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Abstract. The family of well-orderly maps is a family of planar maps
with the property that every connected planar graph has at least one
plane embedding which is a well-orderly map. We show that the number
of well-orderly maps with n nodes is at most 2αn+O(log n), where α ≈ 4.91.
A direct consequence of this is a new upper bound on the number p(n)
of unlabeled planar graphs with n nodes, log2 p(n) 6 4.91n.
The result is then used to show that asymptotically almost all (labeled or
unlabeled), (connected or not) planar graphs with n nodes have between
1.85n and 2.44n edges.
Finally we obtain as an outcome of our combinatorial analysis an explicit
linear time encoding algorithm for unlabeled planar graphs using, in the
worst-case, a rate of 4.91 bits per node and of 2.82 bits per edge.

1 Introduction

Counting the number of (non-isomorphic) planar graphs with n nodes is a well-
known long-standing unsolved graph-enumeration problem (cf. [1]). There is no
known closed formula, neither asymptotic for unlabeled planar graphs.

There are only upper and lower bounds on the growth rate of the se-
quence of numbers p(n) of unlabeled planar graphs. This growth rate, defined
as µ = limn→∞ p(n)1/n, currently ranges between 27.2268 and 32.1556 (a super-
additivity argument shows that such a limit exists [2,3]).

The lower bound on µ comes from an asymptotic on the number of labeled
planar graphs. This asymptotic is on the form n!λn+o(n) [2,3], and in [4], a
precise estimation of λ is given: 27.2268 < λ < 27.2269. The upper bound on µ,
due to [5], comes from succinct encoding of plane planar graphs. More precisely,
after a suitable embedding and triangulation of the planar graph, it is shown
that such embeddings can be represented by a binary string of length at most
5.007n bits. Such representation implies that p(n) 6 25.007n ≈ (32.1556)n.
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Technically, enumerating unlabeled graphs is more difficult than counting the
labeled version. And, as pointed out in [6], almost all labeled 2- and 1-connected
planar graphs have exponentially large automorphism groups. In other words,
Wright’s Theorem [7] does not hold for random planar graphs, the asymptotic
number of labeled and unlabeled planar graphs differ in more than the n! term,
i.e., λ < µ. So, an asymptotic on the number of labeled planar graphs would not
give a sharp lower bound on the growth rate of p(n). The situation from the upper
bound side is not better. There are many ways to embed a planar graph, and
to recover the graph from a suitable triangulation requires deep understanding
of plane triangulations, in particular their enumeration given several parameters
depending on the input graph.

Besides the pure combinatorial aspect, the “encoding” approach is also rele-
vant in Computer Science where a lot of attention is given to efficiently represent
discrete objects. At least two field of applications of high interests are concerned
with succinct planar graph representation: Computer Graphics [8,9,10] and Net-
working [11,12,13,14].

1.1 Related Works

Obviously, without sharp asymptotic formula, properties and behavior of large
random objects cannot be described precisely. For lack of an adequate model,
very little is known on random planar graphs. However, random generation of
planar graphs has been investigated in the last decade.

Using a simple Markov chain, Denis et al. [2] showed, that, experimentally,
random labeled planar graphs have 2n edges. In fact, Bodirsky et al. [15] have
designed the first polynomial time (uniform) random generator of labeled planar
graphs. Although limited in their experiments (mainly by the time complexity
of this algorithm), they showed that actually the number of edges in a random
labeled planar graph is more than 2n. The best proved bounds on the number
of edges in a random labeled planar graph are 1.85n [16] and 2.54n [5], for the
unlabeled case 1.70n and 2.54n, by [5].

Succinct representation of n-node m-edge planar graphs has a long history.
Turán [17] pioneered a 4m bit encoding, that has been improved later by Keeler
and Westbrook [18] to 3.58m. Munro and Raman [19] then proposed a 2m + 8n
bit encoding based on the 4-page embedding of planar graphs (see [20]). In a
series of articles, Lu et al. [21,22] refined the coding to 4m/3 + 5n thanks to
orderly spanning trees, a generalization of Schnyder’s trees [23].

