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Abstract. We define a family of differential operators indexed with
fixed point free partitions. When these differential operators act on nor-
malized power sums symmetric functions gx(z), the coefficients in the
decomposition of this action in the basis gx(z) are precisely those of
the decomposition of products of corresponding conjugacy classes of the
symmetric group &,,. The existence of such operators provides a rigorous
definition of Katriel’s elementary operator representation of conjugacy
classes and allows to prove the conjectures he made on their properties.

1 Introduction

Let A = (A1, A2,---,Ax) be a partition of weight n and length £()\) = k, i.e. a
finite non increasing sequence of k positive integers A\; > Ay > --- > A\ summing
up to n. We write A - n or |A| = n, and A = 14122 . _n’ when ¢; parts of
are equal to ¢ (¢ = 1...n). Given a permutation o € &, we denote by c¢(o)
its cycle type, that is the partition giving the length of its cycles. Conversely,
given a partition A = (\1,..., Ag), the canonical permutation () of cycle type
A is the permutation with cycles (A1 + -+ 4+ X1 + 1,..., A1 + --- + \;) for
1 <4 < k. Classically, to a partition A, one associates the conjugacy class Cy,
that is the set of permutations of cycle type A, and following [15] we write
zy = 194,12%0,) .. .nt0,)) so that |Cy| = n!/zz.

Let Q[&,] be the group algebra of the symmetric group over the field Q of
rational numbers and let Z,, be the center of this group algebra. The formal sum
Ky, = Eae@ o of the permutations in a conjugacy class Cy belongs to Z,,, and
the set {K}arn of these formal sums forms a linear basis for the center Z,.

Here we consider K or Cy as an operator acting on Z,, by multiplication. The
multiplicative structure of Z,, has been extensively studied in terms of connezxion
coefficients [6, and ref. therein], also called structure constants [7,17, and ref.
therein]. These coefficients are defined for all triples of partitions (A, u,v) of n
by
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Ky K, =Y c,K,. (1)

In a set of conjectures presented at the conference FPSAC’98 [13] and de-
rived from previous weaker conjectures [10, 12, and ref. therein], Katriel looks for
expressions of the conjugacy classes as sums of some loosely defined elementary
operators. Many examples of explicit expressions of conjugacy classes indexed by
small partitions in terms of these elementary operators are given in [13] and con-
jectures are made on the form of the coefficients. In particular, Katriel requires
his expressions to depend only on the reduced cycle type: the reduced partition
of a partition A = 1¢12% k% ig the partition A = 2¢2 ...k, and the reduced
cycle type of a permutation is defined accordingly. A partition is reduced if it is
equal to its reduced partition, that is, if it contains no part equal to 1.

In order to define rigorously Katriel’s elementary operators we use a repre-
sentation of the action of conjugacy classes on Z,, by an action of differential
operators on the space of symmetric functions. Once stated in this form (Def-
initions 3 and 4) the various observations of Katriel on this representation are
relatively easy to prove: our main result (Theorem 1) completely settles the con-
jectures of [10,12,13]. Our approach is reminiscent of Goulden and Jackson’s
use of differential operators in slightly different context (see [6] and ref. therein).
Since these results were presented at the 12th International conference on For-
mal Power Series and Algebraic Combinatorics [8], Lascoux and Thibon have
shown that the differential operators that we introduce in an elementary way
can also be constructed at a more algebraic level using Gaussian integrals of
complex square matrices and vertex operators [14].

Apart from considering the operators themselves, as we do here, Katriel also
formulated conjectures about their eigenvalues, that is the central characters of
the symmetric group [9, 11]. Remarkably, this approach also leads to a represen-
tation of the structure constants cj, but this time as linearization constants for
a new basis of non homogeneous symmetric functions [3]. Finally it should be
mentioned that similar ideas can also be applied to the calculus of inner tensor,
or Kronecker product, of irreducible representations of the symmetric group,
with interesting combinatorial consequences ([2] and [5]).

