BIJECTIVE COUNTING OF PLANE BIPOLAR ORIENTATIONS
AND SCHNYDER WOODS

ERIC FUSY, DOMINIQUE POULALHON, AND GILLES SCHAEFFER

ABSTRACT. A bijection ® is presented between plane bipolar orientations with prescribed num-
bers of vertices and faces, and non-intersecting triples of upright lattice paths with prescribed
extremities. This yields a combinatorial proof of the following formula due to R. Baxter for the
number ©;; of plane bipolar orientations with ¢ non-polar vertices and j inner faces:

i+ GE+i+ D! (i +5+2)!
DE+DE+2 7 G+ G +2)
In addition, it is shown that ® specializes into the bijection of Bernardi and Bonichon between
Schnyder woods and non-crossing pairs of Dyck words.

This is the extended and revised journal version of a conference paper with the title “Bijective

counting of plane bipolar orientations”, which appeared in Electr. Notes in Discr. Math. pp.
283-287 (proceedings of Eurocomb’07, 11-15 September 2007, Sevilla).
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1. INTRODUCTION

A bipolar orientation of a graph is an acyclic orientation of its edges with a unique source s
and a unique sink t, i.e., such that s is the only vertex without incoming edge, and ¢ the only one
without outgoing edge; the vertices s and t are the poles of the orientation. Alternative definitions,
characterizations, and several properties are given by De Fraysseix et al in [19]. Bipolar orientations
are a powerful combinatorial structure and prove insightful to solve many algorithmic problems
such as planar graph embedding [18, 8] and geometric representations of graphs in various flavours
(e.g., visibility [20], floor planning [17], straight-line drawing [21, 13]). Thus, it is an interesting
issue to have a better understanding of their combinatorial properties.

This article focuses on the enumeration of bipolar orientations in the planar case: we consider
bipolar orientations on planar maps, where a planar map is a connected graph embedded in the
plane (i.e., drawn with no edge-intersection, the drawing being considered up to isotopy). A plane
bipolar orientation is a pair (M, X), where M is a planar map and X is a bipolar orientation of M
having its poles incident to the outer face of M, see Figure 1. Let ©;; be the number of plane
bipolar orientations with ¢ non-pole vertices and j inner faces. R. Baxter proved in [1, Eq 5.3] that
0;; satisfies the following simple formula:

G+ NE+7+D G454+ 2)!
G+ G2 G+ G +2)

Nevertheless his methodology relies on quite technical algebraic manipulations on generating func-
tions, with the following steps: the coefficients ©;; are shown to satisfy an explicit recurrence
(expressed with the help of additional “catalytic” parameters), which is translated to a functional
equation on the associated generating functions. Then, solving the recurrence requires to solve the
functional equation: Baxter guessed and checked the solution, while more recently M. Bousquet-
Mélou described a direct computation way based on the so-called “obstinate kernel method” [6].

(1) O = 2

The aim of this article is to give a direct bijective proof of Formula (1). Our main result,
Theorem 1, is the description of a bijection between plane bipolar orientations and certain triples
of lattice paths, illustrated in Figure 1.
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FIGURE 1. A plane bipolar orientation and the associated triple of non-
intersecting upright lattice paths.

Theorem 1. Plane bipolar orientations with i non-pole vertices and j inner faces are in bijection
with non-intersecting triples of upright lattice paths on Z* with respective origins (—1,1), (0,0),
(1,-1), and respective endpoints (i — 1,5+ 1), (¢,4), (i + 1,5 —1).

This constitutes a proof of Formula (1), since the latter is easily derived from Theorem 1 using
the Gessel-Viennot Lemma [14, 15]:

Lemma 2 (Gessel-Viennot). Let k be a positive integer, A= {A1,..., Ay} and B={Ba,..., By}
be two sets of points on the Z2 lattice, such that any k-tuple of non-intersecting upright lattice
paths with starting points in A and endpoints in B necessarily join together A, and B, for any
index p. Then the number of such k-tuples is:

© = Det(M),
where M is the k x k matriz such that Myq is the number of upright lattice paths from Ay, to By.