1.2 Our Results

Any planar embedding of a n-node planar graph with n nodes can be seen as a
subgraph of a n-node triangulation of the plane. Once given a triangulation and
a set of edges to keep (or to remove), a planar map and the corresponding graph
can be constructed. The converse is false in general. There is no known method
to uniquely associate a triangulation to a planar graph.
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However, in [5], a linear time algorithm is given to construct a triangula-
tion of the plane in a canonical way for any planar graph, once given a planar
embedding. The reader should keep in mind that there is a-priori no unique em-
bedding for a planar graph. Some of planar embeddings have interesting graph
properties based on the Schnyder’s partition [23] of triangulations into trees. A
new class of planar embeddings are proposed in [5]: the well-orderly maps, a
more restrictive version of the orderly maps of Chuang et al. [21]. The two main
properties of well-orderly maps that can be exploited for graph coding are: 1)
every planar graph admits such an embedding, and 2) given a well-orderly map,
we can uniquely associate a triangulation.

The main result of this paper is to give a good approximation of the number
of well-orderly maps. As a byproduct, it gives a new upper bound on the number
of planar graphs. More interestingly, the combinatorial analysis allow to us to
give an explicit coding of such maps (and thus of planar graphs), as a function of
n and m, the number of edges: 4.91 bits per node, and 2.82 bit per edge (clearly,
2.82m bits is always smaller than 4m/3 + 5n bits). It follows also a new bound
on the number of edges of a random planar graph (labeled or not).

The paper is organized as follows. We describe in Section 2 the relationships
between well-orderly maps, super-triangulations and realizers. The new coding is
presented in Section 3, and in Section 4 are given the applications to the number
of unlabeled planar graphs and to the number of edges in random planar graphs.
Another application of our results is an upper bound on the minimal grid area of
random triangulation of the plane. We show that in average, plane triangulations
can be drawn on grids of area at most 7

8n × 7
8n and 11

16n × 5
6n.

2 Encoding Planar Graphs with Minimal Realizers

In this section we collect some results from [5] about planar graphs, well-orderly
maps, super-triangulations and realizers. In the last paragraph, these results are
used to prove a new representation theorem.

2.1 Planar Graphs and Well-Orderly Maps

A planar map (or plane graph) is an embedding of a connected planar graph on
the plane so that edges meet only at their endpoints. When cutting the plane
along the edges, the remaining components are called the faces. Apart from the
unbounded component, all these faces are homeomorphic to discs. A planar map
is rooted if one of its edges is distinguished and oriented. This determines a root
edge, a root node (its origin) and a root face (to its left), also called external face
or outerface. A triangulation of the plane (or a maximal plane graph) is a planar
map without loops or multiple edges such that all faces are triangles.

A plane tree is, as usual, a rooted tree such that the siblings of a node are
linearly ordered. Equivalently it is a planar map with one face. Among the nodes
of a tree, we distinguish the root, the inner nodes and the leaves. A spanning
tree of a planar map is a subset of edges that forms a tree connecting all nodes.
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Let T be a rooted spanning tree of a planar map H , and let v1, . . . , vn be the
clockwise preordering of the nodes in T . Two nodes are unrelated if neither of
them is an ancestor of the other in T . An edge of H is unrelated if its endpoints
are unrelated.

A node vi is orderly in H with respect to T if the edges incident to vi in H
form the following four (possibly empty) blocks in clockwise order around vi (see
Fig. 2(b)):

– BP (vi): the edge incident to the parent of vi in T ;
– B<(vi): edges that are unrelated in T and incident to nodes vj with j < i;
– BC(vi): edges that are incident to the children of vi in T ; and
– B>(vi): edges that are unrelated in T and incident to nodes vj with j > i.

