FACTORIZATIONS OF SIGNED PERMUTATIONS

CEDRIC CHAUVE, ALAIN GOUPIL, AND DOMINIQUE POULALHON

ABSTRACT. In this paper we consider a problem related to the factorizations of elements of the
wreath product of the symmetric group &, by Z/kZ. More precisely, for a given integer k, we
give a combinatorial construction relating factorizations of elements in the wreath product of &,
by Z /kZ and factorizations in &,. Our proof relies on the encoding of such factorizations as maps
with signed edges and can be generalized to the factorization of permutations of any cycle type.

RiESUME. Dans cet article, nous considérons un probléme concernant les factorisations d’éléments
du produit en couronne du groupe symétrique &, par Z/kZ. Plus précisément, pour un entier
k donné, nous présentons une construction combinatoire reliant factorisations dans le produit
en couronne de &, par Z/kZ et factorisations dans &,. Notre preuve repose sur le codage
de factorisations par des cartes aux arétes signées et peut étre généralisée aux factorisations de
permutations de type cyclique quelconque.

1. INTRODUCTION

Integer partitions. A partition A = (A1, As,...,A¢) is a finite non-increasing sequence of positive
integers A; such that Ay > Ay > --+ > Ay > 0. The terms of A are called the parts of A and the
number £ of parts is the length of A, denoted by £()\). We also write A = 191292 .| n% when «; parts
of Aareequaltoi (i = 1,...,n). The weight n of A is the sum of its parts Ay + A2 + -+ -+ A¢, and we
write A F n or |[A\| = n. For any two partitions A and p, A+ p denotes the unique partition for which
the set of parts is the union of the sets of the parts of A and p. For example, (4,3,1,1) + (3,2,1) =
(4,3,3,2,1,1,1). For an integer k and a partition A, we call k-decomposition of \ every k-tuple of
partitions X = (A%, ..., \¥~1) such that A = A + - -- + Ak,

Factorizations of cycles in the symmetric group. It is well known that the conjugacy classes
of the symmetric group &,, are indexed by the partitions of n [6]: we denote by C, the conjugacy
class indexed by A, which is called the cycle type of the permutations o € Cy (a cycle of length j in
o induces a part of size j in A). Let n be a given positive integer, A, u and v three partitions of
weight n, and 7 a permutation of C,: the number of pairs (¢,7) of permutations in Cx x C, such
that o7 = 7 is denoted by cj ,. We call such a pair of permutations (o, 7) a factorization of . The
coefficients ¢ ,, that express the number of ways a permutation can be factorized as a product of
two permutations with given cycle types are known as connection coefficients or structure constants
of the symmetric group.

Efforts for computing special values of c§ , have been made by several authors, mostly in the
case v = (n) or restricted values of A and p (see the discussion in [4, 5]). In particular, Goupil and

(n)
A

Schaeffer give the following explicit expression for c; ,, valid for any partitions A and p of weight n:

Theorem 1. [5, theorem 2.1] Let A and p be two partitions of weight n, with A = 1** ...n* and
p=101_ . nPr. Then

(n) _ n
W (Hin:1 ai!ﬂi!) 229(A\.1) Z SZ(A),m (/\)SE(N),gz (1),

91+92=9(\,n)
where g(\, u) is the genus of the pair (\, u), defined by £L(\) + £(u) =n + 1 —2g(\, u), and

1 .’L‘i—].
Sk,g(ml,...,mk):(k+2g—1)! Z Hm( )

2 .
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is a symmetric polynomial of degree 2g in the x;.
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The notion of genus g(\, u) of a pair (A, u) of partitions of same weight, which is central in this
paper, is indeed directly related to the notion of topological genus of maps (see Section 2).

The group WE. In this paper, we are interested in the problem of the enumeration of connection
coefficients in the groups W¥, the wreath products of the symmetric groups by Z/kZ, also called
complete monomial groups over Z [kZ [6, Chapter 4].

Let n and k be two fixed integers, ¢ = €%"/* (a root of unity), and Z; be the set of the powers
of x. An element o of WF is a permutation on the underlying set U¥ = {&.i| € € 2y, i € [n]},
where [n] = {1,2,...,n}, such that for every £ € Z; and z € U¥, o(£.2) = £.0(x). Elements of WF
are called k-signed permutations. For any element x = £.i of U¥, we say that i is its absolute value,
denoted by |z|, and & is its sign, denoted by ((x).

Remark 1. We use the terminology sign and absolute value in analogy with the case k = 2 where
(r = —1. From now on, the word sign will always refer to an element in Zj.