Notational conventions. In the whole text, A, u, v stand for partitions, with /;,
m;, n; denoting the multiplicities of their parts. Permutations are denoted p,
o, 7. Finally recall that ¢(p) is the cycle type of a permutation p and that 7(X)
is the canonical permutation of cycle type .

Acknowledgments. We would like to thank Mike Zabrocki for his contribution
through several discussions that have enriched our understanding of the subject.
We also thank Jacob Katriel for explaining some of his conjectures to us.

2 Symmetric functions

Let x={z1,%2,...} be a set of indeterminates and let A = Ag[x] be the ring
of symmetric functions in z1,x2,... over the field Q of rational numbers. The



power sums symmetric functions py(x) are defined by

pe(x) =t + a5+,
PA(X) = Pa; (X) Pas (X) - pag(X)-

The ordinary scalar product < ,> on A is defined on the linear basis {py} by:

V)\,/J <Px;Pp >= Z,\(s,\’u.

where 8y ,, is the Kronecker delta. We need the differential operators px* known
in the literature as Hammond’s operators (see [15] or [16]) obtained from the
following definition:

Definition 1. For any symmetric function f € A, let f+ be the adjoint operator
to the multiplication by f in A with respect to the scalar product < ,>:

Vg,heA < fg,h>=<g,ft-h>.

In particular the operator px* is conveniently described as a differential
operator on A:

6k
Ak .
Opr, 0D, - - - ODA,

i =AMAa. ..

The use of such operators in relation with connexion coefficients is not new
and can be found for instance in [6]. We are interested in representing the mul-
tiplication by a conjugacy class as an action of an operator on the space of
symmetric functions. More precisely, we consider the normalized power sums
functions gx = px/zx with the property that ¢ = {gx}, is an orthogonal basis of
A, dual to p = {pr},. Given a partition A, we look for an operator G acting on
the basis ¢ and satisfying the condition

Vu,v |/\|7 Gy - qu [QV] = (K/\ : Ku) [KV] .
where f [g] means the coefficient of g in f. Here is a trivial way to do this:

Definition 2. Let A = (A1, Aa, ..., \x) be a partition of n. For any fized permu-
tation p € Cy, define the operator Gy : A — A by

1 cx
Gr=— Z pc(pa)pc(o)J_ = Z z_upvpuJ_' (2)

z
A oceS, wkn “H

From this definition and the orthogonality relation pi‘ - Py = Zx0,, for par-
titions of the same weight, it is immediate that for any partitions A, u of n

Gr u=_ Kulv
vkn

The operators G are not very interesting because their definition uses the
structure constants cf, which they are meant to produce; however they provide



an easy introduction to what we mean by representing the multiplication in Z,
by the action of an operator on symmetric functions.

Our aim is to define a more interesting family H = {Hj}; of operators,
indexed with reduced partitions A and satisfying

VYA, Vp,vE A, Hy-qula] = (Kx-K,)[K,].

3 Restricted and extended permutations

In order to define our operators Hy, we need some elementary results on re-
stricted permutations. For a subset S of [n] = {1,...,n}, and a permutation
o € 6,, let 0|5 be the restriction to S obtained by removing all the elements
of [n] \ S from the disjoint-cycles presentation of 0. More formally os is such
that, for all i € S, 05(i) = o (i) where k; is the least positive integer such that
oki(i) € S.

For the definition of the operators H5 we shall need the following observation:
If p,o are two permutations of &,, and S € [n] is such that [n] \ S contains only
fixed points of p, we have (po)|s = p|s0|s. Moreover po can be recovered from
(po)|s and o by inserting in (po) s after each i € S the block that separates i
and pg(i) in the presentation of o as a product of disjoint cycles.

Ezample. If p = (1 2 3) and 0 = (1 aaa 2 bbb) (3 ccc), then oy3 = (1 2) (3),
(po) iz = (1 3) (2) and po = (1 aaa 3 ccc) (2 bbb).

Conversely, given a permutation o of &,, we shall use two ways to extend op
to a permutation of &, First, given a composition ¢ = (i1,...,i,) with i; > 1,
we are interested in permutations obtained from o¢ by inserting a block of size
i; — 1 after each point j € [p] to obtain a permutation of size n = |i|. Let o;'
denote one of these permutations.