A node vi is well-orderly if it is orderly and if the clockwise first edge (vi, vj) ∈
B>(vi), if it exists, verifies that the parent of vj is an ancestor of vi.

A rooted spanning tree T of H is a well-orderly tree of H if all the nodes
of T are well-orderly in H with respect to T . A planar map H is a well-orderly
map of root v if it contains a well-orderly tree of root v.

Theorem 1 ([5]). Let G be a connected planar graph, and let v be any node
of G. Then G has a well-orderly map of root v, which can be computed in linear
time. Moreover, a well-orderly map of root v has a unique well-orderly tree of
root v, which can also be computed in linear time.

In Fig. 1 two orderly trees T 0 span the same triangulation but only one is
the well-orderly tree.

(a) (b)
r1

r2

v

r0

w

r0

r1

w
r2

v

uu

Fig. 1. Two realizers for a triangulation. The tree T 0 rooted in r0 (the tree with bold
edges augmented with the edges (r0, r1) and (r0, r2)) is well-orderly in (b), but only
orderly in (a) since node v is not well-orderly

Observe that by definition of well-orderly nodes, an edge of H which is related
with respect to a well-orderly tree T (i.e. one endpoint is a descendant of the
other one in T ) must belong to the tree T : indeed all edges are either unrelated
or connect a node to its father. In particular all the edges incident in H to the
root of T are in T .
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2.2 Minimal Realizers and Super-Triangulations

A realizer of a triangulation is a partition of its interior edges (the edges that
do not lie on the external face) into three sets T0, T1, T2 of directed edges such
that the following conditions hold for each interior node v (see Fig. 2(a)):

– the clockwise order of the edges incident with v is: leaving in T0, entering in
T1, leaving in T2, entering in T0, leaving in T1 and entering in T2;

– there is exactly one leaving edge incident with v in each of the sets T0, T1,
and T2.

Hereafter, when R = (T0, T1, T2) is a realizer, R also denotes the underlying
triangulation.

T0

T1T2

(b)(a)

BP

BC

B>B<

Fig. 2. Relationship between realizer and orderly tree: (a) edge-orientation rule around
a node for a realizer, and (b) blocks ordering around an orderly node

Observe that if (T0, T1, T2) is a realizer, then (T1, T2, T0) and (T2, T0, T1) are
also realizers. This cyclic permutation of the three sets of edges does not in
general provide all the distinct realizers of a given triangulation. Fig. 1 depicts
two realizers for a same triangulation.

Schnyder showed in [23] that if (T1, T2, T3) is a realizer then each set Ti

induces a tree rooted in one node of the external face and spanning all interior
nodes. Moreover, for each Ti, we denote by T i the tree composed of Ti augmented
with the two edges of the external face incident to the root of Ti. For every non-
root node u ∈ Ti, we denote by pi(u) the parent of u in Ti.

A realizer S = (T0, T1, T2) is a super-triangulation of a graph G if:

1. V (S) = V (G) and E(G) ⊆ E(S);
2. E(T0) ⊆ E(G);
3. T 0 is a well-orderly tree of S; and
4. for every inner node v of T2, (v, p1(v)) ∈ E(G).

Lemma 1 ([5]). Let H be a well-orderly map, and T its unique well-orderly tree
of root r0. Assume that T has at least two leaves. Let r2 and r1 be the clockwise
first and last leaves of T respectively. Then, there is a unique super-triangulation
(T0, T1, T2) of the underlying graph of H, preserving the embedding H, and such
that each Ti has root ri. Moreover, T0 = T \ {r1, r2} and the super-triangulation
is computable in linear time.
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Fig. 3. (a) A planar graph G with an embedding which is not well-orderly.
An easy way to see that it is not a well-orderly, is to remark that the edges
(v1, v2), (v1, v3), (v1, v4), (v2, v6) must be in any spanning tree of G rooted at v1 such
that G has only parent edges and unrelated edges. In such trees, v2 is clearly not an
orderly node. (b) A well-orderly map of G. (c) A super-triangulation of G (dotted edges
are not in G)