Following the representation of permutations of &,, as a set of cycles, we call cycle representation
of a k-signed permutation of WX the set of cycles defined as follows. Let o be a permutation of WF
and 7 be the permutation of &,, defined by (i) = |o(i)| for ¢ € [n]. For every cycle vy = (71 ...7¢) of
7, one defines the extension d of 7y to o as the k-signed cycle § = (41 . ..d;) defined by §; = o(mw1(v;))
for every y; of v. The cycle representation of o is the set of k-signed cycles composed of the extensions
to o of the cycles of 7. It is immediate to see that the cycle representation of a k-signed permutation
is unique.

Ezample 1. Let k = 3 and n = 5. For i € [5], we use the notation i and ¢ respectively for (3.i and
(3%.i. The 3-signed permutation o below in the two rows notation
o= (135)(2)(4).

(123 451
(355413
has the cycle representation

From now on, we consider k-signed permutations only through their cycle representation. For
i € [n] and a k-signed permutation o, we define the sign of ¢ in o, denoted by ((¢, o), as the sign of the
element of absolute value 7 in the cycle representation of o. The sign of a cycle v = (£1.91 - . . & i)
in a k-signed permutation is the product of the signs of its elements: ((v) =& ...&,. When k = 2,
cycles of sign 1 (resp. —1) are sometimes called positive (resp. negative) [1] or even (resp. odd)
[7] cycles. The cycle type of a k-signed permutation o is an ordered k-tuple X = (A%, ..., AF1) of
partitions such that every part A of A is the size of a cycle of sign (;* in o (A? is the cycle type of
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the restriction of o to cycles of sign (). Hence Xis a k-decomposition of a partition A of weight
n. The sign of a k-decomposition X is given by ¢(X) = [T2) (¢:H) ™). In other words, if a k-signed
permutation ¢ has cycle type X, then the sign of X is the product of the signs of the cycles of o.
Ezample 2. If k =3, n =5 and 0 = (1 3 5)(2)(4), (1 3 5) and (2) are cycles of sign 1 and (4) is a
cycle of sign (3. Hence the cycle type of o is given by X = (A% A}, A2) where X\° = (3,1), A! = (1)
and A2 = 0, and the sign ¢(}) is Cs.

It is known [6, Section 4.2] that the conjugacy classes of W¥ are indexed by the k-decompositions
of partitions of weight n. We denote by C; the conjugacy class of )/V’nc indexed by the k-decomposition
X. Given an integer n, three k-decompositions of partitions of weight n, X, iZ and 7, and an element
T € WF of cycle type #, the number of pairs (o,7) of k-signed permutations in C; x Cz such that
oT = w is denoted by cg’

From now on, we call k-signed n-cycle of sign ¢t any k-signed permutation 7 with only one cycle,
of length n and sign (7: its cycle type X is a k-decomposition of (n) such that AJ = (n) and \i = §§
for i # j. Such a cycle is said to be canonic if |o(i)] =i+ 1 for any ¢ € [n — 1], and |o(n)| = 1. The
main part of this paper will be devoted to the description of a constructive proof of the following
enumerative result on the factorization of a k-signed n-cycle.
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Theorem 2. Let k and n be two integers, A\ = 1% .. .n% and p = 151 .. .nP be two partitions
of weight n, X = ()\0 /\k’l) a k-decomposition of X, fi = (4°,..., 1) a k-decomposition of
(where \i =121 ... p% and @i =151 .. .nPr) and 7 a k-decomposition of (n). Then:

0 if ¢(7) # C(X)C(A),
i H ( o % k_1> ( 0 i ,?_1> ) cg‘"L otherwise,
a HEEE ,ﬂJ

j=1 jrrr %

where g(A, ) is defined by L(A) + () =n+1—2g(\, p).
In Section 5, we propose, with a sketch of the proof, a generalization of this result to any cycle
type 7.
Remark 2. theorem 2 can be proved by an argument on the size of the conjugacy classes. But it
can also be read in the following combinatorial way. Given
e two permutations o and 7 in &, of respective cycle types A and p, such that o7 = (12 ... n),
e a canonic k-signed n- cycle m of sign &, and
e two k-decompositions X and ji respectively of A and p such that £ = ¢ (A )C (&),

ﬁ ( @;j ) ( Bi ) E29(Asn)
Py a(;,...,af*l ?,...,,8;“1

ways to sign the elements of ¢ and 7 (i.e. to multiply every element in their cycle representation by

a sign of Z;) in such a way that the resulting pair (¢',7') of signed permutations is a factorization

of 7 such that the cycle types of o’ and 7 are given respectively by X and 7. If £ # ¢ (X)C (i), there

is no way to give signs to the elements of ¢ and 7 with respect to A and u and obtain a factorization

of 7.