By Theorem 1, ©;; is equal to the number of triples of non-intersecting lattice paths from
Ay =(-1,1),43=(0,0),43 = (1,—-1)to By = (i—1,5+1),B> = (4,5),B3 = (i+ 1,7 —1). Hence,

(7)) G5) G5)

0, = (j+i) (j-i—i) (j—i—i) 2 (i+) (i+j+1)! (i+5+2)

i—1 i i+1) |

GG J G (G +2)
() (2 ()

The second main result of this paper is to show that our bijection extends in a natural way a
bijection that has been recently described by Bernardi and Bonichon [2] (which itself reformulates
an original construction due to Bonichon [4]) to count another well-known and powerful combina-
torial structure related to planar maps, namely Schnyder woods on triangulations [11, Chapter 2].
Actually our construction draws much of its inspiration from the one in [2]. We recover the cor-
respondence between these Schnyder woods and non-crossing pairs of Dyck paths, which easily
yields the formula

6 (2n)! (2n+ 2)!
n! (n+1)! (n+2)! (n+ 3)!

(2) Sn = CnCnyz — Chyy =

for the number S,, of Schnyder woods on triangulations with n inner vertices (where C,, denotes
the nth Catalan number (2n)!/(n!(n + 1)!)).
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FIGURE 2. From a plane bipolar orientation to a separating decomposition.

Recent related work. Felsner et al [12] have very recently exhibited a whole collection of com-
binatorial structures that are bijectively related with one another, among which plane bipolar
orientations, separating decompositions on quadrangulations, Baxter permutations, and triples of
non-intersecting paths. Though very close in spirit, our bijection is not equivalent to the one
exhibited in [12]. In particular, the restriction of this bijection to count Schnyder woods is a bit
more involved than our one and is not equivalent to the bijection of Bernardi and Bonichon [2].

Even more recently, Bonichon et al [5] have described a simple and direct bijection between
plane bipolar orientations and Baxter permutations. These Baxter permutations are known to
be encoded by non-intersecting triples of lattice paths since work by Dulucq and Guibert [10].
Combining the bijections in [5] and [10] leads to yet another bijection (almost equivalent to the
one in [12]) between plane bipolar orientation and non-intersecting triple of paths.

The main steps to encode a plane bipolar orientation by a non-intersecting triple of paths. At first
(Section 2), we recall a well-known bijective correspondence between plane bipolar orientations and
certain decompositions of quadrangulations into two spanning trees, which are called separating
decompositions. The next step (Section 3.1) is to encode such a separating decomposition by a
triple of words with some prefix conditions: the first two words encode one of the two trees T, in
a slight variation on well known previous results for the 2-parameter enumeration of plane trees
or binary trees (counted by the so-called Narayana numbers). The third word encodes the way
the edges of the other tree shuffle in the tree T'. The last step (Section 3.2) of the bijection is to
represent the triple of words as a triple of upright lattice paths, on which the prefix conditions
translate into a non-intersecting property.

2. REDUCTION TO COUNTING SEPARATING DECOMPOSITIONS ON QUADRANGULATIONS

A quadrangulation is a planar map with no loop nor multiple edge and such that all faces have
degree 4. Such maps correspond to mazimal bipartite planar maps, i.e., bipartite planar maps
that would not stay bipartite or planar if an edge were added between two of their vertices.

Let O = (M, X) be a plane bipolar orientation; the guadrangulation @ of M is the bipartite
map obtained as follows: say vertices of M are black, and put a white vertex in each face of M;
it proves convenient in this particular context to define a special treatment for the outer face, and
put two white vertices in it, one on the left side and one on the right side of M when the source
and sink are drawn at the bottom and at the top, respectively. These black and white vertices are
the vertices of @, and the edges of @ correspond to the incidences between vertices and faces of M.
This construction, which can be traced back to Brown and Tutte [7], is illustrated in Figure 2. It
is well known that @ is indeed a quadrangulation: to each edge e of M corresponds an inner (i.e.,
bounded) face of @ (the unique one containing e in its interior), and our particular treatment of
the outer face also produces a quadrangle.

If M is endowed with a bipolar orientation O, this classical construction can be enriched to
transfer the orientation on @, as shown in Figure 2. Notice that O (or, in general, any plane
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(a) in a plane bipolar orientation, (b) and in a separating decomposition.

FIGURE 3. The local rules.

bipolar orientation) satisfies the two following local conditions [9] illustrated in Figure 3(a), as
easily proved using the acyclicity of the orientation and the Jordan curve theorem:

e edges incident to a non-pole vertex are partitioned into a non-empty block of incoming
edges and a non-empty block of outgoing edges,

e dually, the contour of each inner face f consists of two oriented paths (one path has f on
its left, the other one has f on its right); the common extremities of the paths are called
the two extremal vertices of f.