There is an alternative characterization of super-triangulation in terms of
minimal realizers. A cw-triangle (or clockwise triangle), is a triple of nodes
(u, v, w) (not necessarily corresponding to a face) of a realizer such that p2(u) =
v, p1(v) = w, and p0(w) = u. A minimal realizer is a realizer that does not con-
tain any clockwise triangle. In the realizer depicted in Fig. 1(a), (u, v, w) forms
a cw-triangle, whereas the realizer of Fig. 1(b) has no cw-triangle.

Lemma 2 ([5]). Let S = (T0, T1, T2) be any realizer. The following statements
are equivalent:

1. S is a super-triangulation for some graph G.
2. S is a minimal realizer.
3. The tree T i is well-orderly in S, for every i ∈ {0, 1, 2}.

2.3 Results of the Paper

Theorem 2 (Coding version). The following encoding sequence hold:

– Any connected planar graph can be embedded as a well-orderly map.
– Any well-orderly map can be represented as a minimal realizer (T1, T2, T3)

with a subset of marked edges included in the sets of edges of T2 and of edges
(u, v) of T1 such that u is a leaf of T1.

Our first new result in this paper is that in fact the second encoding is almost
tight.

Theorem 3 (Counting version). Let Hn (resp. Hn,m) denote the set of well-
orderly maps with n nodes (resp. with n nodes and m edges), and Rn,` denote
the set of minimal realizers (T0, T1, T2) with n nodes and l leaves in T2. Then

1

8

n−3
∑

`=1

|Rn,`|2n+`
6 |Hn| 6

n−3
∑

`=1

|Rn,`|2n+`.
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1

8

n−3
∑

`=max{1,2n−m−6}

|Rn,`|
(

n + `

m − 2n + 6 + `

)

6 |Hn,m|.

|Hn,m| 6

n−3
∑

`=max{1,2n−m−6}

|Rn,`|
(

n + `

m − 2n + 6 + `

)

.

3 Counting and Coding Trees

In this section we briefly recall a result from [24] about minimal realizers and
plane trees. An encoding of well-orderly maps follows.

3.1 Minimal Realizers and Plane Trees

A tree is planted if it is rooted on a leaf. Let Bn be the set of planted plane trees
with n nodes and 2n leaves such that each node is adjacent to 2 leaves. Given
a planted tree T of Bn, its canonical orientation shall be toward the root for all
inner edges, and toward the leaf for all dangling edges.

Fig. 4. On the left, a planted tree of Bn (the root is indicated by a square). Then from
left to right, the partial closure of the tree.

A triple (e1, e2, e3) of edges of a map M is an admissible triple if e1 = (v0, v1),
e2 = (v1, v2) and e3 = (v2, v3) appear consecutively in the clockwise direction
around the infinite face and if v3 is a leaf. The local closure of M at the admissible
triple (e1, e2, e3) is obtained by fusing the leaf v3 on node v0 so as to create
triangular face. Observe that by construction the orientation of the dangling
edge prevents the formation of cw-triangles.

The local closure of a tree T of Bn is the map obtained by performing iter-
atively the local closure of any available admissible triple in a greedy way. As
shown in [24], the local closure is well defined independently of the order of local
closures. Moreover all bounded faces of the resulting map are triangular and the
outer face has the structure shown on Fig. 5 (left hand side). In particular there
are exactly two canonical dangling edges in the infinite face that are immedi-
ately followed by dangling edges in the clockwise direction around the infinite
face. A tree T is balanced if its root is one of the two canonical leaves. Finally,
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v1
v2

v0

v
′

0

v0

v
′

0

l2

l
′

2 l
′

1

l1

Fig. 5. The structure after a partial closure, and the complete closure

the complete closure of a balanced tree T is the map obtained from the partial
closure of T by fusing each remaining non canonical leaf with following canonical
leaf in clockwise direction and adding a root edge, as illustrated by Fig. 5 (right
hand side).

