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Résumé. Nous démontrons plusieurs conjectures dues & Jacob Katriel
sur les classes de conjugaison de &,. La premiére exprime, pour un
partage fixé p de la forme 71"~ ", les valeurs propres (ou caractéres cen-
traux) w) en terme des contenus de . Tandis que Katriel a conjecturé
une forme générique et un algorithme pour calculer les coefficients in-
déterminés, nous fournissons une formule explicite. La seconde conjecture
(présentée au SFCA’98 a Toronto) donne une forme générale pour 'ex-
pression d’une classe de conjugaison en terme d’opérateurs élémentaires.
Nous la prouvons en utilisant une description en termes d’opérateurs
différentiels sur les polynémes symétriques. Finalement nous étendons
partiellement nos résultats sur w;‘ 4 des partages p quelconques.

Abstract. This article addresses several conjectures due to Jacob Ka-
triel concerning conjugacy classes of &, viewed as operators acting by
multiplication. The first one expresses, for a fixed partition p of the form
71"7", the eigenvalues (or central characters) w, in terms of contents of
A. While Katriel conjectured a generic form and an algorithm to com-
pute missing coefficients, we provide an explicit expression. The second
conjecture (presented at FPSAC’98 in Toronto) gives a general form for
the expression of a conjugacy class in terms of elementary operators. We
prove it using a convenient description by differential operators acting
on symmetric polynomials. To conclude, we partially extend our results
on w) to arbitrary partitions p.

1 Introduction

Although our aim is to prove Katriel’s conjectures, we do not use his notations
through this text: instead we keep closer to Macdonald’s textbook [13] and pro-
vide translations when necessary.

Notations. Let A=(\1, A2, ... Ag) be a partition of weight n and length £(\) =k,
i.e. a finite non increasing sequence of positive integers Ay > Aa > ... 2 XAy > 0
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summing up to n. We write A F n or |\| = n and A = 142%...p% when ¢;
parts of A are equal to 7 (i = 1...n) (we shall consistently use greek letters
for partitions and their parts and corresponding latin letters for the multiplicity
notation). We denote by C, the conjugacy class indexed by the partition A and
by A(co) the cycle-type of a permutation o. Let zy = 1¢14;12¢24y!...nt (.1 so
that |Cx| = n!/zx.

Let Q[S,] be the group algebra of the symmetric group over the rational
numbers field @, and let Z,, be the center of this group algebra. The formal
sum of the permutations in a conjugacy class Cy belongs to Z,, and the set
{K}rn of these formal sums forms a linear basis for the center Z,,. Similarly,
the irreducible characters of the symmetric group &,, are indexed by partitions
of weight n and can be considered as elements of Z,, in which their family
{x*}rrn also forms a linear basis. For A and p two partitions of n we denote
by Xﬁ the evaluation of the character x* on any permutation of the class C,. In
particular, x7» = n!/hy where hy is the hook-length product of X. The character
table [xl);] gives natural formulae for changes of basis in Z,: x* = 3 un X;}K u
and K, =3, O /20X

Partitions are usually represented by their Ferrers’s diagrams. The content
of acell x = (i,j) € Ais ¢(x) = 7 — j. In his conjectures, Katriel introduces
the content power-sums py(X) defined for k > 0 by px(A) = >, ¢(2)* and for
v Enby p,(A) =[], 9. (A). These pi () are the classical power-sum symmetric
functions py, evaluated on the alphabet {c(z) | z € A}.

A partition is reduced if it contains no part equal to 1. For A = 1412 ... b,
we denote by A the reduced partition 2¢...k%. The reduced cycle-type of a
permutation or of a conjugacy class is defined accordingly.

Multiplication by a conjugacy class. Let A be a partition of n. We are
interested in the element w? of Z,, which is defined ([13, p126]) by

Vpkn, W (p) =wp = —x

These elements are called central characters or eigenvalues by J. Katriel'. As
the family {x*/hx}xrn forms a basis of orthogonal idempotents in Z,, we have

w
Vp, Ak mn, Kp-x*=2f—p(x“-x*)=w3x*,
pEn b
explaining why the evaluation w;‘ may be called the eigenvalue of the conjugacy
class C, associated to the eigenvector x*. Here we consider K, or C, as an
operator acting on Z, by multiplication. The multiplicative structure of Z,, has
been largely studied in terms of connezion coefficients [2, and ref. therein], also
called structure constants [3, and ref. therein|. These coeflicients are defined for

