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Abstract

Parking functions are central in many aspects of combinatorics. We define in this
communication a generalization of parking functions which we call (pi,...,pg) —
parking functions. We give a characterization of them in terms of parking functions
and we show that they can be interpreted as recurrent configurations in the sand-
pile model for some graphs. We also establish a correspondence with a Lukasiewicz
language, which enables to enumerate (p1,...,px)—parking functions as well as in-
creasing ones.

Résumé

Les suites de parking se sont révélées étre au centre de différents problémes com-
binatoires. Nous introduisons ici des k-uplets de suites qui les généralisent, et dont
nous montrons qu’ils peuvent étre interprétés comme les configurations récurrentes
de 'automate du tas de sable sur certains graphes. Nous établissons également une
correspondance avec un langage de Lukasiewicz, ce qui nous permet d’obtenir des
résultats d’énumération.

1 Introduction

Since parking functions were introduced more than thirty years ago in the
context of hashing algorithm analysis ([12,13|), they gained a preponderant
place in combinatorics of labelled objects. As shown by the elegant proof due
to Pollack (see [8]), they are enumerated by Cayley numbers n™ 2, that play
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towards labelled objects the same role as Catalan numbers #1(2:) towards
unlabelled ones: parking functions can actually be considered as a labelled ver-
sion of Dyck paths. Many bijections are now known between parking functions
and combinatorial objects such as Cayley trees, factorizations of a circular per-
mutation as a minimal product of transpositions in &,,, maximal chains in the
lattice of noncrossing partitions ([6,9]), or cells in the Shi hyperplane arrange-
ment ([17,18]). More recently, parking functions were found to be also useful

in algebraic combinatorics ([10]).

Among the many definitions of parking functions, we use the following one: a
parking function of length n is a sequence u = u; us ... U, of n non-negative
integers such that there exists a permutation o = oy 09 ... 0, in &, (strictly)
larger than u (which we denote o > u), i.e. satisfying, for any index i, o; > ;.
This permutation o will be said to be a certificate for u. For instance, 301 3 1
is a parking function since the permutation 4 1 2 5 3 is a certificate for it; on
the other hand, 0 3 2 3 2 is not a parking function.

This terminology is motivated by the following greedy parking algorithm,
which helps to explain in everyday words the notion of open adressing. Con-
sider a one-way road with n parking slots numbered 0 through n — 1; n cars
arrive one at a time at the head of the road, that plan to park along this road.
Each driver has a preferred parking place in mind, to which he proceeds. He
parks there if it is free, but otherwise he has to drive ahead and park in the
next empty slot.

EXAMPLE: Let n = 8. Consider a situation in which the 4 first cars are parked
in places 0, 2, 3 and 6, and suppose that car number 5 tries to park in place 2;
unfortunately, places 2 and 3 are occupied, so it has to drive ahead up to
place 4.

o] [o]of,]| [o] |

O

The algorithm succeeds if each driver finds a parking place, and fails otherwise.
Parking functions are exactly the preference functions for which the parking
algorithm succeeds.

It was observed in [3| that there is a very simple bijection between parking
functions of length n and some assignments of values to the vertices of the
complete graph K, 1 called recurrent configurations in the sandpile model (|4])
introduced in statistical physics and considered by some combinatorialists as
the chip firing game ([1]). Since recurrent configurations may be defined for
any graph in which a vertex is distinguished as the sink, it seems reasonable



to examine recurrent configurations of other families of graphs. The first one
which comes in mind is that of the complete k£ — partite graphs, but choosing
a sink breaks symmetry; hence we consider the family of complete (kK + 1)
partite graphs of type K, ,, . 5.1, the lonely vertex being the sink.

It turns out that corresponding configurations have many similarities with
parking functions, and can actually be considered as a generalization of them.
These (p1,--.,pr) —parking functions are k-tuples (ui,...,ux) of sequences
of non-negative integers satisfying some combinatorial conditions which are
detailed below.