Ezample 3. Let k = 2 ({57 will be denoted by -i), 0 = (15)(26)(47)(38),7=(164)(285)(37),
=(1-2345-678) (we perform the product of permutations from right to left), X = ((2,2,2,2),0)

and i = ((3,3,2),0): we want all the cycles of ¢’ and 7’ to have sign 1, that is an even number of

elements of sign —1. Then g(\,u) = 1, and there are four ways to assign an even number of —1

signs in every cycle of ¢ and 7, giving hence ¢’ and 7/, in such a way that ¢'7' = 7 (for k = 2, we

use the notation (5.1 = —1):

o' =(15)(-2-6)47)(38)and 7 =(164)(285)(37),

o' =(-1-5)(26)(47)(38) and 7' = (-1 -6 4)(-28 -5)(3 7),

=(15)(26)(-4-7)(-3-8) and 7' = (1 -6 -4)(-2 -8 5)(-3 -7),

= (-1-5)(-2 -6)(-4 -7)(-3 -8) and 7' = (-1 6 -4)(2 -8 -5)(-3 -7).

But cycles of ¢ and 7 cannot be transformed into positive k-signed cycles to obtain a factorization

of 7' =(1-2-345-678).

This presentation of theorem 2 leads to the question of a constructive proof, i.e. an algorithm
which, given o, 7, 7 and two k-decompositions of the cycle types of ¢ and 7, enumerates all the
corresponding factorizations of 7 in WX. We propose such a proof in the next three sections. It
relies on a generalization of a representation of products of permutations as maps, which induces
an immediate combinatorial interpretation of the genus of such a product. This representation is
described in Section 2. Section 3 describes our proof in the planar case (g(A, p) = 0), and Section 4
extends this proof to the general case of unrestricted genus. Finally, in Section 5 we sketch an
extension of this result in the case of factorizations of permutations of any cycle type.

there are exactly

!
I
I

2. FACTORIZATIONS OF k-SIGNED 7-CYCLES AND k-SIGNED 2-CACTI

In this section we generalize the representation of the factorizations in &,, of a n-cycle as a product
of two permutations in terms of maps to the case of the group W¥. This representation is interesting
because it relates the parameter g(A, u) to the topological notion of genus.
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A map M = (S,G) on a compact oriented surface S without boundary is a graph G together with
an embedding of G into S such that connected components of the complement S\G of the embedding
of G in S, called the faces of the map, are homeomorphic to disks. The genus of a map (S, G) is the
genus of the surface S. The Fuler formula states that for a map with e edges, v vertices and f faces,

(1) v—e+ f=2-2g.

Two maps (S, G) and (S',G'") are isomorphic if there exists an orientation-preserving homeomorphism
f:S8 — 8 such that f(G) = G'. We shall consider maps up to isomorphism. A map is k-signed if
each edge is weighted with a sign (chosen among Z;). The sign of an edge e of a map M is denoted
by (e, M). We say that two faces (resp. vertices) having an common edge e on their boundaries
(resp. linked by an edge e) are adjacent through e, and that a face (resp. vertex) is incident to every
edge and vertex on its boundary (resp. to every edge linking it to another vertex).

We now propose a natural generalization to signed maps of the notion of 2-cacti, also called
bicolored g-trees (see [4] for the notion of m-cacti and its relation with the factorizations of cycles in
Gp). A k-signed 2-cactus of genus g can be seen as an ordered g-tree (a map of genus g having only
one face) with bicolored (say black and white) vertices in which each edge is replaced by a 2-gon (a
polygon with two edges, a white edge and a black edge) and each 2-gon is incident to a black vertex
and a white vertex (see Figure 1 below). Formally, a k-signed 2-cactus with n 2-gons is a k-signed
map whose vertices, edges and faces are bicolored (say in black and white) in such a way that

e the n 2-gons are all black faces and each is incident to exactly a white edge, a black edge, a
white vertex and a black vertex ;

o there is exactly one white face, and it is incident to all edges and adjacent to all black faces ;

e every edge is incident to exactly one white vertex (called its white vertex) and one black
vertex (called its black vertex) ;

e black (resp. white) edges follow immediately black (resp. white) vertices when turning
counterclockwise around the white face.

The degree of a vertex or a face is the number of its incident 2-gons. A k-signed 2-cactus is rooted

if one of its white edges (called the root-edge) is distinguished. From now on, cactus means rooted
cactus. Classical 2-cacti, as defined in [4], are equivalent to 1-signed cacti.

-~ -

FIGURE 1. A 2-signed 2-cactus of genus 0: edges of sign —1 (resp. 1) are thick
(resp. thin) edges, white (resp. black) edges are dashed (resp. solid). 2-gons are
the grey faces.