A separating decomposition of () is an orientation and bicoloration of its edges, say in red or
blue, that satisfy the following local conditions illustrated in Figure 3(b) (in all figures, red edges
are dashed):

e cach inner vertex has exactly two outgoing edges, a red one and a blue one;

e around each inner black (white, resp.) vertex, the incoming edges in each color follow the
outgoing one in clockwise (counterclockwise, resp.) order;

e all edges incident to s are incoming blue, and all edges incident to ¢ are incoming red.

Given an inner face f of M, let us orient the two corresponding edges of ) from the white vertex
wy corresponding to f to the extremal vertices of f, and color respectively in red and blue the
up- and the down-edges. The other edges incident to w¢ are oriented and colored so as to satisfy
the circular order condition around wy. This defines actually a separating decomposition of @,
and this mapping from plane bipolar orientations to separating decompositions is one-to-one, as
proved by an easy extension of [9, Theorem 5.3]:

Proposition 3. Plane bipolar orientations with i non-pole vertices and j inner faces are in bijec-
tion with separating decompositions on quadrangulations with © + 2 black vertices and j 4+ 2 white
vertices.

Accordingly, encoding plane bipolar orientations w.r.t. the numbers of vertices and faces is
equivalent to encoding separating decompositions w.r.t. the numbers of black and white vertices.

3. ENCODING A SEPARATING DECOMPOSITION BY A TRIPLE OF NON-INTERSECTING PATHS

Separating decompositions have an interesting property: as shown in [3, 16], blue edges form a
tree spanning all vertices but ¢, and red edges form a tree spanning all vertices but s. Moreover,
the orientation of the edges corresponds to the natural orientation toward the root in both trees
(the root is s for the blue tree and ¢ for the red tree).

3.1. From a separating decomposition to a triple of words. Let D be a separating decom-
position with i+ 2 black vertices and j+ 2 white vertices, and let Tiue be its blue tree. A clockwise
(or shortly cw) traversal of a tree is a walk around the tree with the outer face on the left. We
define the contour word Wy of @ as the word on the alphabet {a,qa,b,b,c,c} that encodes the
clockwise traversal of Thjye starting at s in the following manner (see Figure 4): letter a (b, resp.)
codes the traversal of an edge e of Thye from a black to a white vertex (from a white to a black
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FIGURE 4. The words encoding a separating decomposition.

one, resp.), and the letter is underlined if it corresponds to the second traversal of e; letter ¢ codes
the crossing of red edge at a white vertex, and is underlined it if the edge is incoming.

We shall consider three subwords of Wg: for any ¢ in {a,b,c}, let W, denote the subword
obtained by keeping only the letters in the alphabet {/,£}. In order to describe the properties of
these words, we also introduce the tree-word Wy and the matching word Why,, that are respectively
obtained from Wg by keeping the letters in {a, a,b, b}, and in {a,q,c,c}.

3.1.1. The tree-word encodes the blue tree. Observe that W; corresponds to a classical Dyck en-
coding of Thiye, in which the two alphabets {a,a} and {b,b} are used alternatively to encode the
bicoloration of vertices. Hence W} is just obtained by interlacing W, and W}, starting with a, and
each prefix of W; has at least as many non-underlined letters as underlined letters.

Let us count precisely the number of occurrences of letters a, a, b and b in W;. For this purpose,
let us associate each edge of a tree with its extremity that is farther from the root. From the defining
rules it follows that the two traversals of edges corresponding to black vertices are encoded by b
and a, while those of edges corresponding to white vertices are encoded by a and b. In other words,
each occurrence of a letter a, a, b, b corresponds to the first visit to a white vertex, last visit to
a black vertex, first visit to a black vertex, and last visit to a white vertex, respectively. As Thjue
has ¢ non-root black vertices and j + 2 white vertices, the word W, has j + 2 occurrences of a
and i occurrences of a, shortly written W, € &(a’*2a’). Similarly, W, € G(bibj +2). Furthermore,
the fact that each prefix of W; has at least as many non-underlined letters as underlined letters
translates into the following property for the pair (W,, W;):

Property 1. For 1 < k < i, the number of a’s on the left of the kth occurrence of a in W, is
strictly larger than the number of b’s on the left of the kth occurrence of b in Wy.