Second, for p < n, any permutation oy of &, can be extended naturally to a
permutation o € &,, by adding fixed points to g¢: o (i) =i for i > p. We call ¢ the
natural extension of op in &,,. In this way, o9 € &, acts by left multiplication
on &,, through its natural extension o. Observe that for any partition A, the
canonical permutation 7 () is the natural extension of the canonical permutation

w(A).

4 The operator H5 and Katriel’s notations

We give two equivalent definitions of the operators Hy.

Definition 3. Let A be a reduced partition of weight p, and recall that ()
denotes the canonical permutation of cycle type X. Then the operator Hy : A — A
is defined by:

_ 1 L 0= ng"
Hy = g Z Z Pe(po)Pe(o)> where {p _ ﬂ_(;\lm_p)_ 3)

00ES),  i1,eip>1



The fact that the cycle type of po depends only on the composition i =
(41,-..,%p), and not on the elements inserted in oo to give o, is a consequence
of the previous discussion on restricted permutations.

The operator Hy is closely related to Katriel’s bracket operators (which are
not defined with complete rigor in his papers). A simple variation on his notation
is:

«il + 42513 | 11502 + Z3>) stands for Z p[i1+i2,i3]p[Li1,i2+i3]7
i1,d0,i3>1
where the brackets [,] denote multisets of integers (i.e. partitions up to reorder-
ing). A further simplification of this notation (even closer to Katriel’s) is to
replace each variable by its index and write sums as cycles:

{(1,2)(3) | (1)(2,3)) stands for (i1 + 42593 | 41592 + i3)
Let us rewrite Definition 3 with this notation:

Definition 4. Let )\ be a reduced partition of weight p, and recall that () is
the canonical partition of cycle type A. Then

Hy=—= 3 (@(Noo | oo)- (4)

2%
A 0'066;,

Finally, Katriel conjectured a symmetry in the coefficients, which allows the
introduction of a last notation:

(P Q) standsfor (P [Q)+(Q|P)

Ezxamples. We keep the intermediate notation which we find more descriptive.

Hy = (i) = > pupis
i12>1

1, . 1 S 1, Coy
Hy = S {linsdz [ +ia)) + 5 (i +ia [ i1502) = (a4 | d152)

1
_ 1 1
= 5( E Piy1,ioDiy +is T E pi1+i2pz’1,z’g)
i1,i2>1 i1,d2>1
1

1 1 1
= Epzpﬁ + 51)11172L + p3pa; "‘pzlpgL +p4193L1 51)4sz2 + Epzzpi +...
1
{

3
1
5((i1+i2,z'3u1,i2+is)) +

-

«il +iotiz|i1+iz +i3»

1

i1,i2,i3|i1+i2+i3» + g
«i1+i3,i2|i2,i1+i3» + 3

1
= g((i1+i2+i3|i1,i2,is)) +
+

L =

«i2 +i3,11 ‘is,i1 +1i2 »

—

1
= ((ir-+inisliz,iat+is)) + §<i1+i2+i3\i1,i2,i3) + g((i1+i2+i3\i1+i2+i3»

=

Wl

1 1 1 1
Z (pnp(il,i%ig) +p(i1,i2,i3)pn +pnpn + 3p(i1+'i3,i2)p(i1+i2,i3))

(i1,d2,i3) >1
n=ti1+i2+13



1
+- «h +i2jiz+iali1+iz;ia+ia » + «21 +iotiz;iali1;ietis +i4»

4
1 1
+§<i1+i2+i3+i4\i1+i2;i3;i4) + Z«i1+i2+i3+i4\i1+i2+i3+i4»

Katriel’s global conjecture in [13] is that K “=" H5. More formally, we shall
prove the following theorem.

Theorem 1 (Global Conjecture). Let A, u and v be partitions of n, then
Hs -qu [o] = (Kx-K,)[K)].