For a given k-signed 2-cactus C, we define the sign of a verter x, denoted by ((z,C), as fol-
lows: let ej,...,en, be the edges incident to x that have the same color as x ; then ((z,C) =
¢(e1,C)...¢(em,C). The notion of sign of vertices induces a partition of the set of white vertices
into an ordered k-tuple W (C) = (W°(C),...,W*=1(C)) of sets of vertices, where W(C) is the set
of white vertices whose sign is Cx'. Moreover, we associate to the set Wi(C) the integer parti-

tion \i = 1%1 ... n% where o} is the number of vertices in W*(C) of degree j. We call the k-tuple

X = (X%,..., \*=1) the white degree distribution of C. The set partition B(C) = (B°(C),. .., B*1(C))
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of black vertices and the black degree distribution i = (u°,...,u*~1) are defined accordingly. For
example, the degree distributions of the cactus in Figure 1 are given by A\ = (1), A! = (4,3,1),
10 =(3,2,1,1,1) and p* = (1).

The relations between factorizations of permutations in the symmetric group and combinatorial
maps have been well studied. For an account of the link between pairs of permutations and maps
on oriented surfaces, the reader is referred to [3]. The next proposition is a natural extension, to
the case of the group WE, of the relation between maps and pairs of permutations.

Proposition 1. Let k and n be two integers, X and i k-decompositions of partitions A and p of
weight n, and w a k-signed n-cycle. There is a one-to-one correspondence between pairs of k-signed
permutations (o,7) of WE, of cycle types X and [, such that ot = m, and k-signed 2-cacti with n
2-gons, of genus g(\, u), with white and black degree distributions X and -

Sketch of proof. The proof we sketch here follows naturally from the discussion given in [3] (see also
the proofs of [2, proposition 2.2] and [4, theorem 3.1]). The construction is a natural generalization
of the constructions described in detail in the above cited papers.

Let us first introduce some notations and terminology. We call a traversal of a 2-cactus the process
of following the edges of this cactus by turning counterclockwise around its white face, starting at
the root-edge. For a k-signed 2-cactus C with n 2-gons and a permutation 7 of &,,, we call w-labeling
of C the labeling of its 2-gons defined as follows: the 2-gon incident to the k" visited white edge
during a traversal of C is labeled by |7*~1(1)|. We denote by w; (resp. b;) the white (resp. black)
edge incident to the 2-gon labeled by ¢ (hence the root-edge is always w;).

The proposition relies on a construction relating vertices of a 7-labeled k-signed 2-cactus C and
cycles of elements in UF: to any white (resp. black) vertex x of C of degree d corresponds the unique
cycle v(xz) = (& .41 -..&q4-14) such that the cyclically ordered 2-gons incident to z (when turning
counterclockwise around z) are labeled by i1,...,i3 and for each 2-gon i, (¢ € [d]), ((w;,,C) = &

O

(resp. ((bi,,C) = &)-

Remark 3. Given a 7-labeled k-signed 2-cactus C and ¢ € [n], if b; and w, are the two edges following
w; in a traversal of C ((bj,wy) is a pair of consecutive edges), then 7 (i) = {(b;,C)¢(we,C)L .
Example 4. Let k = 2. The 2-signed 2-cactus of Figure 2 below corresponds to the factorization
(o,7), where ¢ = (-1)(2 3 4 -5)(-6 7 -8) and 7 = (-1 -5 8)(-2)(3)(4)(6)(-7), of the cycle = =
(1-2-34-5-6738).

FIGURE 2. A labeled 2-signed 2-cactus of genus 0.

3. PROOF OF THEOREM 2 IN THE PLANAR CASE

Our proof relies on an algorithm that takes as input a 4-tuple of objects, called an unsigned input,
described below.
Definition 1. An unsigned input of genus g is a 4-tuple (C, W, B, ) where 7 is a k-signed n-cycle
(for some positive integer k), C is a m-labeled (1-signed) 2-cactus of genus g, W (resp. B) is a
partition of the white (resp. black) vertices of C into k sets WO, ..., W*~! (resp. B?,...,B¥"1).
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We call k-decomposition X (resp. i) induced by W (resp. B) the unique k-decomposition such
that, for every positive integer d, the number of vertices of W* (resp. B*) of degree d is equal to the
number of parts of size d in A* (resp. u*), fori =0,...,k—1.

Definition 2. A k-signed 2-cactus D is said to be consistent with an unsigned input (C, W, B , ) if:
e its underlying unsigned 2-cactus is C,
o fori=0,....,k—1, Wi(D) = W and B¥(D) = B,
e D corresponds, according to proposition 1, to a factorization of .

We first focus on the case where the sign of the factorized n-cycle 7 is different from ¢ (X)C (&)
(lemma 1), then we consider the planar case, that is when g(A, u) = 0. We extend our algorithm for
the planar case to the general case in Section 4.

Lemma 1. Let (C,W,I?, ) be an unsigned input, where T is an n-cycle of sign &, X and i be the
k-decompositions induced by W and B, and D be a k-signed 2-cactus consistent with (C,W,B, ).

Then & = ((N)C(A).

