our analysis gives an average
omplexity of su
h drawings:Corollary 1. The average grid size required (i.e., the average width and the average height)to draw a triangulation is at most (7n8 + o(n))� (7n8 + o(n)).In [BLSM02a℄ a polyline drawing algorithm also based on minimal realizers is proposed.The graph is then drawn on a grid (n � � 2̀� � 1) � `, where ` is the number of leaves ofthe tree T0 of the obtained minimal realizer R = (T0; T1; T2). Our analysis gives an average
omplexity of su
h drawings:Corollary 2. The average grid size required to draw a triangulation is at most (11n16 +o(n))� (5n8 + o(n)).
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