Since general case is not substantially different, we concentrate on the par-
ticular case k = 2 for the sake of readability. We prove that the number of
(p, q) — parking functions is

P+ag+1DE+1)" g+ 1),

and that the number of increasing ones is the Narayana number
1 n+1\ (n+1
n+1 P q

The paper is organized as follows: we first define (p, ¢) — parking functions in
an elementary way without any reference to the sandpile model and give some
characterizations of them. We recall some simple facts about the physical
model and indicate the scheme of a possible proof for the enumerative result.
Then, we use conjugacy on certain words to obtain directly this result. Finally,
we extend it to the case of increasing (p, ¢) — parking functions. Afterwards,
we state the corresponding results in the general case of k- partite parking
functions. Some perspectives for future investigations are suggested at the end
of the paper.

where n = p + q.

2 Definition

We first give some notations and conventions which we adopt throughout the
paper. Let p and ¢ be two positive integers, and n = p + ¢; for any couple
(a,b) of integers such that a < b, [a,b] denotes the set of integers between a
and b:

[a,b] = {z|a < z < b}.



A (p,q) —sequence is a pair (u,v) of sequences of non-negative integers with
respective lengths p and ¢ such that

Vie [1,p], u; €[0,¢q] and Vje[l,q], v; €][0,p].
Their set is denoted S, .

We define a partial order < on pairs of sequences of respective lengths p and g¢:
for any two such pairs (u,v) and (v, v"), (u,v) < (u',v") if for all indices ¢ and j,
u; < u) and v < v;.

As the set P, of parking functions, we define the set P, , of (p,q) —parking
functions as an ideal for some order (here <), determined by its maximal
elements. These can be described thanks to permutations in &,,. Let us
associate to any permutation ¢ = o7 09 ... 0, in &, a (p,q)—sequence
(2o, Y,) (somewhat similar to its inversion table): for any index i < p, let x;
denote the i-th letter of x,; then z; is the number of letters less than o; among
the ¢ last ones of o, and for any index j < ¢, the j-th letter y; of y, is the
number of letters less than o,,; among the p first ones of 0. More formally,

Vi < p, xi:‘{1<j<Q|0-p+j<o'i}
and
Vi<aq y=[{1<i<p|oi <opy}

EXAMPLE: Let p=5,g=4,ando=36528 4197.
————— N——

p q
For any ¢ < 5, x; is the number of elements less than o; in {4,1,9, 7}, and sym-

metrically for the y,’s. Hence (2,,y,) = (12213, 2054). Remark that o is
not uniquely determined by (z,, y,), since, for instance, if 7 =256384197,

then (-Z‘Tay’r) = (-Taayo)-

Definition 1 A (p,q) —sequence (u,v) is a (p,q) —parking function if there
erists a permutation o in Sy, such that (u,v) X (%,,Y,). We say that the
permutation o is a certificate for (u,v).

There is a more intuitive way to introduce (p,q)—parking functions, trans-
lating the definition into a parking quiz. Suppose that p blue cars and ¢ red
ones have to park in a one—way street with n parking slots. Each driver i
of a blue car asks to have at least u; red ones parked before him and each
driver j of a red car asks to have at least v; blue ones parked before him. The
(p, q) —sequence (u,v) is a (p,q)—parking function if there exists a parking
that satisfies all the wishes of the drivers.

EXAMPLE: (00122, 0235)is a (5,4)—parking function, since the following
parking suits.

[o[x|o]o[x|o|O[X]|X]




The following remark is elaborated on in Section 6:

Remark 2 P, , is invariant under the action of &, xS, on (p, q) — sequences.
This means that corresponding unlabelled objects exist, whose set is isomorphic
to that of increasing (p, q) — parking functions.

3 Characterization
3.1 In terms of parking functions

We show in what way (p, ¢) —parking functions themselves can be considered
as a generalization of usual parking functions. We first give a straightforward
criterion for checking whether (u,v) is a (p, ¢) — parking function.

Let w = u; ug ... u, be an integer sequence. The rank function of u is the
mapping

[1,p] — N

i n—>‘{1<j<p|uj<ui}

+ {1 <j<ilu=u}

i.e. for any index 4, p,(7) is the number of indices j such that either u; > u;
or j <1 and u; = u;.

