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Abstract. We present a bijection between the set of plane triangula-
tions (ake maximal planar graphs) and a simple subset of the set of
plane trees with two leaves adjacent to each node. The construction takes
advantage of Schnyder tree decompositions of plane triangulations.
This bijection yields an interpretation of the formula for the number of
plane triangulations with n vertices. Moreover the construction is simple
enough to induce a linear random sampling algorithm, and an explicit
information theory optimal encoding.

Finally we extend our bijection approach to triangulations of a polygon
with k sides with m inner vertices, and develop in passing new results
about Schnyder tree decompositions for these objects.

1 Introduction

This article addresses three problems on triangulations: coding, counting, and
sampling. The triangulations that are considered here are finite combinatorial
planar triangulations, or equivalently, maximal planar graphs. The results are
obtained as consequences of a new bijection, between triangulations and trees
in the simple class of plane trees with two leaves adjacent to each node. The
extension of our approach to triangulations of a polygon with interior points
involves new results about Schnyder tree decompositions.

1.1 Coding

The coding problem was first raised in algorithmic geometry: find an encoding
of triangulated geometries which is as compact as possible. As demonstrated by
previous work, a very effective “structure driven” approach consists in distin-
guishing the encoding of the combinatorial structure, — that is, the triangulation
— from the geometry — that is, vertex coordinates (see [33] for a survey and [21]
for an opposite “coordinate driven” approach). Two main properties of the com-
binatorial code are then desirable: compactness, that is minimization of the bit
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length of code words and linear complexity of the complete coding and decoding
procedure.

For the fundamental class 7, of triangulations of a sphere with 2n triangles,
several codes of linear complexity were proposed, that are based on traversing
the triangulation in a determined order and progressively outputting a codeword.
Depending on the traversal policy, various bit length an(1+o0(1)) were achieved
from a =4 in [6,13,24], to a = 3.67 in [27,36], and recently o = 3.37 bits in [7].
From the point of view of information theory the best a that can be guarantied
is ap = Llog|Th| ~ 28 ~ 3.245 (see below). Other coders, like the valence
directed coder of [38], do better on the “tame” triangulations that are typically
produced by geometric modeling but offer no good guarantee on their worst
case behavior. This of course does not contradict the entropy bound, which only
states that among the codewords for all triangulations with 2n faces, some may
be very short (typically those of “tame” triangulations) but at least one (in fact
a majority) have length at least agn.

Finally, let us indicate that in the context of succinct data structures, the
compactness problem was given radically different solutions. For instance, using
separators and the recursive structure of triangulations, a representation was
proposed in [25, 28] which can come e-close to the optimal space requirement for
the class of triangulations with a boundary (which has a larger entropy). Using
a simpler 3-level approach inspired from [29], a space optimal data structure
(allowing constant time queries on the triangulations) was proposed in [12],
again for the class of triangulations with a boundary. However this approach
focuses on data structures and on the support of queries in constant time rather
than on producing simple compact codes f(l)r ‘%riangulations. In particular they
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heavily rely on auxiliary tables of size O(n - —lg(gfl—) that use a subdominant but
large amount of space.

1.2 Counting

The exact enumeration problem for triangulations was solved by Tutte in the
sixties [39]. The number of rooted triangulations with 2n triangles, 3n edges and
n + 2 vertices is

—3)
T - 2 (4n — 3)! _ 1)
n!(3n —1)!
(This formula gives the above constant ap = %£.) More generally Tutte was

interested in rooted planar maps: embedded planar multigraphs (with a distin-
guished half-edge to break possible symmetries) considered up to homeomor-
phisms of the sphere. He obtained several elegant formulas akin to (1) for the
number of planar maps with n edges and for several subclasses (bipartite maps,
2-connected maps, 4-regular maps). It later turned out that constraints of this
kind lead systematically to explicit enumeration results for subclasses of maps
(in the form of algebraic generating functions, see [5] and references therein). A
natural question in this context is to find simple combinatorial proofs explaining
these results, as opposed to the technical computational proofs ¢ la Tutte. This



Fig. 1. A random triangulation with 30 triangles.

was done in a very general setting for maps without restrictions on multiple
edges and loops [9,34]. Two main ingredients are at the heart of this approach:
dual breadth-first search to go from maps to trees, and a closure operation for
the inverse mapping. When loops are forbidden, the first ingredient is no longer
appropriate, but it was shown that it can be replaced by bipolar orientations
[31,35]. In particular in [31], we dealt with triangulations of a polygon with in-
ner vertices with multiple edges allowed. When multiple edges are forbidden (as
for the triangulations of the present paper), the situation appears completely
different and neither of the previous methods directly apply.