Proof. For each k, let Ny(k) (Np(k)) be the number of a’s (number of b’s) in W; on the left of
the kth occurrence of a (kth occurrence of b, resp.). Let p be the prefix of W; ending just before
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the kth occurrence of a. Notice that p ends at a letter in {b, b}, so p has even length 2m with m
letters in {a,a} and m letters in {b,b}. Let mq, mq, msp, my be respectively the numbers of a’s,
a’s, b’s, and b’s in p (notice that m, = k — 1 and m, = N,(k)). Since W; is a Dyck word and
since p is followed by an underlined letter, we have m, + my > mq + my. But m, = m — m, and
mp = m — mp, S0 we obtain both (i): my < my = Ny (k) and (ii): my > mg = k — 1. From (ii) the
kth occurrence of b in W; belongs to p, and from (i) the number Ny (k) of b’s on its left is strictly
smaller than N, (k). This concludes the proof. O

The words W, and W, have the additional property that two letters are redundant in each word.
Indeed, the first and the last letter of W, are a’s and the last two letters of W;, are b’s, because of
the rightmost branch of Tj,e being reduced to an edge, see Figure 4.

3.1.2. The matching word encodes the red edges. Let us now focus on W, and on the matching
word Wy,. Clearly, any occurrence of a letter ¢ (¢) in Wg corresponds to a red edge with white
(black, resp.) origin, see Figure 4. Hence W, € &(c/T2¢'). Moreover W, starts and ends with a
letter ¢, corresponding to the two outer red edges.

Observe also that any occurrence of a in Wy,, which corresponds to the first visit to a white
vertex v, is immediately followed by a pattern cfc, with ¢ the number of incoming red edges at v.
Hence Wy, satisfies the regular expression:

(3) W € ac(a®ac*c)*,

where E* denotes the set of all (possibly empty) sequences of elements from E. Notice that this
property uniquely defines Wy, as a shuffle of W, and W..

Lemma 4. Let S be a separating decomposition, with Tyue the tree induced by the blue edges.
Consider a red edge e of S not incident to t, with b (w) the black (white, resp.) extremity of e.
Then the last visit to b occurs before the first visit to w during a cw traversal around Tywe starting
at s.

Proof. First, the local conditions of separating decompositions ensure that e is connected to b (w)
in the corner corresponding to the last visit to b (first visit to w, resp.). Hence we just have to
prove that, if C' denotes the unique simple cycle formed by e and edges of the blue tree, then the
edge e is traversed from b to w when walking cw around C'. Assume a contrario that e is traversed
from w to b during a cw walk around C'. If e is directed from b to w (the case of e directed from
w to b can be treated similarly), then the local conditions of separating decompositions ensure
that the red outgoing path P(w) of w (i.e., the unique oriented red path that goes from w to t)
starts going into the interior of C'. According to the local conditions, no oriented red path can
cross the blue tree, hence P(w) has to go out of C' at b or at w: going out at w is impossible as it
would induce a red circuit, going out at b contradicts the local conditions; hence either case yields
a contradiction. O

Let us now consider a red edge e = (b, w) with a black origin. The outgoing half-edge of e is in
the corner of the last visit to b, encoded by a letter a, while the incoming half-edge of e, which is
encoded by a letter ¢, is in the corner of the first visit to w. Hence, according to Lemma 4, the a
occurs before the ¢. In other words, the restriction of Wy, to the alphabet {a,c} is a parenthesis
word (interpreting each a as an opening parenthesis and each ¢ as a closing parenthesis), and each
parenthesis matching corresponds to a red edge with a black origin, see Figure 4. According to the
correspondence between the a’s and the ¢’s (see the regular expression (3) of Wy, ), this parenthesis
property of Wy, is translated as follows:

Property 2. For 1 <k < j+ 2, the number of a’s on the left of the kth occurrence of a in W, is
at least as large as the number of ¢’s on the left of the kth occurrence of ¢ in We.

Definition. A triple of words (W,, Wy, W.) in &(a?t2a?) x &(b'6’ ) x &(c712¢) is said to be

admissible of type (i,7) if W, (W, resp.) ends with a letter a (¢, resp.) and if Property 1 and
Property 2 are satisfied.
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FIGURE 5. An admissible triple of words is naturally represented as a non-
intersecting triple of paths.

Observe that this definition yields other redundant letters, namely, W, has to start with a letter
a, W, has to start with a letter ¢, and W} has to end with two letters b.

3.2. From an admissible triple of words to a triple of non-intersecting paths. The prop-
erties of an admissible triple of words are formulated in a more convenient way on lattice paths.
This section describes the correspondence, illustrated in Figure 5.

Consider an admissible triple of words (W,, W, We) of type (4, 7), and represent each word as
an upright lattice path starting at the origin, the binary word being read from left to right, and
the associated path going up or right depending on the letter. The letters associated to up steps
are a, b and c. Clearly, as (W, W;,, W,) € &(a?T2a%) x G(bil_)j+2) x &(c?12cY), the three paths end
at (4,5 + 2).