Hence p, is such that the numbers u; + p,(7) are all distinct and satisfy
Vi,j <p, w <u;j = u;+ pu(t) <uj+ pud).
Let @ be the sequence of length p whose i-th element is u; + p,(i). Then, on

the one hand, pgz(i) = ‘{1 <j<plu <}
other hand, p, = pz.

for any index 7, and on the

EXAMPLE: If u=40342,thenp,=30241andd=705383.

Proposition 3 A (p,q) —sequence (u,v) is a (p,q) —parking function if and
only if the concatenation of the sequences @ and ¥ is a parking function.

PROOF. Let w = 4 -9, t.e. wy...w, = 4 and Wpy1...Wpyq = U. Let
0 =0y, 09 ... 0, be a permutation in &,, satisfying the following monotony
condition:

Vi,j <n, w; <w; = 0; <0j.

We prove that o is a certificate for w if and only if it is a certificate for (u, v).



Consider indeed its associated (p, ¢) —sequence (z,,¥,), and let z, = 1 ... x,.
Then, for any i € [1,p], z; = ‘{1 < j < ¢ 0pt+j < 0;}. On the other hand,
puli) = pai) = [{1 <k <p | wp <wi = [{1 <k <p|ox <o}
a permutation, it implies that x; + p,(i) = 0; — 1, hence:

. Since o is

Vi € [[1,]7]], T, —u; =0; — 1 —w;.
Symmetrically, let y, = y; ... y,. Forall j € [1,q], y; —v; = 0ptj — 1 —wpy,.
Hence w < o if and only if (u,v) < (24, Ys)-

To end the proof, just observe that any parking function or (p, q)—parking
function has a monotonous certificate, hence this condition on ¢ is not restric-
tive. 0

A corollary of this Proposition is that the set of parking functions may be
considered as the diagonal of the set of bipartite parking functions:

Proposition 4 A sequence u = uy ug ... Uy, 1S a parking function if and only
if (u,u) is an (n,n) —parking function.

PROOF. Clearly if u is a parking function, it is certified by the bijection
i — pu(7) + 1. Hence a sequence u is a parking function if and only if, for any
i € [1,n], ui < pu(), i.e. if and only if, for any i € [1,n], @; < 2p,(7).

Let w be the square of 4 for concatenation. Remark that  is a sequence of n
distinct elements, with rank function p,. So w has rank function p,, given by:

Vi€ [1,n], pw(i) =2p.(i) and py(n +1i) = 2p,(3) + 1.

According to the above arguments, w is a parking function if and only if
Wnti = w; < 2p,(4) for any 4 € [1,n], which gives the result. O

3.2 In terms of Lukasiewicz languages

We define a mapping ¢ from the set of (p,¢)-sequences S,, into the free
monoid over the alphabet A = {a,b} x {a,b}, and give a necessary and suffi-
cient condition on ¢(u,v) for (u,v) to be a (p, ¢) — parking function.

More precisely, let (u,v) be a (p, g)-sequence; then ¢(u,v) = (gq(u), pp(v)),
where ¢,(u) is a word on the alphabet {a, b} with p occurrences of a and ¢g+1
of b defined in the following way: consider the increasing rearrangement % of u,



then ¢4(u) is such that the i-th occurrence of the letter a in it is preceded by
@; occurrences of b; ¢, (v) is defined symmetrically.

EXAMPLE: (1502, 40 34 2)= (abababbbab, abbababaab).

Observe that the positions of the occurrences of a in ¢,(u) and ¢,(v) are the
elements of @ and ¥ respectively.

Both words ¢,(u) and ¢,(v) have length p + ¢ + 1. Hence we may consider
¢(u,v) as a word on the alphabet A = {(a,a), (b,a), (a,b),(b,b)}. For any
word w in A* and any letter (z,y) € A, |w| and |w|(,) denote respectively
the length of w and the number of occurrences of (z,y) in w. We define:

(e = 2|w‘(a,a) + |w

(@b) t [Wlpa) = (0| + |[W]@g,0) — W)

(wly = 2|w|ep + (W@ + [Wee = | + [wey — [W]0a)-
Then |p(u,v)|a = p+ ¢ and |p(u, )]s =p+ ¢+ 2.