It should be stressed that planar graphs have in general non-unique embed-
dings: a given planar graph may underlie many planar maps. This explains that,
as opposed to the situation for maps, the entropy of the class of labelled planar
graphs with n vertices has been obtained only very recently [23] and only rough
bounds are known for unlabelled planar graphs, see [7,30]. As opposed to this,
according to Whitney’s theorem, 3-connected planar graphs have an essentially
unique embedding. In particular the class of triangulations is equivalent to the
class of maximal planar graphs (a graph is maximal planar if no edge can be
added without losing planarity).

1.3 Sampling

A perfect (resp. approximate) random sampling algorithm outputs a random
triangulation chosen in 7, under the uniform distribution (resp. under an ap-
proximation thereof): the probability to output a specific rooted triangulation T'
with 2n vertices is (resp. is close to) 1/T;,. Save for an exponentially small frac-
tion of them, triangulations have a trivial automorphism group [32], so that as
far as polynomial parameters are concerned, the uniform distribution on rooted
or unrooted triangulations are indistinguishable for large n.

This question was first considered by physicists willing to test experimentally
properties of two dimensional quantum gravity: it turns out that the proper



discretization of a typical quantum universe is precisely obtained by sampling
from the uniform distribution on rooted triangulations [4]. Several approximate
sampling algorithms were thus developed by physicists for planar maps, including
for triangulations [3]. Most of them are based on Markov chains, the mixing times
of which are not known (see however [22] for a related study). A recursive perfect
sampler was also developed for cubic maps, but has at least quadratic complexity
[1]. More efficient and perfect samplers were recently developed for a dozen of
classes of planar maps [5,36]. These algorithms are linear for triangular maps
(with multiple edges allowed) but have average complexity O(n®/3) for the class
of triangulations.

Most random sampling algorithms are usually either based on Markov chains,
or on enumerative properties. On the one hand, an algorithm of the first type
performs a random walk on the set of configurations until it has (approximately)
forgotten its start point. This is a very versatile method that requires little knowl-
edge of the structures. It can even allow for perfect sampling in some restricted
cases [40]. However in most cases it yields only approximate samplers of at least
quadratic complexities. On the other hand, algorithms of the second type take
advantage of exact counting results to construct directly a configuration from
the uniform distribution [19]. As a result these perfect samplers often operate in
linear time with little more than the number of random bits required by infor-
mation theory bounds to generate a configuration [2,15]. It is very desirable to
obtain such an algorithm when the combinatorial class to be sampled displays
simple enumerative properties, like Formula (1) for triangulations.

1.4 New results

The central result of this paper is a one-to-one correspondence between the
triangulations in 7T, and the balanced trees of a new simple family B,, of plane
trees. We give a linear closure algorithm that constructs a triangulation out of a
balanced tree, and conversely, a linear opening algorithm that recovers a balanced
tree as a special depth-first search spanning tree of a triangulation endowed with
its minimal Schnyder tree decomposition. Schnyder tree decompositions were
introduced by Schnyder [37] to compute graph embeddings and have proved a
fundamental tool in the study of planar graphs [8,10,17,26]. The role played
in this paper by the minimal Schnyder tree decompositions of triangulations is
akin to the role of breadth-first search spanning trees in planar maps [9, 34, 36],
and of minimal bipolar orientations in 2-connected maps [31, 35], however the
closure algorithm is very different from the closure used in the latter works. Our
bijection allows us to address the three previously discussed problems.

From the coding point of view, our encoding in terms of trees preserves the
entropy and satisfies linearity: each triangulation is encoded by one of the (4:)
bit strings of length 4n with sum of bits equal to n. Optimal compactness can
then be reached, still within linear time, using for instance [7, Lemma 7] or
entropy encoders. It should be observed also that the code is produced using
only two simple traversals of the triangulation (one to compute a Schnyder tree
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Fig. 2. The smallest triangulations with their inequivalent rootings.

decomposition and the second to produce our code), and that decoding can be
done incrementally as bits become available.