Proof. First we notice that, by definition, the white and black degree distributions of D are given
respectively by A and ji. By definition of the sign of a vertex and of a degree distribution, we have

k—1 ) .
¢ = T[@H" HF = ] ¢ D).
=0 e edge of D

Now the sign of a n-cycle is the product of the signs of the elements in its cycle representation, and
for any j € [n], if b, is the edge that precedes w; in a traversal of D, then according to proposition 1
¢(j,m) = ¢(be, D)¢(wj, D). As the sign of 7 is &, it follows that

¢= JI <),

e edge of D
hence £ = ((X)¢(f)- O

From now, we suppose that for every unsigned input (C, W,E, 7), the decompositions X and i
respectively induced by W and B are such that the sign of  is equal to ((X)((j@). We now describe
an algorithm that, given such an input (C, W,E, m), produces a k-signed 2-cactus consistent with
this input.

Algorithm 1. (Input: an unsigned input (C,W,B,n) of genus 0, where 7 is a k-signed n-cycle.
Output: a k-signed 2-cactus D with n 2-gons.)
Let D = C. As long as all the edges of D did not received a sign, traverse D and, for any pair of
unsigned consecutive edges (b;, w;) (i.e. w; follows immediately b;),
(a). if b; is the last unsigned black edge incident to its black vertex z, with z € B, then:
e b; receives the only possible sign such that ¢(z, D) = *,
e C(w;, D) = C(G,m)/<(bi, D).
(b). if w; is the last unsigned white edge incident to its white vertex y, with y € W¥¢, then:
e w; receives the only possible sign such that ((y,D) = Gt
* ((bs, D) = ¢(j, m)/¢(w;, D).
Ezample 5. Let k = 2, and C, w and a partition (W%, W1, B%, B) of the vertices of C as in Figure 3
below. Then the output D of algorithm 1 on this input is the k-signed 2-cactus displayed in Figure 2.
Lemma 2. Let (C, W,g, ) be an unsigned input of genus 0. During an execution of algorithm 1
with (C,W, B, ), one of rules (a) or (b) is applied to every pair of consecutive edges of D.

Proof. The depth of the vertices of D is defined recursively in the following way: vertices of degree 1
have depth 0, and vertices of depth ¢ > 0 are those vertices whose all neighbors (vertices adjacent
through an edge) but one have depth less than ¢, with at least one neighbor of depth ¢ — 1.
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[ (1] [0] : vertices from WO U BO
\ [1] : vertices from W' U B!
m=(1-2-34-5-6738)

FIGURE 3. An input for algorithm 1.

Now let (b;,w;) be a pair of consecutive edges such that b; is incident to vertices z and y, and
assume, without loss of generality, that y is deeper than z. If z has depth 0, then both edges b;
and w; receive a sign at their first visit. Otherwise, all 2’s neighbors but y have lower depth than
z (denote by £ the depth of ), and by induction after £ — 1 visits, all the black edges incident to x
but b; are signed. Hence b; and w; are signed after ¢ visits. O

Notation. For a pair (b;,w;) of consecutive edges in a 2-cactus D, we denote by D;, D; and D; ;
the subcacti defined as shown in Figure 4 below.

FIGURE 4. The three subcacti induced by a pair of consecutive edges (b;,w;).

Claim 1. Consider an execution of algorithm 1, and (b;,w;) a pair of consecutive edges in the
2-cactus D processed during this execution. Then, at any time during this process, the following
property holds: if the hypothesis of rule (a) (resp. (b)) is satisfied by b; (resp. w;) then all the edges
in D; (resp. D; ;) did receive a sign.

Proof. We proceed by induction of the number of 2-gons in D; and D; ;. The property clearly holds
if D; (resp. D;,;) is empty. Now assume that the property holds if D; and D; ; each have at most
p 2-gons (p > 0), and suppose that D; has (p + 1) 2-gons. Let z be the black vertex of b; and
(be, wr,) be a pair of consecutive edges of D; such that z is also the black vertex of by (such edges
exist since D; is not empty). If rule (a) is applied to (b;, w;), then by and w, necessarily received
their signs previously trough rule (b). As, in this case, D; and Dy, have each less than p 2-gons,
the property holds for D; by induction. Similarly, the property for rule (b) holds for D; ;, which
ends the proof. O

Claim 2. Consider an execution of algorithm 1, and (b;,w;) a pair of consecutive edges in the
2-cactus D processed during this execution. If rules (a) and (b) can be applied to (b;,w;) during the
same traversal of D, then b; and w; are the last unsigned edges in D.

Proof. Let b; = (z,y) and w; = (y, z) where z and z are black vertices and y is a white vertex. It
follows immediately from claim 1 that all the edges in D; and D; ; are signed. But as all edges of
D;,; are signed and w; is not, one knows that b; is already signed and that when it received a sign
it was the last unsigned black edge incident to z (the corresponding white edge belongs to D; ; and
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is signed due to the fact that w; is not). It implies that the edges in D; are all signed. Hence all
the edges but b; and w; are already signed. O

Lemma 3. Let (C, W B ,m) be an unsigned input of genus 0. The output of algorithm 1 applied to
(C,W,B,) is consistent with the unsigned input (C,W,B,x).