Theorem 4 ([24]). Complete closure is one-to-one correspondence between bal-
anced trees with n−2 and triangulations with n nodes. Moreover, the orientation
of inner edges of the triangulation that is induced by the tree corresponds, via
the coloration rule of Fig. 2(a) to a minimal realizer of the triangulation.

Observe that the color of edges can be deduced from their orientation directly
on the balanced tree from the application of the rule of Fig. 2(a).

The following new lemma will serve to predict entering edges created by
complete closure at a node.

Lemma 3. Let v be an inner node of a balanced tree B. Let e1 = (v, u) and
e2 = (v, w) be two consecutive edges around v in the clockwise order. During the
closure algorithm, no edges will be inserted between e1 and e2 if and only if:

(a) w is a leaf of B, or

(b) w is an inner node of B and the node t such that the edge e3 = (w, t) is
the next edge around w after e2 in the clockwise order is a leaf of B.

Proof. Let v an inner node of a balanced tree B. Let us consider two consecutive
edges (v, u), (v, w) around v in the clockwise order. If w is a leaf, then during
the closure it will merge with a node w′ and close a triangular face enclosing
the corner between (v, u), (v, w). No other edge can thus arrive at this corner.
Assume now that w is an inner node of B. Let (w, t) be the next edge around
w in the clockwise order. If t is a leaf of B then it will merge with u to form a
triangular face and again no edge can arrive in the corner between (v, u), (v, w).
In the other cases, (v, w) is an inner edge followed by another inner edge (w, t).
Since an edge that forming a triangular face that encloses the corner between
(v, u), (v, w) must from w, the corner is not enclosed. But at the end of the
partial closure, there are no more pairs of consecutive inner edges: some edge
must be arrived in the corner. ut
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Lemma 4. Let R = (T0, T1, T2) be the minimal realizer encoded by a balanced
tree B. A node v of B is a leaf of T2 if and only if v has no incoming edge colored
2 in B and,

1. the parent edge of v in B is colored 2, or
2. the parent edge of v in B is colored 1, or
3. the parent edge of v in B is colored 0 and v is the last child with an edge

colored 0 in clockwise order around PB(v) and
(a) the parent edge of PB(v) is colored 0, or
(b) the parent edge of PB(v) is colored 2.

The number of vertices of B satisfying these conditions is denoted `(B).

From Lemma 4 and Theorem 2, we obtain:

Theorem 5. Any well-orderly map with n nodes can be coded by a pair (B, W )
where B is balanced tree of Bn−2 and W a bit string of length n+`(B). Encoding
and decoding takes linear time.

3.2 A Context-Free Grammar for Colored Trees

We shall now give a recursive decomposition of trees in which the parameter `
of Lemma 4 can be followed.

To do this we consider the three sets Fi, for i = 0, 1, 2 of trees with a root edge
of color i.To a tree T of Fi, i = 1, 2, we associate the parameter k(T ) = `(T ).
To a tree T of F0 we associate the parameter k(T ) defined as `(T ) except for
the root node which contributes to k(T ) as soon as it has no incoming edge of
color 2, and a second parameter k′(T ) defined as `(T ) except for the root node
which never contributes.

The decomposition is obtained, classically, at the root node: a tree with root
edge of color 0 is made of a root node that carries, in clockwise order, a sequence
of subtrees of root color 1, an outgoing edge of color 2, a sequence of subtrees
of root color 0, an outgoing edge of color 1, and a sequence of subtrees of root
color 2. The parameter ` is almost additive on subtrees . However, due to Rule 3
in Lemma 4, the root of a subtree with root edge of color 0 may or may not be
susceptible to contribute depending how it is attached. In other terms, depending
of how it is attached, a subtree T ′ with root color 0 contributes k(T ′) or k′(T ′).