From the exact enumerative point of view, the outcome of this work is a
bijective derivation of Formula (1), giving it a simple interpretation in terms
of trees. As far as we know, this is the first such bijective construction for any
natural family of 3-connected planar graphs.

As far as random sampling is concerned, we obtain a linear time algorithm to
sample random triangulations according to the (perfect) uniform distribution. In
practice the speed we reach is about 100,000 vertices per second on a standard
PC and triangulations with millions of vertices can be generated.

Since our central bijection heavily relies on Schnyder tree decompositions,
it is natural to ask whether such structures exist for more general classes of
graphs. This question was given a first answer in [17, 18], where Schnyder tree
decompositions are developed for 3-connected planar graphs. As we showed in
[20], Felsner’s work allows the adaptation of the present approach to 3-connected
planar graphs, although the technical details are much more involved. Another
direction consists in considering triangulations of a surface with higher genus.
We take what we consider as a first step in this direction by showing how the
extension of our bijection to triangulations of a polygon leads to a Schnyder tree
structure for these triangulations.

2 A one-to-one correspondence

Let us first recall some definitions, illustrated by Figure 2.

Definition 2.1. A planar map is an embedding of a connected planar graph in
the oriented sphere. It is rooted if one of its edges it distinguished and oriented;
this determines a root edge, a root verter (its origin) and a root face (to its
right).

A triangular map is a rooted planar map with all faces of degree 3. It is a
triangulation if moreover it has no loop nor multiple edge. A triangular map of
size n has 2n triangular faces, 3n edges and n + 2 vertices; the three vertices
incident to the root face are called outer, as opposed to the n — 1 inner other
ones. The set of triangulations of size n is denoted by T,.

Drawing a planar map in the plane requires the choice of one face to become
the unbounded face. A canonical choice is to use the root face as unbounded
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Fig. 3. The 9 elements of the set Bs: the 6 distinct rootings of an asymmetric unrooted
tree, and the 3 rootings of a symmetric one.

face, and we shall make this choice most of the time, except in Section 5. Once a
planar map is embedded in the plane, the conventional orientation of the plane
induces a natural positive orientation for cycles of the map, and allows us to
define their interior (the bounded component of the plane that they define) and
their ezterior (the unbounded component).

2.1 From trees to triangulations

In view of Formula (1), it seems natural to ask for a bijection between trian-
gulations and some kind of quaternary trees: indeed the number of such trees
with n nodes is well known to be % It proves however more interesting
to consider a less classical family of plane trees.

First recall that plane trees can be defined as rooted planar maps with one
single face and with a root vertex of degree 1. It will prove useful to make a
distinction between nodes (vertices of degree at least 2) and leaves (vertices of
degree 1), and between inner edges (connecting two nodes) and pendant edges
(connecting a node to a leaf). The following definition is illustrated by Figure 3.

Definition 2.2. Let B denote the set of plane trees with two leaves adjacent to
each node; the number of nodes of a tree in B is called its size, and B, denotes
the subset of B consisting of trees of size n.

The partial closure We introduce here a partial closure operation on trees in
B (and more generally on planar maps with pendant edges) that merges leaves
to nodes in order to create triangular faces.

Let B be a tree in B. The border of the unbounded face consists of inner and
pendant edges. An admissible triple is a sequence (e1,ea,e3) of two successive
inner edges followed by a pendant one in counterclockwise direction around the
unbounded face. An admissible triple is thus formed of three edges e; = (v,v'),
ez = (v',v") and e3 = (v",£) such that v, v' and v"' are nodes and £ is a leaf.

The local closure of such an admissible triple (e;, es,e3) consists in merging
the leaf £ with the node v so as to create a bounded face of degree 3. The pendant
edge e3 = (v",£) then becomes an inner edge (v, v). For instance the first three
edges after the root around the unbounded face of the tree of Figure 4(a) form
an admissible triple, and the local closure of this triple produces the planar map
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) A tree in Br. (b) First step. (c) Second step.
(d) Partial closure. (e) Two more vertices. (f) Complete closure.

Fig. 4. Complete closure construction on an element of By.

of Figure 4(b). In turn, the first three edges of this map form a new admissible
triple, and its local closure yields the map of Figure 4(c).