Proof. Let D be the k-signed 2-cactus resulting from algorithm 1 and (b;, w;) be a pair of consecutive
edges of D. If it is not the last unsigned pair, claim 2 states that only one of rules (a) and (b)
determines their signs, and it follows from remark 3 that the signs given at this step do not violate
any constraint induced by the unsigned input, and that {(j, ) = {(b;, P){(w;, D). Hence it remains
to verify that the same happens when processing the last pair of consecutive edges

Let & be the sign of the cycle , X and [ the k-decompositions induced respectively by W and B ,
and (b;, w;) the last pair of (consecutive) unsigned edges. It follows immediately from the definition
of the sign of a k-signed n-cycle that the product of the signs of all the signed edges of D (that is
all the edges but b; and w;) is equal to £/((j, 7). Moreover, we can deduce from the assumption
that & = ((X)¢(7) and from the fact that ((X)((F) = [I.cp ¢(e; D) (proof of lemma 1), that (4, )
should be equal to ¢{(b;, D){(w;, D), which shows that the signs given to (b;, w;) make the signed
2-cactus D consistent with the unsigned input. O

Lemma 4. Let (C,W,g, 7) be an unsigned input of genus 0 and D the corresponding output by
algorithm 1 applied to (C,W,B, ). Then D is the only k-signed 2-cactus consistent with (C, W, B, x).

Proof. Let £ be another consistent k-signed 2-cactus for the input. Perform a parallel traversal of
D and &, and let e be the first edge with different signs in D and £. There can not be a white edge,
because £ would necessarily violate remark 3.

So e = b; = (z,y) is a black edge ; we show by induction on |D;| that this situation leads to a
contradiction. If z has degree 1 (i.e. |D;| = 0), the contradiction is immediate. Else, one of the other
black edges b; (z,y') incident to = has not the same sign in D and £, which implies that the white
edge we = (y',2') that forms a consecutive pair with b; has not the same sign in D and €. If y' has
degree 1 (2 = z), then the sign of y' should be the same in D and £, and we have a contradiction.
Else, there should be another black edge b,, = («',y') in D; with different signs in D and £. As
|Dim| < |Del, the induction hypothesis leads to a contradiction. O

—

Proposition 2. Let (C, W, B, 7) be an unsigned input of genus 0. There is only one signed 2-cactus
D consistent with (C,W, B, w) and algorithm 1 computes D.

Proof. Proposition 2 follows immediately from lemmas 2, 3 and 4. d

Remark 4. For a k-signed 2-cactus C with n 2-gons, a k-signed n- cycle m, and two k-decompositions
X and /i of partitions A and g of weight n (where A = 121 .. .n% and pi = 151 ...nP4), there
are exactly [[i—; (o —i)( 50 B ,r;zl“—l) distinct unsigned inputs (C, W, B, ) such that X and 7 are

Qg
respectively induced by W and B.

Proof of theorem 2 in the planar case. Given a signed 2-cactus D of genus 0, there is clearly only
one unsigned input (C, W, B, ) of genus 0 such that D is consistent with (C, W, B, m). This, together
with proposition 2, implies that there is a bijection between unsigned inputs of genus 0 and signed
2-cactus of genus 0. This fact, remark 4 and lemma 1 prove theorem 2 in the planar case. O

4. PROOF OF THEOREM 2 IN THE GENERAL CASE

We now turn to the general case when an unsigned input (C,W,g, 7) has no restriction on
the genus g of C. We want to extend algorithm 1 so that it produces k29(*#) k-signed 2-cacti
consistent with (C,W,B,n). The general principle of this extension is to use algorithm 1 on a
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planar substructure of a 2-cactus. Hence we introduce a natural notion of planar subcactus of a
cactus.

Definition 3. Let C be a signed 2-cactus with m vertices. A planar subcactus of C is any (connected)
submap of C that is a 2-cactus of genus 0 with m vertices.

A subcactus can clearly be obtained by removing 2-gons from C and it follows immediately from
Euler formula (1) that, given any 2-cactus C of genus g and any planar subcactus C’ of C, there
are exactly 2¢g 2-gons of C that do not belong to C'. As for g-trees, any 2-cactus of genus g can be
decomposed in a set of 2g 2-gons (called a non-planar subset of C) and a planar subcactus.