We define a morphism A from A* to Z by setting:

Aa,a) =1
A(a,b) = A(b,a) =
A(bb) = -1

With this notation,

Alp(u,v) = lo(u, v) @ — (U, v)|py = 1.

Proposition 5 The pair (u,v) is a (p,q) - parking function if and only if
o(u,v) satisfies the following condition:

A(w) = 0 for any factorization (u,v) = ww' such that w' # ¢,

i.e. if and only if p(u,v) belongs to the (Lukasiewicz) language L defined by
the equation

L= (a,a)- L+ (a,b)- L+ (b,a)- L+ (bb),
where + denotes union and - concatenation.
(For generalities about Lukasiewicz languages, see [14]).

Observe that, for any word w in A*, A(w) > 0 if and only if |w|, > |wlp, or
equivalently |w|, > |w|.



PROOF. By Proposition 3, (u,v) is a (p,q)—parking function if and only
if 4 - ¥ is a parking function. Let ¢ < p + ¢, and w be the prefix of length ¢
of ¢(u,v). There are as many occurrences of @ in w as elements less than or
equal to ¢ in 4 - ¥

wla = [y [ @ <} + {7 |7 <}
= {7 | (@-9); <}

But @ - ¥ is a parking function if and only if |{j | (¢ ¥); < ¢}| > 4, that is, if
and only if |w|, > i = |w|.

But this means exactly A(w) > 0. O

4 Sandpiles on K,

The sandpile model is defined as an evolution process on the configurations
of a graph, i.e. on the mappings from the set of vertices of a graph into N.
We consider here the graph K, ,; and we show that (p, ¢) - parking functions
correspond to the recurrent configurations of this model. This gives a proof
for their enumeration.

The complete tripartite graph K, ;1 has three subsets of vertices of respective
sizes p, ¢ and 1, X = {x1,%9,..., 25}, Y = {y1,92,...,Yy,}, and {z}, and its
set of edgesis (X xY) U ({z} x (X UY)).

EXAMPLE: Kj41:

A configuration of this graph is an assignment of non-negative integers to each
vertex in XUY'. Hence a configuration is a pair (u,v) of sequences of respective
lengths p and ¢. The integer u; (resp. v;) may be considered as a number of
grains of sand lying in vertex z; (resp. y;).



A toppling of vertex x; € X occurs if u; > ¢; in that case, the new configuration
(u',v") is such that:

- U;:U;z—q—l,
-VE<p, k#i = u} = uy,
-Vji<q, vi=v;+ 1.

The missing grain of sand is supposed to have fallen in the sink z. A toppling
of vertex y; € Y is defined similarly.

EXAMPLE: Two successive topplings on K35 (for convenience’s sake, the sink
z has been omitted):

0.“0 - 0.“9 - Q.“Q

Definition 6 A configuration (u,v) is stable if no verter can topple, i.e. if
(u,v) is a (p,q) —sequence. A stable configuration (u,v) is recurrent if it can
be obtained by a sequence of topplings from a configuration (u',v') such that,
for any i < p, u; > q, and for any j < g, v; > p.

Proposition 7 A configuration (u,v) is recurrent if and only if the pair
(u',v") defined by:

Vi<p, uj=q—u; and Vj<gq, vj=p—v;

is a (p, q) —parking function.

PROOF. We use a characterization due to Dhar [4] of recurrent configura-
tions. In the case of K, ,, the criterion claims that (u,v) is recurrent if and
only if the addition of 1 to each u; and each v; leads to a sequence of topplings
in which each vertex topples exactly once. It is easy to verify that the order in
which the vertices topple gives a permutation which is a certificate for (v, v")
and vice versa. O

Majumdar and Dhar [16] have also shown that recurrent configurations on a
graph are in one-to-one correspondence with its spanning trees. This supplies
a proof of the enumeration formula announced in Section 1, either by using
known results on the number of spanning trees of multipartite graphs or by
reproving them by arguments along the lines of Joyal’s method [11,15] for
Cayley’s formula. We do not detail this proof since we give another one in
the next Section, that has the advantage of providing also a proof for the
enumeration of increasing (p, ¢) — parking functions.



5 Enumeration by conjugacy

In order to enumerate (p,q)—parking functions, we establish a relationship
between conjugacy on words and conjugacy on integer sequences, then we use
a generalization due to L. Chottin of the so-called cyclic lemma ([2]).