On Fig. 6 the decomposition is pictured schematically: an incoming edge rep-
resents a tree, a triangle represents a possibly empty sequences of subtrees, and
color correspond to root colors. For color 0, plain and dashed lines respectively
indicate positions where the contribution is given by parameters k or k′. Finally
root nodes that contribute to the parameters are pictured in a box.

3.3 Generating Functions of Trees and the Asymptotic Number of
Well-Orderly Maps

The reader can refer to [25] for a general presentation of enumeration of decom-
posable structures using grammars and generating series.
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= +

= +

= +

= +

+ +

+ +

Fig. 6. A decomposition of colored trees allowing to track the contributions to `

Let us consider the generating function Fi(z, u) of trees with root color i,
i = 0, 1, 2 with respect to the number of edges and the parameter k, and F ′

0(z, u)
of trees with root color 0 with respect to the number of edges and the parameter
k′:

Fi ≡ Fi(z, u) =
∑

T∈Fi

z|T |uk(T ) and F ′
0 ≡ F ′

0(z, u) =
∑

T∈F0

z|T |uk′(T ).

Recall that with respect to additive parameters, the generating function of a
possibly empty sequence of elements of a set S is the quasi-inverse 1/(1− f) of
the generating function f of S. Therefore the previous decomposition translates
into the following system of equations:































































F0 =
z

(

1 +
F ′

0

1−F0

)

(1 − F1)(1 − F2)
,

F ′
0 =

z
(

u + F2

1−F2

) (

1 +
F ′

0

1−F0

)

1 − F1

F1 =
z

(

u + F2

1−F2

)

(1 − F1)(1 − F0)
,

F2 =
z

(

u + F2

1−F2

) (

1 +
F ′

0

1−F0

)

1 − F1
,

or











































F0 =
z

(

1 + F2

1−F0

)

(1 − F1)(1 − F2)
,

F1 =
z

(

u + F2

1−F2

)

(1 − F1)(1 − F0)
,

F2 =
z

(

u + F2

1−F2

) (

1 + F2

1−F0

)

1 − F1
,

where the observation that F ′
0(z, u) = F2(z, u) in the left hand side system

yields the right hand side one. This system of equations completely defines the
generating series F0(z, u). By elimination an algebraic equation for F0(z, u) is
immediately obtained, which is of degree 4.
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We are particularly interested in the case u = 2, since the coefficient fn of
zn in

F (z) = F0(z, 2) =
∑

T∈F0

z|T |2`(T ),

counts n-node trees weighted by 2`(u), and thus overcount n-nodes balanced
trees with the same weight. According to Theorem 3, upon multiplying by 2n,
this yields an upper bound on the number of well-orderly maps with n nodes.

From elementary complex analysis, we have that log fn ∼ log(ρ−n) where ρ
is the radius of convergence of the series F (z) =

∑

n fnzn. Applying the implicit
function theorem to the system defining F (z), we can compute its radius of
convergence and obtain:

ρ = (

√

189 + 114
√

3 − 6
√

3 − 9)/4.

From Theorem 5 we obtain:

Theorem 6. The number of well-orderly maps with n nodes satisfies

1

n
log2 |Hn| 6 1 + log2 1/ρ + o(1) ≈ 4.9098 + o(1).

3.4 A Code for Colored Trees

Let S be a binary string. We denote by #S the number of binary strings having
the same length and the same number of ones than S. More precisely, if S is of
length x and has y ones, then we set #S :=

(

x
y

)

.

Lemma 5. [5] Any binary string S of length n can be coded into a binary string
of length log2(#S) + o(n). Moreover, knowing n, coding and decoding S can be
done in linear time, assuming a RAM model of computation on Ω(log n) bit
words.