We now describe an algorithm that, provided any unsigned input (C, W, B ,m) of genus g, any non-
planar subset (i1,...,424) of C (the i;s are labels of 2-gons of C) and any set of 2g signs (s1,. .., S24),
produces a k-signed 2-cactus consistent with the input (C,W,E, 7). The main idea behind this
algorithm is that, once each edge b;; for j € [2g] has received the sign s;, signs of all other edges
are uniquely determined by algorithm 1. For the clarity of the proof, we present it (algorithm 2) in
a slightly different way: we remove the 2-gons 41,...,%24, in order to obtain a planar 2-cactus, and
in order to apply algorithm 1 on an unsigned input with this planar 2-cactus, we modify 7 and the
partitions W and é, according to the planar subcactus and (s1,..., $24), so that the assumption
that the sign of r is equal to ((X)¢(j) still holds (step (1)). Algorithm 1 can then be applied on the
resulting unsigned input (step (2)). This gives the signs for most of the edges of the resulting signed
2-cactus and some last modifications needed to take into account the modifications done in step (1)
(step (3))-

Algorithm 2. (Input: an unsigned input (C,W,E, 7) of genus g, where 7 is a k-signed n-cycle, a
non-planar subset (i1, ...,i2y) for C and an ordered list (sq,...,s2,4) of signs. Output: a k-signed
2-cactus D of genus g with n 2-gons.)

(1) Let mp =7, Co =C, Wo = W and By = B. For j from 1 to 2g:

(a) let z and y be respectively the black and white vertex of the 2-gon i;, £ and m be
such that z € Bf_l and y € W/, and w, be the white edge following immediately b;;
during a traversal of C;_; ;

(b) remove the 2-gon ; from C; and let Cj41 be the resulting cactus ;

l/s; l/s; i T i T

(c) ff}: B!_,/{x}, BY* = B U {z}, Wi = W, {y}, W/ Cm = ymea/iem

Yss

(d) remove the element of absolute value i; from 7;_1, give to p the sign of ((i;,7) and let
m; be the resulting k-signed cycle.

Root Cy4 at the white edge incident to the 2-gon with the smallest label.
(2) Perform algorithm 1 on the unsigned input (Cog, Way, Bag, mag).

Let D2y be the resulting cactus.
(3) For j from 2g from 1:

(a) insert in D; a 2-gon labeled with i; in the same position than in C (edges w;; and b;; are
unsigned) and let D;_; be the resulting cactus (as an unsigned cactus, D;_; is equal
to Cj_1) ;

(b) let (bi;,wp) and (b, w;;) be the two consecutive pairs in D; ; involving b;; and w;; ;

(c) ¢(bi;s Dj—1) = s, ((ws;, Dj—1) = ((wp, Dj—1), ((wp, Dj—1) = ((p,m)/s;-

Root Dy at w1 and let D = Dy.

A detailed example of this algorithm is given in Figure 5 below.
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vertices from W' and B!
vertices from W° and B°

r=(1-234-5-67-89) o
i1 =2, 02 =3, 81 =—1, 85 =1 H
T 0:

’[1] ma=(1-7-894-5-6)

Step (2): algorithm 1

FIGURE 5. Running algorithm 2 with k=2 and g =1

Lemma 5. Let (C,W, B, ) be an unsigned input, (iy, ... ,i29) be any non-planar subset for C and
(81,---,829) be any tuple of signs. The k-signed 2-cactus D resulting from algorithm 2 applied on

«(c,w,B,), (i1, . - .y i2g), (81,. .., 824)) is consistent with (C, W, B, ).

Proof. Tt is easy to verify that after step (1) of algorithm 2 (the modification that produced
(ng,W29,§29,W2g)), the sign of my, is equal to the product of the sign of the k-decompositions
induced by ng and Egg. Then we can apply algorithm 1 on (Cay, ng, Ezg,ﬂzg), and by proposi-
tion 2, the resulting cactus Dy, is the only signed 2-cactus consistent with (Cag, ng, ézg, Tag). Now
step (3) can be seen as the reverse of step (1) and clearly leads to a signed 2-cactus consistent with
(C,W,B,n). O

Lemma 6. Let (C,W, B, ) be an unsigned input, (iy, . . . ,i2g) be any non-planar subset for C and
(s1,---,82) be any tuple of signs. The k-signed 2-cactus D resulting from algorithm 2 applied on

«c,w,B,r), (i1, . - .,l02g),(81,--.,829)) is the only one that is consistent with (C,W,B,n) and such
that, for every j € [2g], the sign of b, is s;.

Proof. Let € be a signed 2-cactus consistent with (C, W, B, ), with ¢ (bi;,&) = s for j € [2g]. When
one removes the 2-gons labeled with 41,...,%2, and one modifies the signs of the edges according to
step (3) of algorithm 2, one obtains a planar signed 2-cactus &' consistent with (Cag, ng, Egg, Tag)-
Indeed, let (be, w,,) be a pair of consecutive edges in £'. If neither b, nor w, has been modified when
removing the 2-gons 41,...,i2,, then, as £ is consistent with (C,W,g, ), ((m,mag) = ¢((m, ) =
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C(be, €' )¢ (wm, E)m. Otherwise, the two edges are incident in £ to a 2-gon i;. Now step (3) sets
the sign of w;; of £ equal to the sign of wy, in &', and £ is consistent with (C,W,é, m). Hence
C(m,mag) = ¢(be, £ (wm,E")j. Now, if £ is consistent with (CI,W',EI,W’), then & = Dy,, which
implies that & = D, due to the deterministic nature of step (3). O

This allows to complete the proof of theorem 2:

Proof of theorem 2. The case ((#) # ((XN)((F) follows immediately from lemma 1.