! For a partition p F n and an irreducible representation I', indexed by the partition
4k n, our w] is denoted A} in [8].



all triples of partitions (A, u, v) of n by

Ky-K,=) o K,

vkn

The first set of conjectures that we consider is [8, Conj.1-2] (see also [5]).
In these articles, Katriel suggests that for a fixed integer r, the eigenvalues
w)._. are given by evaluations of a polynomial in Q[n][ps,...,pr—1] on the
contents power-sums pg(A). The first values (r = 2,3,4) were computed by
Frobenius himself (1901). Ingram [4] later computed other values of wj. In [6],
an algorithm is given, which is used in [7] to produce numerical expressions
supporting these conjectures up to r = 18. Theorem 1 gives an explicit expression
for the polynomials considered by Katriel and proves some of their conjectured
properties.

In a second set of conjectures, considered in Section 3, Katriel looks for ex-
pressions of the conjugacy classes as sums of elementary operators. He requires
that these expressions depend only on the reduced cycle-type. These conjectures
were presented at FPSAC’98 [11] and are derived from previous weaker conjec-
tures [9, 10, and ref. therein]. In order to state more easily Katriel’s formulae,
we use a representation of the action of conjugacy classes on Z,, by an action of
differential operators on the space of symmetric functions. Once stated in this
form (theorem 2), these conjectures are relatively easy to prove. Our approach
is reminiscent of that of Goulden and Jackson (see [2] and reference therein).

Finally in Section 4, we consider a third set of conjectures [8, Conj.3—6], which
extend the first ones, from partitions of the form r1™~" to arbitrary partitions
p- Unlike the case r1"", we have not found an explicit expression of w, for
arbitrary p in terms of the p;. However we derive from Theorem 2 a proof of a
weak version of [8, Conj.4| on the general form of w,, which implies [8, Conj.5|.

Numerous examples of decompositions of w, or K, for small p are found e.g.
in [8]. Thus we did not include a large number of examples. We instead provide
Maple procedures based on our theorems at http://www.loria.fr/~schaeffe.

Acknowledgements. We would like to thank Mike Zabrocki for his contribution
through several discussions that have enriched our understanding of the subject.
We also thank Jacob Katriel for explaining some of his conjectures to us.

2 Central characters for partitions r1"~"

Throughout this section, let r denote a fixed integer. Let the content weight of
a partition v be w(v) = |v| + 2¢(v).

In order to state our polynomial expression for w,;»-~, we define two formal
power series in the indeterminate Y with polynomial coefficients in n: first,

PI(Y,n)=(14nY)7 +(1+(n+r—1)Y)7 —(1+(n+r)Y)7 - (1+(n-1)Y)7 (1)

and P} (Y,n) =[], P;.(Y,n), so that P](Y,n) is the power sum symmetric func-

tion p, evaluated on the alphabet —Y,,—Y,_14+Yntr—1+Y5, where Y;, = ﬁ



Second,

N G D = o [+ +D)Y)(A+ (n=1Y)\"
Q"¥om) = r—zg(lJr("H)Y)( A+ @m+r—1)Y)1+nY) ) @)

Finally, let QF (n) be the coefficient of Y* in Q"(Y, n) and P} ,(n) the coefficient of
Y24¥)+i in PT(Y,n).The polynomials Q7 (n) and P} i(n) have respective degree
i—1 and 7. With these notations, let 2, € Q[n][p1,-.. ,pr_1] be the polynomial:

_]_ |”‘py . .
Qr(napla-" Jprfl) = Z % Z Qz (n)Pu,j(n)‘
kv v it+j=k
k+w(v)=r+1
We shall prove the following theorem.

Theorem 1 (part of [8, Conj. 1]). For n > r, and for all partitions \ of n,

wﬁ\l"—T = Qr(napl()‘)a v 7pr—1()\))-
Moreover, for n <, and all partitions XA of n, 2,.(n,p1(A),... ,p,—1(A)) =0.
Corollary 1 ([8, Conj. 2]). The coefficient of p,_1 in 2, is 1.

Although we have an explicit form for the inner sum in the definition of (2.,
we have been unable to prove the following cancellations:

Conjecture 1 (Remaining from [8, Conj. 1]). In the above definition of (2, the
inner sum, which is a polynomial in Q[n] of degree at most k, is null if & is odd,
and of degree k/2 if k is even.