Recall that two words w and w' are conjugatesif w = w;wy and w' = wow, . Let
e denote the empty word, then any word w has |w| factorizations w = wyws
such that w; # &, which we call proper factorizations in the sequel. Hence
it has at most |w| conjugates (one of which is equal to w, for wy = ¢). The
number of different conjugates of w divides |w| and each conjugate is due to
the same number of distinct factorizations (see [14], p. 8).

We define a related notion of conjugacy for integer sequences:

Definition 8 Let u = u; us ... u, be an integer sequence such that for any
index i, 0 < u; < g, and let k belong to [0,q]. The k-th g—conjugate of u is
the sequence s’;(u) defined by:

Vi € [1,p], s’;(u)i =wu; +k mod g+ 1.

We denote by 5%(u) the increasing rearrangement of sf(u). Observe that the
g + 1 g—conjugates of a sequence are all different, but this is not the case
for the sequences §§(u) However, each increasing q-—conjugate corresponds
to the same number of ¢ conjugates of u.

Proposition 9 The mapping ¢, induces a bijection between q - conjugates
of u and proper factorizations wywy of @q4(u) such that wy ends with a letter b
(and realizes a bijection between increasing q — conjugates of u and conjugates
of v,(u) ending with a letter b).

PROOF. Let w = ¢4(u), then for any & in [0, ¢, there is a unique factoriza-
tion w = wyws such that w; ends with a b and |ws|, = k. Clearly

©q (5’; (u)) = wow;.
U

Definition 10 Let (u,v) be a (p, q) — sequence; we define its conjugates as the
pairs (si(u), s2(v)), for all i and j in [0, q] and [0, p] respectively.

10



The following Proposition is a special case of Theorem 4.2 of [2]. We give its
proof for the sake of completeness.

Proposition 11 For any pair (w', w") of words in {a,b}* such that |w'|, = q,
lw"l, = p and |w'| = |W"| = p+ q+ 1, there exist exactly p + ¢ + 1 ways
of properly factorizing w' and w" into wiwy and wiwl so that (whw!, whw?y)

belongs to L.

PROOF. There are (p + ¢ + 1)? pairs of proper factorizations of w' and w”,
which we gather in p + ¢ + 1 classes with respect to the value of |w]| — |w}
mod p+q+1. Each class is constituted of one pair of the type w = (w'e, w]w})
and its factorizations as a word of A*. The cyclic lemma due to Dvoretzky and
Motzkin ([5], sometimes attributed to Raney) claims that there is only one
proper factorization wywsy of w such that wew; belongs to L. Since each class
corresponds to a different word w and since there are p + g + 1 classes, this

ends the proof. O

Note that only (p+1)(¢+1) among the (p+¢+1)? ways of properly factorizing
w' and w" are such that both w} and w{ end with a letter b. Moreover, any
of the p + ¢ + 1 decompositions whose existence is claimed by Proposition 11
satisfies this condition.

Theorem 12 Ezxactly (p+ g+ 1) among the (p+ 1)(¢ + 1) conjugates of any
(p, q) — sequence (u,v) are (p,q) —parking functions.

PROOF. Each conjugate of (u,v) corresponds to a different way of properly
factorizing ¢,(u) and ¢,(v) into wiw) and wiw) so that w] and w{ end with
a b. By Proposition 11, exactly p + g + 1 of them are such that (w)w], wiw!)
belongs to £, and by Proposition 5, this is the condition for (u,v) to be a

(p, ) — parking function. O

Corollary 13 The number of (p,q) — parking functions is

p+q+1) p+ 17" (g+1)P L

PROOF. The ratio of (p, q)—parking functions among the (p 4+ 1)%(q + 1)?

1
pra+ by Theorem 12. Il

P, q)—sequences is ————
(P:a) o+ D+ 1)

11



6 Increasing (p,¢)—parking functions

A (p,q)—sequence (u,v) is increasing if, for all 1 < p and j < ¢, u; < U1
and v; < vj41. The set Z,, of increasing (p,q)—parking functions clearly
constitutes a system of representatives of the orbits of the action of §, x G,
on Pp,.