Now, let (o, 7) be a pair of permutations of &,, such that o7 is a canonic n-cycle, with respective
cycle types A and g ; let m be a canonic k-signed n-cycle of cycle type 7/, and X and i two k-
decompositions of A and u such that ((7) = ¢ (X)C (i) Let us denote by C the 2-cactus corresponding
to (o,7) (according to proposition 1 in the case k = 1), g its genus and (i1, ...,4i24) any non-planar
subset for C.

Lemmas 5 and 6 imply that algorithm 2 defines an injective application from the set of all possible
((c,w,B,n), (41,---,192g),(S1,---,829)) such that W and B induce X and /i and (81,---,82) is an
ordered list of signs to the set of factorizations (¢',7") of 7 of cycle types X and /i. As every such
factorization induces clearly an input for algorithm 2, it is also surjective, and then bijective. This
fact, together with remark 4 and the fact that there are exactly k9 different ordered sets (s, . . ., 824)
of signs ends the proof. O

5. EXTENSION TO FACTORIZATIONS OF UNRESTRICTED PERMUTATIONS

We proved in the previous sections an interesting relationship between factorizations of cycles in
the symmetric group and factorizations of cycles in the groups WE. In this last section, we sketch
an extension of this result to more general factorizations.

Indeed, we worked here on one of the simplest cases of factorizations of permutations, that is
factorizing cycles as product of two permutations. A natural extension of our result is to consider
factorizations of any kind of signed permutations. This problem was solved, in the symmetric
group, but only in the planar case, by Bousquet-Mélou and Schaeffer [2]. They described a family
of planar maps, called planar constellations, that generalizes unsigned 2-cacti of genus 0 and gives
a combinatorial model for the study of such factorizations.

2-constellations of genus g ARE bipartite maps (vertices are colored black and white and every
edge is incident to a black vertex and a white vertex) of genus g where edges have been replaced by
2-gons (see Figure 6 below). It follows immediately from the work of Bousquet-Mélou and Schaeffer
(see also the papers by Cori and Machi [3]) and Section 2 of the present paper that k-signed 2-
constellations are in one-to-one correspondence with factorizations of k-signed permutations as a
product of two k-signed permutations, in such a way that the cycles of the product permutation are
in correspondence with the white faces of the k-signed 2-constellation.

o= (-1-8)(2107-9)(3-12)(4 -11)(5 -6)
7= (1 9)(2 12)(3 11)(4 -6 -10)( -5)( -7 -8)
r=0r=(1234-56-7)(-89)(10 -11 -12)

FIGURE 6. A 2-constellation with three white faces and the corresponding factor-
ization o = 7.
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Moreover, a k-signed 2-constellation with f faces can be seen as a k-signed 2-cactus augmented
by f —1 2-gons. The technique of algorithm 2 (removing 2-gons from a k-signed 2-constellations in
order to obtain a k-signed 2-cactus that can be processed with algorithm 2) leads to the following
generalization of theorem 2 and [2].

Theorem 3. Let k and n be two integers, A\ = 11 .. .n% =151 _nPr and v be three partitions
of weight n, X = (A%..., A" 1) a k-decomposition of A, i = (u°,...,u*" ") a k-decomposition of p
(where Xt = 1% .. .n% and p' =181 ...nP) and ¥ a k-decomposition of v. Then

0 if ((7) # C(N)-L(R)

= r o B
AB II . T E2oQupn) ) =1or  otherwise
0 k—1 0 k—1 A0 )
o \a , o G By

0 aj
where g(A, u,v) is defined by £(A) + £(p) + L(v) = n+ 2 —2g(A, p).
6. CONCLUSION

The results of this article are, as far as we know, the first combinatorial results on the enumeration
of factorizations in W¥. The (constructive) proof of our result relies strongly (and intuitively) on
the representation of such factorizations as maps (k-signed 2-cacti).

We restricted here our study to the case of factorizations as a product of two permutations. A
natural extension would consist in the study of factorizations as a product of m permutations. The
case of cycles in &,, has been studied by Poulalhon and Schaeffer [8], while the planar case for
general permutations has been done by Bousquet-Mélou and Schaeffer [2]. The combinatorial model
would be k-signed m-constellations (2-gons would be replaced by m-gons). It seems that with little
more technicalities, our methods can be extended in this case, and we are currently working on this
question.
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