Observe that applying a permutation of indices in an elementary bracket op-
erator does not change it. Collecting terms that are equivalent under relabelling
of indices, one can form a sum over “distinct” elementary operators (see exam-
ples). The coefficient of each elementary operator is thus given an immediate
interpretation, in accordance with the central conjecture of Katriel in [13].

Finally an immediate consequence of Definition 4 is that the expansions
H;=> v O, /\p,,pﬁ, are symmetric in g and v. In terms of Katriel’s notation,
this proves that each non symmetric elementary operator (P | Q)) appears with
the same coefficient as its mirror image (@ | P)), so that, as conjectured again
by Katriel, the notation (P | Q) can be systematically used.

Proof (of Theorem 1). Let p = || be the weight of A, pg = 7()\) the associated
canonical permutation, and p its natural extension in &,,, so that p = 7(A1"P).
On the one hand,

C 2y
K\ -K,[K,] = :CA: K, -K,[K)\] = N Card {(o,7) €Cy xC, | po =T}
= 2 Card{o €C, | po €C,}
£
= z—" Z Card{c €C, | o) =00, po €C,} . (5)
A
00€EG,

Since the support of p, i.e. the set of elements moved by p, is included in [p], the
discussion of Section 3 applies: assume that o is of the form ¢'c"” where ¢’ is a
permutation obtained from oy by inserting a block of size i; — 1 after each point
J € [p] in the cycles of og, and ¢’ and ¢ have disjoint support. Then po = 7'¢"
where 7' is obtained by inserting the same blocks after the same points as before
but in the permutation 79 = pgog. In particular the cycle types p', v’ and p' of
o', 7' and ¢" must satisfy u = p' + p” and v = v' + p"' (where + denotes the
disjoint union of parts). In particular, " is imposed by the choice of y' or v'.
Observe now that given a composition ¢ = (i1, .. .,4p), the exact composition
of the blocks that are inserted in g to produce ¢’ has no influence on the result-
ing cycle types u' and v'. This allows to define the set C'(\; u, v) of compositions



such that the corresponding pair (p’ V') satisfies p = p' +p" and v = v' + ' for
some p' that depends on (i1,...,4p). Given the composition i, the number of
ways to fill in the blocks is (;/ 7} ) (| | —p)! (choose the |i| —p clements inserted

n
and use a permutation to distrlbute them in the p blocks of size i1,...,4p), and

the number of ways to choose ¢” is [Cy»| = (n — |i])!/2,». Finally we have:

Card {0 €Cy | op =00, po € C,,}
n—p . n — |i|)!
-2 (h) e B2
i=(i1,...,4p) EC(Ap,v) a

where p'" depends on i = (i1,...,4p) as before with |¢| = |u'| = |V|. Observing
that zy, = z5(n — p)!, and simplifying we obtain from (5) and (6)

1
Ky Kull] = 22 3 ) D
A G0€Gp (it,enip)EC (M) M
On the other hand, from Definition 3 we have
pc(o’ )pu o =alt,
H/_\qll« = Z Z pc(pa”) Where { —7T(OA]_| |—P)_

00EG, i1,..0p2>1

Taking p' = ¢(o') we observe that

Opy {0 if u' & p,

= ! 1 .
Opy W Pu—  otherwise.

Therefore, with C'(1) denoting the set of compositions i = (i1, .. .,i,) such that

u o= c(agi) C u, we have

- . 1 Z ¥ Pe(po’)+p—c(o’) here 7' = =a{’,
X du = Zne(on ,  Wwhere _ 77()\1| ‘_p)‘
00€EG,  (i1,...ip)EC () m
Finally, taking the coefficient of ¢, in the above identity, we obtain
2y 1
Hs-q, [0)] = — Z Z . — = (Kx-K,)[K,].
00€G)y  (i1,...1p) EC(A;1,v) p—c(o’) O

5 Families of connexion coefficients
For a reduced partition A, let Ky (n) be the sum in Z,, of all permutations with

reduced cycle type A if n > |X|, and 0 otherwise.
Let A, i be reduced partitions and define the coefficients cgﬁ (n) by

Kx(n) - Ku(n) = chﬁ(n)Kv(n)- (7)



In [4] Farahat and Higman prove that these coefficients are polynomials in n.
This also follows from Theorem 1: let k (resp. h) be the largest part of i (resp. ),
and apply the elementary operator Hx to gyqn»-ini; the non-zero contributions
are of the form

PaP5 dain—1al [dp1n—171]

where o and j are partitions of length |A| having parts of size at most k and h
respectively. There are finitely many such partitions and the contribution of this
term is a polynomial in n of degree a;, the number of 1’s in a.