Property 1 is translated into:

“for 1 < k < 4, the kth horizontal step of P, (ending at abscissa k) is strictly above
the kth horizontal step of Py.”

Hence, Property 1 is equivalent to the fact that P, and the shift of P, one step to the right are
non-intersecting.
Similarly, Property 2 is translated into:

“for 1 < k < j 4+ 2, the kth vertical step of P, is weakly on the right of the kth
vertical step of P..”

In other words, P, is weakly topleft of P,. Hence, Property 2 is equivalent to the fact that P, and
the shift of P, one step up-left are non-intersecting. Let us now consider the redundant letters; they
correspond to two vertical steps in each path, and removing them leads to a triple (P}, P., P.) of
non intersecting upright lattice paths with origins (—1,1), (0,0), (1, —1) and endpoints (i—1,j+1),
(i,7), (i + 1,7 —1). Such a triple of paths is called a non-intersecting triple of paths of type (i, 7).

To sum up, we have described a mapping ® from separating decompositions with (i 4+ 2) black
and (j + 2) white vertices to non-intersecting triples of paths of type (i, j).

4. THE INVERSE MAPPING

As we show in this section, the mapping ® is easily checked to be a bijection, as all steps (taken
in reverse order) are invertible. Start from a non-intersecting triple of paths (P, P.,P.) of type
(¢,7), where P] goes from (—1,1) to (i — 1,5 + 1), P, goes from (0,0) to (¢, ), and P, goes from
(1,-1) to (i + 1,7 — 1). Append two up-steps in each of the 3 paths: P, = P} 11, P, =1 P, 1,
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4.1. Associate an admissible triple of words to the triple of paths. Each of the three
paths (Py, P, P.) is equivalent to a binary word on the alphabet {u,r}, corresponding to the
sequence of up and right steps when traversing the path. Let (W,, W, W,.) be the three binary
words associated respectively to (P,, Pp, Pe). In order to have different alphabets for the three
words, we substitute the alphabet (u,r) by (a,a) for the word W,, by (b,b) for the word Wy,
and by (c,c) for the word W,. As the triple (Pp, P4, P.) is non-intersecting, the triple of words
W, € 6(a72d)), W, € S(b'b/ ), W, € &(c712¢) is readily checked to be an admissible triple of
words of type (i, 7).

4.2. Construct the blue tree. Define the tree-word W as the word obtained by interlacing W,
and W, starting with a.

Claim 5. The word W, is a Dyck word (when seeing each letter in {a,b} as opening parenthesis
and each letter in {a,b} as closing parenthesis).

Proof. Clearly W has the same number of underlined as non-underlined letters. Assume that W;
is not a Dyck word, and consider the shortest prefix of W, having more underlined letters than
non-underlined letters. By minimality, the last letter of the prefix has to be underlined and is at
an odd position 2m + 1, so that this letter is an a. By minimality also, the prefix ws,, of length
2m has the same number of non-underlined letters as underlined letters. Moreover, ws,, has m
letters in {a,a} and m letters in {b, b}, because the letters of type {a,a} alternate with letters of
type {b,b}. Hence, if we denote by k the number of a’s in wa,,, then wa,, has m — k occurrences
of a, k occurrences of b, and m — k occurrences of b. In particular, the number of occurrences of a
on the left of the (k 4 1)th occurrence of a in W, is (m — k), and the number of occurrences of b
on the left of the (k4 1)th occurrence of b is at least (m — k). This contradicts Property 1. O

Denote by Tiye the plane tree whose Dyck word is W;. Actually, as we have seen in Section 3.1.1,
W, is a refined Dyck encoding of Tijye that also takes account of the number of vertices at even
depth, colored black, and the number of vertices at odd length, colored white. Precisely, Ty1ye has
i + 1 black vertices and j + 2 white vertices. Denote by s the (black) root of Ty, and orient all
the edges of Tyue toward the root.

4.3. Insert the red half-edges. The next step is to insert the red edges. Precisely we first insert
the red half-edges (to be merged into complete red edges). Define the matching word Wy, as the
unique shuffle of W, and W, that satisfies the regular expression ac(a*ac*c)*. For 1 < k < j + 2,
consider the kth white vertex w in T)ye, the vertices being ordered w.r.t. the first visit during a
cw traversal of Tyye starting at s. Let £ > 0 be the number of consecutive ¢’s that follow the kth
occurrence of a in Wy,. Insert ¢ incoming and one outgoing red half-edges (in clockwise order) in
the corner of Ty traversed during the first visit to w. Then, add an outgoing red half-edge to
each black vertex b in the corner traversed during the last visit to b. The red half-edges are called
stems as long as they are not completed into complete red edges, which is the next step. Observe
that the local conditions of a separating decomposition are already satisfied around each vertex
(the pole ¢ is not added yet).