In this section we give two different proofs of the following result:

Proposition 14 The number of increasing (p, q) — parking functions is
ptg+l <p+q> <p+q>
(P+D(@+1) \ » q

Note that these numbers are usually known as Narayana’s numbers and have
many interpretations. For instance, they enumerate plane trees with n + 2
vertices and p + 1 leaves, or noncrossing partitions of [1,n + 1] into p + 1
blocks.

The first proofis an adaptation of Pollack’s one for counting parking functions:

PROOF 1. Consider a circular parking lot with p 4+ ¢ + 1 slots numbered
clockwise 0 to p + g. The corresponding parking algorithm is similar to the
usual one, except that preference p + ¢ is allowed and treated like any other:
if slot p + ¢ is occupied, the car moves clockwise to the first empty slot.

ToloTx;
‘D
N

The mapping (u,v) — @ - ¥ realizes a one-to-one correspondence between Z, ,
and sequences w of length p + ¢ such that:

-Vi<p+q 0w <p+g,
- Vz<p+q, Z?ép = wW; < W41,
- the parking process leaves slot number p 4+ ¢ unoccupied.

12



Clearly for any preference function satisfying the two first conditions, one slot
is left empty, and by symmetry there are exactly as many sequences with a
given empty slot as with any other.

Hence the number of increasing (p, ¢) —parking functions is

1 <p+q+1> (p—i—q—l—l)
p+q+1 p q )
which is of course equal to the expected result. U

The second proof shows that this result is also a straightforward consequence
of Theorem 12:

PROOF 2. Consider classes of S, , closed by conjugacy and by the action
of 6, x G,. Let C be one of these classes; C is a disjoint union of orbits
under the action of &, x &,. All these orbits have the same cardinality, since
the action of an element of &, x G, is the same on all conjugates of a se-
quence, and each one contains exactly one increasing (p, ¢) —sequence. More-
over, either all elements of a given orbit are (p, ¢) —parking functions or none
of them is. Hence, in C, the ratio of increasing (p, ¢) — parking functions among
the increasing (p, ¢) —sequences is equal to the ratio of (p,q) —parking func-
tions among (p, ¢) —sequences. Finally, since C is a disjoint union of conjugacy
classes in which the ratio of (p, q¢)—parking functions is the same (by Theo-
rem 12), the ratio of increasing (p, ¢) —parking functions among the increasing
(p, q) —sequences in C, is equal to

p+qg+1
(p+1)(g+1)

Since this is true for any class C, their ratio among the total number of
increasing (p, ¢) —sequences is the same. But the number of increasing (p, q) —

sequences is
(%W>@+g
p q )
thus ending the proof. O

Remark that another generalization of parking functions called k —wvalet func-
tions is defined in [9], whose particular case & = 2 is isomorphic to increasing
(p, q¢) — parking functions.

13



7 Generalization

It is natural to introduce the set P, ,, ., Of (p1, P2, ..., px) —parking func-
tions in a similar way as (p, ¢) — parking functions by dividing the elements of
a permutation into k intervals instead of two.

We adopt the following notations: let n and k£ be two positive integers, and
(p1, ..., pk) be acomposition of n into k parts, i.e. a k-tuple of positive integers

such that p; + -+ + py = n. For any i € [1, k], let ¢; = n — p;.

A (p1,...,pr) —sequence is a k-tuple (u, ..., u®)) of integer sequences with
respective lengths py, ..., pr and such that

Vi€ [1,k], Vi € [L,p], 0< v < g

For any permutation 0 = o0y...0, € &,, let z, = (z™,...,2*)) be the
(p1, - .., pr) —sequence such that, for any i € [1, k] and any j € [1, p;],

2 = ‘{1 <k<nl|k¢[mi+1,m] and o) < or,_, 45}

where my = 0 and, for any i € [1,k], m; =p1 + -+ + pi-

EXAMPLE: Let k£ =3, (p1,p2,p3) = (3,2,4),and 0 =365 28 4197.

S~ N N——
Then z, = (233, 16, 20 5 4). e pe

Definition 15 A (pi,...,px) —sequence u is a (p1, ..., px) —parking function
if there exists a permutation o such that u < x,.