Proof. Let us borrow the following result from [4] (reproduced in [13, p118]).
Let p = 71" ", X be a partition of n, u be its shifted partition pu; = A; +n — i
for 1 <i < nand o(X) =[], (X — p;). Then

ha -1 &
Whner = X,A; = TTZM(M—U---(M—T'FU
i=1

o(pi — 1)
@' (i) ®)

Zpin—r

which is also the coefficient of X! in the expansion of

-1 p(X —7r)
—X(X—l)...(X—r+1)W

r2
in descending powers of X. Changing the sign of X, the latter expression can be
explicitly written as

) o o XAt pr X4n-—i

X .
2 ,1;!)( +n+z)i:1X+r+n—i X +

(4)

i=1



Recall now that the content polynomial ¢)(X) of the partition A is the poly-
nomial in the indeterminate X defined ([13, p15]) by

a(X) = [T(X + (@)
TEA

From [13, p. 15], for & = A; +m — i, 1 < i < m, we have

aX+m) 4 X+&

(X +m—1) iZlX—}—m—i'

On one hand, if we take m = n, we get & = u; for 1 < ¢ < n. On the other
hand,if m =n+r,then§; =r4+py;forl <i<nand &, =r—ifor0<i < r.
Therefore expression (4) can be rewritten as

(—1)" (X +n+r) ex(X+n-1)

. .
2 i:HO( ) X A nar—1 X +n)

(5)

Upon setting X = 1/Y, we obtain wﬁ‘ln_r as a coeflicient in a Taylor expansion:
wWiin—r = [YTHQ7(Y,m) - LY (Y, ) (6)
where Q" (Y, n) is given by formula (2) and

(1+ %Y) (1+ %Y)

LY(Y,n) =
acl;[/\ (14 gy Y) (1 + 1555 Y)

= Ay (Xppr+Xn1—Xngro1—Xn), (7)

where the right hand side of the last identity is the exterior power Ay of a
disjoint union of alphabets in A-ring notation with X,, = {lfﬁfl)y | z € A} (see
[12, Chap. 1]). This exterior power can then be expanded into power-sums by
the formula

LK(Y, n) = Z z;lpu (_Xn+r - Xn—l + Xn+r—1 + Xn) (_Y)l'/l_ (8)

The alphabet X, factors into {c(z) | # € A} - (1 +nY)~!, so that
Dv (_Xn+r_anl+Xn+r71+Xn) = pu()‘) : P;(Y7 TL)

where the P’ (Y,n) are the power sums defined by formula (1). Therefore from
(6) and (8), w? ._, is given by the coefficient of Y"+! in

rin—r

> (_D:wylvw;(x Q" (V). 9



Consider now the coefficient of Y in P} (Y,n): from (1),

P;(Y,n) = Z (J +Z 1) (n"+(n+r-1)7—(n+r) —(n—1)%) (-Y)".(10)
>0

Terms of degree 0 or 1in Y cancel, and the coefficient of Y2 is —2r(“1'). This

implies that the lowest degree of P! (Y,n) is 2{(v) and justifies the choice of

P7i(n) = [V Pr(Y,n). With w(v) = |v| + 2£(v), the coefficient of Y™+ in

formula (9) gives w) ._. = 2 (n,p1(A),... ,pr—1(X)).

From (10), the polynomial P;; clearly has degree i in n, so that Py ,;(n) has
degree i. Expansions using the binomial theorem show that QF (n) is a polynomial
of degree i — 1 without constant term.

For the second part of the theorem, observe that, starting from formula (3),
all manipulations are valid including when n < r. But in Formula (3), the nullity
for n < r is immediate: in the summand, either m; < r, and the falling power
does the job, or there exists j such that m; = mj; +r.

And finally, for the corollary, observe that the contribution of Q" (Y,n) is
(=1)7/r* by (2), while that of P7_,(Y,n) has been established to be —2r(}).
With z(,_1) = r —1, the coefficient 1 is found. O

3 Elementary operators

3.1 Symmetric functions

Let x={z1,2,...} be a set of indeterminates and let A = Ag[x] be the ring of
symmetric functions in {x1,zs,...} over the field Q of rational numbers. The
usual scalar product <,> on A is defined on the linear basis {px}x by:

V)‘a/J’ < Dx;Pp >= z)\(s)\,u-

We need the following differential operators known in the litterature as Ham-
mond’s operators (see [14] or [13]):

Definition 1. For each partition X\ = (A1, Aa,... , ), let px* be the adjoint
operator to the multiplication by px(x) with respect to the scalar product < ,>:

VfigeA <prf,g>=<fipxtg>.