4.4. Merge the red stems into red edges. Next, we match the outgoing red stems at black
vertices and the incoming red stems (which are always at white vertices). Property 2 ensures that
the restriction of Wy, to the alphabet {a,c} is a parenthesis word, viewing each a as an opening
parenthesis and each ¢ as a closing parenthesis. By construction, this word corresponds to walking
around Ty and writing a a for each last visit to a black vertex and a ¢ for each incoming red
stem.

This yields a matching of the red half-edges; the red outgoing half-edge inserted in the corner
corresponding to the kth black vertex (black vertices are ordered w.r.t. the last visit in Thiye)
is merged with the incoming red half-edge associated with the letter ¢ matched with the kth
occurrence of a in Wy, see Figure 6(a). Such an operation is called a closure, as it “closes” a
bounded face f on the right of the new red edge e. The origin of e is called the left-vertex of f.
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FI1GURE 6. Completing the red stems going out of white vertices.

We perform the closures one by one, following an order consistent with the a’s being matched
inductively with the ¢’s in Wy,. In Figure 4, this means that the red edges with a black origin are
processed “from bottom to top”. Observe that the planarity is preserved throughout the closures:
the red edges that are completed are nested in the same way as the corresponding arches in the
parenthesis word.

4.5. Insert the remaining half-edges. The last step is to complete the stems going out of
white vertices into complete red edges going into black vertices, so as to obtain a quadrangulation
endowed with a separating decomposition.

Lemma 6. For each k € [0..7] consider the planar map F} formed by the blue edges and the
completed red edges after k closures have been performed. The following invariant holds.

(I): “Consider any pair c,,cp of consecutive corners of Fy, during a ccw traversal
of the outer face of Fy (i.e., with the outer face on the right), such that ¢, is
incident to a white vertex (thus ¢y, is incident to a black vertex). Then exactly one
of the two corners contains an outgoing (unmatched) stem.”

Proof. Induction on k. At the initial step, Fy is the tree Tyue. The red stems are inserted in
the corners of Tyue—as described in Section 4.4—in a way that satisfies the local conditions of
separating decompositions. Hence it is an easy exercise to check that Fy satisfies (I). Now assume
that, for k € [0..i — 1], F}, satisfies (I), and let us show that the same holds for Fjyq1. Consider the
closure that is performed from Fj to Fji1. This closure completes a red edge e = (b, w), where
e starts from the corner ¢, at the last visit to b and ends at the corner ¢, at the first visit to w.
As we see in Figure 6(a), the closure expels all the corners strictly between ¢, and ¢, from the
outer face, and it makes ¢, the new follower of ¢,,. According to the local conditions of separating
decompositions, ¢,, contains an outgoing stem in the outer face of Fj1. In addition, ¢, contains
no outgoing stem in Fy,1, because the outgoing stem of b is matched by the closure. Hence, Fj41
satisfies (I). O

Denote by F' = F; the figure that is obtained after all closures have been performed (there are
i closures, as each closure is associated with one of the i non-root black vertices of Thue). Note
that each bounded face f of F' has been “closed” by matching a red half-edge going out of a black
vertex b with a red half-edge going into a white vertex w. The vertex b is called the left-vertex
of f.

Let us now describe how to complete F' into a separating decomposition on a quadrangulation.
Add an isolated vertex t in the outer face of F'. Taking advantage of Invariant (I), it is easy to
complete suitably each red stem h going out of a white vertex:

e if h is in a bounded face f of F we complete h into an edge connected to the left-vertex
of f; completing all the half-edges inside the face f splits f into quadrangular faces, as
shown in Figure 6(a).
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e if his in the outer face of F' we complete h into an edge connected to the vertex ¢; completing
all such half-edges splits the outer face of F' into quadrangular faces all incident to ¢, and
t is incident to red incoming edges only, see Figure 6(b).

The planar map we obtain is thus a quadrangulation. In addition it is easy to check that the
orientations and colors of the edges satisfy the local conditions of a separating decomposition.
Indeed, the local conditions are satisfied in F. Afterwards the (black) left-vertex of each bounded
face of F' receives new incoming red edges in cw order after the red outgoing edge, and the vertex
t receives red incoming edges only. Hence the local conditions remain satisfied after inserting the
last red half-edges.