Observe that the limit case k¥ = n corresponds to usual parking functions, while
the case k = 1 is degenerated: the only (n)—parking function is a sequence
containing n letters 0.

This definition gives rise to developments analogous to above. As proofs in the
generic case are essentially the same as in the case k¥ = 2, we only state the
results.

For instance, (pi,...,px)—parking functions correspond bijectively to recur-
rent configurations on the complete (k + 1) —partite graph K, ., 1, hence
Pp.....pr, Can be put in one-to-one correspondence with the set of its spanning
trees.

It can also be obtained that increasing (pi,...,px)—parking functions are
isomorphic to k —valet functions on (py, ..., px) defined in [9] .

14



The characterization in terms of Lukasiewicz languages suits as well:

For any (pi,...,pr) —sequence u = (u'M, ... u®)), let

o) = (00 (1), g, ().

¢(u) may be considered as a word over the alphabet Ay = {a,b}*. For any
letter w in Ay, let |w|, denote the number of occurrences of a in it, and
A(w) = |w|q — 1. This defines a morphism from A} to Z such that, for any

(1, . pi) - sequence 4, A(p(u) = —1.

Proposition 5 becomes:

Proposition 16 Let u = (u®,... u®) be a (p1,...,px) —sequence; u is a
(p1,- - -, pr) —parking function if and only if o(u) belongs to the Lukasiewicz
language Ly defined by the equation

Ly = Z w -+ ,Ck'w'“

weAg

=(a,...,a,a) - L" + (a,...,a,0) - LF 4+ 4 (b,...,b,b) .
This enables to enumerate (p1, ..., pg)—parking functions and increasing ones
thanks to an argument of conjugacy:

Definition 17 Let u be a (p1,...,pr) —Sequence; its conjugates are the k-
tuples (sit (u), ..., sk (u®)), for all j € [1,k] and i; € [0, ;].

Proposition 18 For any word (w®, ..., w®) over Ay such that |w®|, = g;
and |w |, = p;+1 for any i, exactly (n+1) "' k-tuples of proper factorizations
w® = wPw are such that (wél)wg), e, wék)wyc)) belongs to Ly.

As a consequence,

Proposition 19 The ratio of (increasing) (p1, - - ., pr) —parking functions in
the set of (increasing) (p1, - .., Pr) — Sequences is
(n+ 1)kt

n—pr+1)--(n—pp+1)

Hence the number of (pi,...,px) —parking functions and increasing ones are
respectively

(n+ 1) Il —pi+ 1)

=1
1 ﬁ (n + 1)
n -+ 1 i1 Di )
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8 Perspectives

8.1 Product of transpositions

Since the number of parking functions of length n is equal to the number
of decompositions of the (n + 1)—cycle (0 1 2 ... n) into a product of n
transpositions, it seems natural to seek for an interpretation of the number
of (p,q)—parking functions as the number of decompositions of a circular
permutation into a product of transpositions satisfying certain conditions.

Edges of K, .1 may be considered as transpositions, so each spanning tree of
this graph corresponds to a set of n transpositions and hence to n! different
factorizations of a circular permutation; and the enumeration follows since
each of the n! circular permutations has the same number of decompositions.

Trying to obtain an analogous result for (p, ¢) —parking functions, we consider
all the spanning trees of K, ,; and compute all the possible products of the
transpositions corresponding to their edges. We observe that every circular
permutation on {0, 1,2, ..., p+q¢} is obtained by this way. However the number
of times each of these is obtained is not uniform as it was the case for K, .

For instance, K32, has 216 spanning trees, each one consisting of 5 edges,
which gives a total of 25920 products. The circular permutation (0 1 2 3 4 5)
is obtained 131 times, (0 1 2 4 3 5), 211 times, (0 1 4 2 3 5), 261 times,
(041235), 186 times, and (014 25 3), 316 times.

8.2 Hyperplane arrangements

The number of parking functions is equal to the number of regions in the Shi
arrangement of hyperplanes, and bijections between regions and parking func-
tions are known. It would be interesting to find arrangements of hyperplanes
whose numbers of regions is equal to the numbers of (p, ¢) — parking functions.
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