The operator pa~ is conveniently described as o differential operator on the basis

{pa(x) ha:
6k

A }
k Opx,Opx, - - - ODA,

pALz)\l)Q...

The use of such operators in relation with connexion coefficients is not new
and can be found for instance in [2]. We are interested in representing the mul-
tiplication by a conjugacy class as an action of an operator on the space of
symmetric functions: more precisely we look for operators G, satisfying

V,B,’YI_ |Oé|, [Q’y] Go 4 = [K’Y] Ka'KB



where {gx = pxr/zx}, is an orthonormal basis of A. Here is a trivial way to do
this:

Definition 2. Let A = (A1, A2, ... , \i) be a partition of n. For any permutation
p € Cx, define the operator Gy : A™ — A™ by

1
Gr = % Y PAenPAD)T = —Epupu (11)
)‘JGGn v,ukn

From this definition and the orthogonality relation pf;pA = z)0y,, for parti-
tions of the same weight, it is immediate that for any partitions A, u of n

Gxqu = Z W2

yEn

The operators G are not interesting because their definition uses the struc-
ture constants ay , which they are meant to produce; however they provide an
eagy introduction to what we mean by representing the multiplication by the
action of an operator on symmetric functions.

Our aim is to define a more interesting family H of such operators, satisfying
for all partitions «,

V,B,’)/F |O[|, [qW] H&'Qﬂ = [K'y] Ka'K,B-

Observe here that we require H, in some loose sense, to be defined in terms of
the reduced partition @ and not of «.

3.2 Restricted permutations

In order to define our operators Hs, we need some elementary results on re-
stricted permutations. For a subset S of [n] = {1,...,n}, and a permutation
o € 6, let 0|5 be the permutation of the elements of S such that, for all ¢ € S,
0/5(i) = 0¥ (i) where k is the least positive integer such that o* (i) is in S.

The idea rests on the following observation: let p and o be permutations in
Sy, and consider the product 7 = po. Then, if [n]\ S contains only fix points of
p, we have 715 = p|s0|s, and conversely T can be obtained from 7,5 by inserting
after each i € S the block that separates i and 0|5(i) in the decomposition of o
into disjoint cycles.

Ezample. If pj3 = (1 2 3) and o = (1 aaa 2 bbb) (3 ccc), then o3 = (1 2) (3),
73 = (1 3) (2) and 7 = (1 aaa 3 ccc) (2 bbb).

Given a permutation oy of &p, and n > p, the permutation oo can be ex-
tended naturally to a permutation of &, by adding fix points. Therefore any
oo € 6, acts by left multiplication on &,. We need one last definition: given a
partition @ = (a4, ... ,ay), the canonical permutation of type « is the permuta-
tion of cycle type a whose k-th cycleis (aq + ...+ ap—1+1,... ;00 + ...+ ag).



3.3 The operator H5z and Katriel’s notations
We give two equivalent definitions of H.

Definition 3. Let & be a reduced partition of weight p. Let po be the canonical
permutation of cycle type &. Then the operator Hg : A — A is defined by:

Hy = i Z Z Dy 'pé_' (12)

00€EG,  i1,...,ip21
where (' is the cycle type of any permutation T obtained from oy by inserting
ij — 1 elements after each j € {1,... ,p}, and v' is the cycle type of poT.

The fact that the cycle type 7' depends only on the integers iy,... ,ip, and
not on the elements we choose to insert in og, is a consequence of the previous
discussion on restricted permutations.

This operator is closely related to Katriel’s bracket operators (which are not
completely rigorously defined). A simple variation on his notation is:

. .. .. . 1
(i1 +i2;93 | 41;i2 + i3)  stands for E Dliytin,is)Pliy in+is]
i1,%2,i3 21

where the brackets [,] denote multisets of integers (i.e. partitions). A further
simplification of this notation (even closer to Katriel’s) is to replace each variable
by its index and write sums as cycles:

{(1,2)(3) | (1)(2,3)) stands for (i1 + 42593 | 41592 + i3)
Let us rewrite Definition 3 with this notation:

Definition 4. Let & be a reduced partition of weight p. Let py be the canonical
permutation of cycle type &. Then

Ha=— 3 (oo | o). (13)

« 00€EG,

Finally, Katriel conjectured a symmetry in the coefficients, which allows the
introduction of a last notation:

(P Q) stands for (P [Q)+(Q|P)

Ezxamples. We keep the intermediate notation which we find more descriptive.