Lemma 6. Let B be a balanced tree such that the corresponding realizer R =
(T0, T1, T2) has i2 inner nodes in the tree T2. The balanced tree B can be encoded
with 5 binary strings S1, S2, S3, S4 and S5 and 4 integers a0, a

′
0, a1, i2 6 n such

that:
#S1 =

(

n−a0

i2−a0

)

, #S2 =
(

n−a1

a′

0

)

, #S3 =
(

n+a1

a1

)

, #S4 =
(

a1+a0+a′

0
a0

)

and #S5 =
( n−a1−a′

0

n−a1−a′

0−i2

)

.

Lemma 7. Let H be an m-edge well-orderly map. H can be encoded with 6 bi-
nary strings (5 for the minimal realizer and a last one to store the missing edges)
and 4 integers a0, a1, a

′
0, i2 ∈ [0, n] such that: #S1 =

(

n−a0

i2−a0

)

, #S2 =
(

n−a1

a′

0

)

,

#S3 =
(

n+a1

a1

)

, #S4 =
(

a1+a0+a′

0
a0

)

, #S5 =
( n−a1−a′

0

n−a1−a′

0−i2

)

, #S6 =
(

2n−i2
m−n−i2

)

.

Proof. With S1 − S5 a minimal realizer is encoded (Lemma 6). The last string
indicates the edges to delete in order to rebuild the well-orderly map: for each v,
one is used to indicate if the edge (v, p2(v)) has to be removed and for each leaf
v of T2, one bit is used to indicate if the edge (v, p1(v)) has to be removed. ut
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4 Applications

In view of Theorems 2 and 6, the number of connected planar graphs is at most
24.9098n. As shown in [5], the numbers of connected and general planar graphs
differ by at most a polynomial term in n.

Theorem 7. The number p(n) of unlabeled planar graphs on n nodes satisfies,
for every n large enough:

log2 p(n) 6 αn + O(log n) with α ≈ 4.9098.

This result is completed by the (known) lower bound log2 p(n) > βn +
O(log n), with β ≈ 4.767.

The length of the coding of well-orderly map depends of the number of the
edges of the well-orderly map.

The following two results are obtained from the analysis of the length of the
code of Lemma 7. The length of this code depends on the number of edges of
the well-orderly map (see Fig. 7).

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3
 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3

Fig. 7. (a) Number of bits necessary to encode a well-orderly map with m = αn edges,
where 1 6 α 6 3. (b) Coding analyses: Number of bits per edges of a well-orderly map
with m = αn edges, where 1 6 α 6 3

Theorem 8. Almost all unlabeled and almost all labeled planar graphs on n
nodes have at least 1.85n edges and at most 2.44n edges. Moreover, the result
holds also for unlabeled connected and labeled connected planar graphs.

Theorem 9. Every connected m-edge planar graph can be encoded in linear time
with at most 2.82m + o(m) bits.

5 The Average Size of Planar Drawings

Theorem 10. The average number of leaves in a tree of a minimal realizer is
5n/8 + o(n) and the average number of 3-colored faces in a minimal realizer is
n/8 + o(n).
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Proof. Using classical techniques on generating function, we obtain that the
average number of leaves of the tree T0 of a minimal realizer is 5n/8 + o(n). By
symmetry, this result is clearly true for the two other trees of the realizer. Since
for any realizer, `0 + `1 + `2 + ∆ = 2n − 5, where `i is the number of leaves in
Ti and ∆ is the number of 3-colored faces of the realizer [26], the second result
comes directely. ut

In [27] a straight-line drawing algorithm base on minimal realizers is pre-
sented. This algorithm first computes the minimal realizer of a triangulation of
the graph. Then the graph is drawn on a grid (n−1−∆)× (n−1−∆), where ∆
is the number of 3-colored faces of the so obtained minimal realizer. Our analysis
gives an average complexity of such drawings:

Corollary 1. The average grid size required (i.e., the average width and the
average height) to draw a triangulation is at most ( 7n

8 + o(n)) × ( 7n
8 + o(n)).