To sum up, we have described a mapping ¥ from non-intersecting triples of paths of type (3, j)
to separating decompositions with ¢ + 2 black vertices and j + 2 white vertices. It is easy to check
step by step that the mapping ® described in Section 3 and the mapping ¥ are mutually inverse.
Together with Proposition 3, this yields our main bijective result announced in Theorem 1.

5. SPECIALIZATION INTO A BIJECTION FOR SCHNYDER WOODS

A triangulation is a planar map with no loop nor multiple edge such that each face is triangular.
Given a triangulation T, let s,t,u be its outer vertices in cw order. A Schnyder wood on T is an
orientation and coloration—in blue, red, or green—of the inner edges of 7" such that the following
local conditions are satisfied (in the figures, blue edges are solid, red edges are dashed, and green
edges are dotted):

e Each inner vertex v of T" has exactly one outgoing edge in each color. The edges leaving v
in color blue, green, and red, occur in cw order around v. In addition, the incoming edges
of one color appear between the outgoing edges of the two other colors, see Figure 7(a).

e All the inner edges incident to the outer vertices are incoming, and such edges are colored
blue, green, or red, whether the outer vertex is s, t, or u, respectively.

Definition, properties, and applications of Schnyder woods are given in Felsner’s monograph [11,
Chapter 2]. Among the many properties of Schnyder woods, it is well known that the subgraphs
of T in each color are trees that span all the inner vertices and one outer vertex (each of the 3
outer vertices is the root of one of the trees).

We show here that Schnyder woods are in bijection with specific separating decompositions,
and that such separating decompositions have one of the 3 encoding paths that is redundant, and
the two other ones are Dyck paths. Afterward we show that this bijection is exactly the one
recently described by Bernardi and Bonichon in [2] (which itself reformulates Bonichon’s original
construction [4]).

Starting from a Schnyder wood S with n inner vertices, we construct a separating decomposition
D = «a(S) as follows, see Figure 7:

e Split each inner vertex v of T" into a white vertex w and a black vertex b that are connected
by a blue edge going from b to w. In addition w receives the outgoing green edge, the
outgoing blue edge and the incoming red edges of v, and b receives the outgoing red edge,
the incoming blue edges, and the incoming green edges of v.

e Add a white vertex in the middle of the edge (s,t), and change the color of u from black
to white.

e Recolor the green edges into red edges.

e Color red the two outer edges incident to ¢ and orient these edges toward t. Color blue the
two outer edges incident to s and orient these edges toward s.

Clearly we obtain from this construction a bipartite planar map ¢ with no multiple edge. The
map @ has a quadrangular outer face, 2n inner vertices, and 4n inner edges (the 3n inner edges
of the original triangulation plus the n new edges), hence @) has to be a maximal bipartite planar
map, i.e., () is a quadrangulation. In addition, it is easily checked that @ is endowed with a
separating decomposition D = «(S) via the construction, as shown in Figure 7. A separating
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FIGURE 7. From a Schnyder wood to a contractible separating decomposition.

decomposition is called contractible if each inner white vertex has blue indegree equal to 1 and the
two outer white vertices have blue indegree 0. Clearly D = «/(S) is contractible, see Figure 7(b).

Conversely, starting from a contractible separating decomposition D, we construct the associated
Schnyder wood S = B(D) as follows:

e recolor the red edges of D going out of white vertices into green edges.

e contract the blue edges going from a black to a white vertex.

e remove the colors and directions of the outer edges of D; contract into a single edge the
path of length 2 going from s to t with the outer face on its left.

Clearly, the local conditions of Schnyder woods are satisfies by S. Hence, proving that S is a
Schnyder wood comes down to proving that the planar map we obtain is a triangulation. In fact,
it is enough to show that all faces are triangular (it is well known that a map with all faces of
degree 3 and endowed with a Schnyder wood has no loop nor multiple edges), which clearly relies
on the following lemma.

Lemma 7. Take a contractible separating decomposition D and remove the path of length 2 going
from s to t with the outer face on its left (which yields a separating decomposition with one inner
face less). Then around each inner face there is exactly one blue edge going from a black vertex to
a white vertez.