1, .. . 1, . .. 1,. R
H2=§<<11;Z2|11+12»+§«11 +iz | d1542)) = §<ll+22|11;12)

1
= 5( Z pi1,i2pi+z’2 + Z pi1+i2pi,i2)

1,421 1,921

1 1 1 1
= SPapiy + oPuPy + Papay + Dby + Papsi gPapis + 5Pt
1
{

3
1
g <<i1 +i2,i3|i1,i2+13 » +

=

<<i1+i2+i3|i1,i2,i3» + il,i2,i3|i1+i2+i3» + <<i1+i2+i3\i1+i2+i3»

1 —
3 3

1
+ <<i1+i3,i2|i2,i1+i3» + §<<i2+i3,i1\i3,i1+i2»

Q| =



1 1
i1+i2,is\i1,i2+i3» + _<’i1+i2+i3|’i1,i2,is) + §<<i1+i2+’i3\i1+i2+’i3»

1 L L L
Z (Pnp(il,i2,z~3) F Plis sinyis)Prn + PnPr + 3p(i1+i3,i2)p(i1+i2,i3))

(i1 ,.i2 ,13) 2.1
n=t1+i2+13

H =

=
w

Ll

<<i1 +i2593;594 1542593 +14 »

T oaim

1
+_<<i1+i2;i3+i4\i1+i3;i2+i4 ) + <<i1+i2+i3;i4|i1;i2+i3+i4»

4

1 1
+§<i1+i2+i3+i4\i1+i2;i3;i4> + Z((i1+z'2+i3+z'4|z'1+i2+z'3+z'4))

Katriel’s global conjecture in [11] is that K, “=" Hg. More formally, we shall
prove the following theorem.

Theorem 2 (Global Conjecture). Let o, 8 and «y be partitions of n, then
[Ky] Ko K = (7] Ha-gs.

Observe that applying a permutation of indices in an elementary bracket opera-
tor does not change it. Collecting equivalent terms to form a sum over “distinct
contributions” (as we did in the examples), we immediately obtain from (13) a
proof of Katriel’s central conjecture on the resulting coefficients.

Proof. Let p be the weight of a, pg the associated canonical permutation, and p
its natural extension in &,,. On one hand,

(K] Ko-Kpg = % [Ko] Kg-K, = 2—7 Card{(o,7) € Csg xCy | po =7}
v o
= j—w z Card{(J,T) €Cs xCy | 0)p=00, Tp = p00|p}
@ 00€ES),

Our discussion on restricted permutations implies that, for all oy € &,

Card {(o,7) € Cs x Cy | 01, = 00, T)p = P00y}

= > (n._p>'(n—p—io)!' o

1 2B—p43"
(i0s--- ip) EC(B,7) 0 p=b

where the sum runs over the compositions (ig, ... ,%p) of n such that inserting
i; elements of {p+1,...,n} after each j of {1,...,p} in o), and 7, leads to
permutations of respective cycle types 8’ and v/ with the following properties:
Vi, b < by, ¢ < ¢;and B — B = —+', where B = 1% ...n’ and so on, and
B — B' denotes the partition 1°27%1 ... nb»=% . This simplifies to:

[K,] Ko-Kp = ; Z Z 1

ZB—pa ’
& 5€G, (ior-rip)€C(Bry) PP




On the other hand,

1 g Opg
How=2 Y ¥ 22
O G0EGp i1y yip20 8 8

. Opg L Ops bil...by!

S = 0unl > f, hich = g,
ince ps unless # > (', in which case s~ o1 =BT (b =B PB—p
we obtain:

Ha.qﬁzz% Yy s

¥ F€6, (io,-ipyec(@) PP
where the sums runs over the compositions of n such that Vi, b; < b;. So finally:

[4:] Ha-qp = z—” > > LI (K] Ko-Kp.

ZR_A!
* 6€6, (igy...ip)EC(B,Y) p-B O

An immediate consequence of Theorem 2 is that the operators Hy are self
adjoint and therefore their expansions Hy = E”’ L a5, Hp,,pj, are symmetric in v
and p, a fact that can also be proved directly form their definition. This is also
part of Katriel’s conjecture.