Theorem 1 is a generalization of this result in the sense that it proves that
other families of coefficients are polynomials in n. For instance, for any reduced
partition X with even weight, the coefficient

bx(n) = K5(2n) - Kon (20) [Kon (20)]

is a polynomial in n. The expression of H,2 presented before gives

baz () = ~

1 P22P2L2(I2" [(I2"] = n(n - 1)-

It should be observed that, while Theorem 1 yields a general proof that the
coefficients bx(n) are polynomials, the actual computation of these polynomials
is often easier by elementary techniques. For instance we claim the following.

Proposition 1. For positive integers k and n such that k is even and k < n/2
we have

b22k (TL) = H22k Qon [an] = (22k prkp;k gan [qzn]

1 (2k)!
<2k)!>

= Koo (2”) - Kon (Qn)[KZ"] = (;) %

Proof. The proof is obtained with elementary counting techniques. The binomial
coefficient (;;E) comes from choosing 2k transpositions from a set of n transpo-
sitions. Then we have to show that Koon - Koar[Kozr] = % In the simple case

k =1 the two products that give the permutation (1,2)(3,4) are

(1,2)(3,4) = [(1,4)(2,3)]]
=[(1,3)(2,4)][(1,4)(2,3)]

—~~
[a—
w

S—

—~~

N
I

=

(8)

For a larger k, to obtain the involution (1,2)(3,4)...(4k —1,4k) as a product of
two fixed point free involutions, we have to partition the set of 2k transpositions
{(1,2),(3,4),...,(4k — 1,4k)} in k parts of two transpositions each. There are
(;,Ckk)!! such partitions. For each set {(i1,142), (i3,44)} of two transpositions in one
partition, there exists 2 decompositions similar to the decompositions (8) so that
for each partition we have 2F decompositions. Since there is no other possible

decomposition, the count is complete. |




Observe that products in Equation (8) are commutative so that the set of in-
volutions {id,[(1,2)(3,4)],[(1,4)(2,3)],[(1, 3)(2,4)]} involved in the decomposi-
tions forms a commutative subgroup isomorphic to the Klein group K. So the set
of all transpositions involved in each decomposition of (1,2)(3,4)...(4k —1,4k)
as a product of fixed point free involutions may be arranged in pairs to obtain
the direct product of k disjoint copies of Kj.

As a last example, let us present an explicit expression for the coefficients
Hg[p(lrn)péqm)]. From this, we recover a result of Boccara [1, Coroll. 6.15 and
Th. 7.2], that gives coefficients K (1r¢) - K(1am)[K(175)]- Again, although Katriel’s
approach immediately yields the fact that these coefficients are polynomials in
p, q,r for fixed £, m,n, their actual computation amounts to reproducing Boccara
analysis (which we thus omit here).

Proposition 2. For all positive integers £,n,m,q,r such that ¢ + m =1 + n,
£<q+mand £ —1= g+ r mod 2 we have:

(777 () (n— g -1ty
He[P(lrn)Péiqm)] = (Z_T;q“) (m+q—2)!
0 otherwise.

iff—1>r+gq,

Corollary 1. For all positive integers £,m,n such that £ +m > n + 1 and
£+ m =n+1mod 2 we have:

min{p,q,r}

T
Karey - Kaom)[Karm] = n > (k) Hylp(ir—sn)Plia-tm)]

k:muw{O,‘Hrzﬂ}

. m"’%‘”} (r) (T (I (0 — g+ B = 1)1 — B)!
(17T7q2+2k+1) (p _ k)'

k=maz{0, 7‘””";“'1 }

where p,q,r satisfy p+L=q+m=r+n.
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