Proof. Let O be the plane bipolar orientation associated to D. Observe that s and t are adjacent
in O, the edge (s,t) having the outer face of O on its left. To each inner face f of O corresponds
the unique edge e of O that is in the interior of f. For each edge e of O, except for (s,t), let £,
(re) be the face of O on the left (right, resp.) of e, and let wy (wy,, resp.) be the corresponding
white vertex on D. Notice that the inner face of D associated with e is the face f incident to the
extremities of e and to the white vertices wy, w,.. As wy has blue indegree 1, £, has two edges on
its right side. Hence, one extremity v of e is extremal for /., and the other extremity v’ of e is in
the middle of the right side of ¢.. Hence the edge (v’,w;), which is on the contour of f, is a blue
edge with a black origin. In addition, the edge (we,v) goes into v (as v is extremal for ¢.), and
each of the other two edges of f is either red or is blue with w, as origin, by the rules to translate
a plane bipolar orientation into a separating decomposition. Hence any inner face of D, except the
one corresponding to (s,t), has on its contour exactly one blue edge with a black origin. U

Clearly the mappings « and 3 are mutually inverse, so that we obtain the following result (which
to our knowledge is new):

Proposition 8. Schnyder woods with n inner vertices are in bijection with contractible separating
decompositions with n black inner vertices.
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FicUurE 8. Encoding a Schnyder wood by two non-crossing Dyck paths via the
associated contractible separating decomposition.

Let us now describe the nonintersecting triples of paths associated with contractible separating
decompositions. Let D be a contractible separating decomposition with 2n inner vertices, and let
(P, P/, P!) = ®(D) be the associated non-intersecting triple of paths, which has type (n,n). Let
Thiue be the blue tree of D. Observe that Ty, has one 1-leg on the left and on the right side
and all the other white vertices have exactly one child. Let T be the tree obtained from Tiye
by deleting the 1-legs on each side and by merging each white vertex with its unique black child.
Then it is easily checked that P, is the Dyck path encoding 7'. In addition, P} is redundant: it is
obtained as the mirror of P, w.r.t. the diagonal x = y, shifted one step to the right, and with the
last (up) step moved so as to prepend the path, see Figure 8 (right part). Finally the path P, is
also a Dyck path, since it does not intersect P, and its respective endpoints are one step up-left
of the corresponding endpoints of P,. To have a more classical representation, one rotates cw by
45 degrees the two paths P, and P, and shifts them to have the same starting point (and same
endpoint), see Figure 8 (lower part). After doing this, the pair (P,, P!) is a noncrossing pair of
Dyck paths (each of length 2n) that is enough to encode the separating decomposition.

Conversely, starting from a pair (P, P!) of non-crossing Dyck paths, we rotate the two paths
ccw by 45 degrees and shift P, one step up-left, so that P, now does not intersect P.. Then we
construct the path P} as the mirror of P, according to the diagonal = y, with the last step moved
to the start of the path, and we place P/ so as to have its starting point one step bottom-right
of the starting point of P/. As P is a Dyck word (i.e., stays weakly above the diagonal x = y),
the path P/ does not intersect P.. Furthermore it is easily checked that the blue tree Tpiye Of
the separating decomposition D = ¥(Py, P,, P!) has one 1-leg on each side and all other white
vertices have one child in Tyie. (Proof: by definition of ¥, the Dyck path P for Ty is obtained
as a shuffle at even and odd positions of the path P, :=7 P, 1 and of the path P, := P/ 11. By

construction of P} from P!, it is easily checked that there is a A at the beginning—starting at
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position 0—and at the end of P and that all the other peaks and valleys of P start at odd position,
hence the corresponding leaves and forks of T' are at black vertices only.)

To conclude, we have proved that contractible separating decompositions with n inner vertices
are encoded (via the bijection ®) by noncrossing pairs of Dyck paths each having 2n steps. Given
Proposition 8, we recover Bonichon’s result [4]:

Theorem 9. Schnyder woods on triangulations with n inner vertices are in bijection with non-
crossing pairs of Dyck paths that have both 2n steps.

As shown in Figure 8, the bijection can be formulated as a mapping ® operating directly on
the Schnyder wood S. Indeed, let D = «(S). The blue tree T of S is equal to the tree Thjye of
D where the 1-legs on each side are deleted and where each white node is merged with its unique
black child. Hence the path P, (the lower Dyck path) associated with D is the Dyck path encoding
the blue tree T of S. And the upper Dyck path P! can be read directly on S: P! is obtained by

c
walking cw around T, drawing an up-step (down-step) each time an outgoing green edge (incoming

red edge, resp.) is crossed, and completing the end of the path by down-steps. This mapping is
exactly the bijection that has been recently described by Bernardi and Bonichon [2] for counting
Schnyder woods (and more generally for counting some intervals of Dyck paths), which itself is a
reformulation of Bonichon’s original construction [4].
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