3.4 Families of connexion coefficients

For a reduced partition @, let K5(n) be the sum in Z,, of all permutations with
reduced cycle-type a if n > |a|, and 0 otherwise. )
Let @&, 8 be reduced partitions and define the coefficients ag B(n) by

Ka(n)- Ky(n) = 3 al ;)5 (n). (14

In [1] it is proved that the aZ B(n) are polynomials in n. This also follows from

Theorem 2: let k (resp. h) be the largest part of 3 (resp. 7), and apply the
elementary operator Hy t0 gg;--15; the non-zero contributions are of the form

[11’-,1n—|ﬂ:| pupquln—uﬂ

where A and p are partitions of length |&| having parts of size at most respectively
k and h. There are finitely many such partitions and the contribution of this term
is a polynomial of degree ¢ in n.

Theorem 2 is a generalisation of this result in the sense that it proves that
other families of coefficients are polynomial. For instance, for any reduced par-
tition & with even weight, the coefficient

ba(n) = [Kzn] K5(2n) - Ksn

is a polynomial in n. The expression of H,2 presented before gives

1
by2(n) = 1 [g2n] Pozprzgan = n(n —1).



4 Central characters for general partitions

In view of Section 3.4 we have obtained in Theorem 1 the eigenvalues of K,.(n) as
polynomials in Q[n][p1,... ,pr_1]. Following a suggestion in [8], we seek similar
results for the eigenvalues of K4(n) for any reduced partition a.

Let @ = (2%2,...,k%) be areduced partition. In similarity with the situation
in the Farahat-Higman ring structure (see [13] p. 131, ex. 24, 25), we observe
from Theorem 2:

k
Kal(n)"'Kaz(n)=<Hai!> Ks(n)+ Y eB,n)Kz(n), (15)

B, 1BI<lal

from which we deduce

Kan) = Koo Kailn) 5~ s [T kam) (16)

i &
Il e B, 1BI<|al

where the partitions 3 also satisfy |3|+£(3) < |@|+£(@): an elementary operator
can only increase the length by breaking a cycle, but this operation prevents the
insertion of a fix point and reduces accordingly the final weight. Now the w) are

eigenvalues of Ky, i.e. for n > |a|, and A F n, Kz(n) - x* = waln_l X Us1ng
Formula (16) we obtain,
N w(’:lln .y a£1" y bﬁ N
Wain-lal = 1, ai! +Z )1:["‘)51-1"—51-7
so that we are led to define the polynomial 5 in Q[n][p1,p2,.-.] by
Dy, -
25 = Zbﬂ )HQBH (17)
H a@ i

where the sum ranges over reduced partitions 3 with |3| < |a|. In each 2,
in the previous formula, the monomials p, satisfy w(v) < a; + 1 so that the
monomials p, in the product satisfy w(v) < |@| +£(a), and it is also the case for
the monomials in the 25. Finally, from Theorem 1 we get the following theorem.

Theorem 3 (Part of [8, Conj. 3]). Let & be a reduced partition. For n > |a|,
and for all partitions A of n,

w’_\ln_‘ | = 2a(n,p(N)),

where 25 is a polynomial in Q[n][p1,p2,...] involving only monomials p, such
that w(v) < |al + £(@).

Corollary 2 ([8, Conj. 4]). Let a = (2°2,... ,k°) be a reduced partition, and
o =(1%,...,(k—1)%). Then the coefficient of py in 25 is

1
2

i>2



Conjecture 2 (Remaining from [8, Conj. 3]). The coefficient of a monomial p,
of 25, which is a polynomial in Q[n], is in fact null if k¥ = |&| + (&) — w(v) is
even, and of degree at most k/2 otherwise.

This conjecture is a consequence of Conjecture 1 of the present article, using
17).

Congjecture 8 (From [8, Conj. 5]). The polynomial (25 vanishes on partitions
that are too small, i.e. for n < |@| and A F n, 25(n,p(X)) = 0.

Conclusion. Differential operators on A similar to the Hg can also be defined
to describe the decomposition of the inner tensor product, or Kronecker product
Xeoxt=Y, X" of two irreducible representations of &,, as a linear com-
bination of irreducible representations. These differential operators are defined
using Schur functions and their adjoints.
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