In [28] a polyline drawing algorithm also based on minimal realizers is pro-
posed. The graph is then drawn on a grid (n−

⌊

`
2

⌋

−1)×`, where ` is the number
of leaves of the tree T0 of the obtained minimal realizer R = (T0, T1, T2). Our
analysis gives an average complexity of such drawings:

Corollary 2. The average grid size required to draw a triangulation is at most
( 11n

16 + o(n)) × ( 5n
8 + o(n)).
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4. Giménez, O., Noy, M.: Estimating the growth constant of labelled planar graphs.

In: 3rd Colloquium on Mathematics and Computer Science: Algorithms, Trees,
Combinatorics and Probabilities, Birkhäuser (2004)
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encoding of 2-manifold polygon meshes. Graphical Models (2002) To appear in a
special issue.

9. King, D., Rossignac, J.: Guaranteed 3.67V bit encoding of planar triangle graphs.
In: 11th Canadian Conference on Computational Geometry. (1999) 146–149

10. Rossignac, J.: Edgebreaker: Connectivity compression for triangle meshes. IEEE
Transactions on Visualization and Computer Graphics 5 (1999) 47–61



14 Nicolas Bonichon et al.

11. Frederickson, G.N., Janardan, R.: Efficient message routing in planar networks.
SIAM Journal on Computing 18 (1989) 843–857

12. Gavoille, C., Hanusse, N.: Compact routing tables for graphs of bounded genus.
In: 26th International Colloquium on Automata, Languages and Programming
(ICALP). Volume 1644 of LNCS., Springer (1999) 351–360

13. Lu, H.I.: Improved compact routing tables for planar networks via orderly span-
ning trees. In: 8th Annual International Computing & Combinatorics Conference
(COCOON). Volume 2387 of LNCS., Springer (2002) 57–66

14. Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. In: 42th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), IEEE Computer Society Press (2001)

15. Bodirsky, M., Gröpl, C., Kang, M.: Generating labeled planar graphs uniformly
at random. In: 30th International Colloquium on Automata, Languages and Pro-
gramming (ICALP). Volume 2719 of LNCS. (2003) 1095–1107

16. Gerke, S., McDiarmid, C.J.: On the number of edges in random planar graphs.
Combinatorics, Probability & Computing (2002) To appear.

17. Turán, G.: Succinct representations of graphs. Discrete Applied Mathematics 8

(1984) 289–294
18. Keeler, K., Westbrook, J.: Short encodings of planar graphs and maps. Discrete

Applied Mathematics 58 (1995) 239–252
19. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses, static

trees and planar graphs. In: 38th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), IEEE Computer Society Press (1997) 118–126

20. Yannakakis, M.: Embedding planar graphs in four pages. Journal of Computer
and System Sciences 38 (1989) 36–67

21. Chiang, Y.T., Lin, C.C., Lu, H.I.: Orderly spanning trees with applications to
graph encoding and graph drawing. In: 12th Symposium on Discrete Algorithms
(SODA), ACM-SIAM (2001) 506–515

22. Chuang, R.C.N., Garg, A., He, X., Kao, M.Y., Lu, H.I.: Compact encodings of
planar graphs via canonical orderings and multiple parentheses. In: 25th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP). Volume
1443 of LNCS., Springer (1998) 118–129

23. Schnyder, W.: Embedding planar graphs on the grid. In: 1st Symposium on
Discrete Algorithms (SODA), ACM-SIAM (1990) 138–148

24. Poulalhon, D., Schaeffer, G.: Optimal coding and sampling of triangulations.
In: 30th International Colloquium on Automata, Languages and Programming
(ICALP). Volume 2719 of LNCS., Springer (2003) 1080–1094

25. Goulden, I., Jackson, D.: Combinatorial Enumeration. John Wiley & Sons (1983)
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