The partial closure B of a tree B is the result of the greedy recursive applica-
tion of local closure to all available admissible triples. The partial closure of the
tree of Figure 4(a) is shown on Figure 4(d). At a given step of the construction,
there are usually several admissible triples, but their local closures are indepen-
dent so that the order in which they are performed is irrelevant and the final
map B is uniquely defined.

Balanced trees Any tree B in B has two more pendant edges than sides of
inner edges incident to the unbounded face, and this property is preserved by
local closures. The map B has no admissible triple anymore, but some leaves
remain unmatched. Therefore in its unbounded face no two inner edges can
be consecutive: each inner edge lies between two pendant edges, as illustrated
by Figures 4(d) and 5(a). More precisely the pendant edges and sides of inner
edges alternate except at two special nodes: these two nodes vy and v}, are each
incident to two pendant edges with leaves ¢, £5 and ¢, £}, such that £5 (resp. £})
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(a) After partial closure. (b) After complete closure.

Fig. 5. Generic situation.

follows #; (resp. £}) in clockwise order around the unbounded face as shown in
Figure 5(a).

Observe that the partial closure of a tree is defined regardless of which of
its leaves is the root. A tree B in B is balanced if its root leaf is one of the two
leaves £, or £; of its partial closure B. Let B* be the subset of balanced trees
in B. The fourth, sixth and eighth trees in Figure 3 are balanced. The following
immediate property shall be useful later on.

Property 2.3. Let B be a balanced tree; then each local closure merges a leaf ¢
and a node v such that ¢ comes after v in the left-to-right preorder on B. The
closure edge e, naturally oriented to v, forms with some edges of B a cycle whose
interior is on the right of e.

The complete closure Let B be a balanced tree in B*, and call vy and v
the two special nodes of B that are adjacent to the leaves ¢1,¢>,¢] and ¢;. The

complete closure of B is obtained from its partial closure in the following way
(see Figures 4 and 5(b)):

1. merge ¢1, ¢, and all leaves in between (counterclockwise around the un-
bounded face) at a new vertex v;

2. merge ¢}, ¢» and all leaves in between at a new vertex vs;

3. add an (oriented) root edge (vy,vs), from vy to vs.

The result of this complete closure is clearly a triangular map (see Defini-
tion 2.1), which we denote B. We shall prove the following theorem in Section 3:

Theorem 2.4. The complete closure is a one-to-one correspondence between
the set B, of balanced plane trees with n nodes and two leaves adjacent to each
node, and the set T, of rooted triangulations of size n.



Although the constructions are formally unrelated, the terminology we use
here is reminiscent of [9,31,34], where bijections were proposed between some
trees and planar maps with multiple edges.

Apart from the orientation of the root, the complete closure can be more
generally defined for any tree in B,,: it consists of Steps 1 and 2 above, together
with the adjunction of a marked but non oriented edge (v, v2). The result B® of
this unrooted complete closure of a tree then only depends on the unrooted tree
B° underlying B, and not on which of the 2n leaves is the root of the tree B.

In general 2n rooted trees are associated to a given unrooted tree B (or n
in the exceptional case where B° has a global symmetry). As already indicated,
these 2n trees have the same image B° by unrooted complete closure. This image
is a triangular map with a marked (non oriented) edge (v1,v2), to which can be
associated two (or exceptionally one) rooted triangular maps. Unrooted complete
closure thus defines a “2n-to-2” correspondence between rooted trees and rooted
triangulations. However we prefer to deal with balanced trees in order to have a
plain one-to-one correspondence.

2.2 From triangulations to trees

Covering trees Given a triangular map 7" and a subset E’ of its edge set E(T),
a covering tree of E' is a tree B that can be obtained from T by deleting the
edges of E(T) \ E' and opening some edges of E in order to form pendant edges.

In particular the closure of a tree B in B produces a triangular map T for
which B is a covering tree. Conversely, if a triangular map 7" is to be obtained
by closure from a tree B, this tree must be looked for among covering trees of 7T'.

Minimal Schnyder tree decomposition We shall use the following notion,
due to Schnyder [37].

Definition 2.5. Let T be a triangulation, with oot edge (v1,v2), and with vg
its third outer vertex. A Schnyder tree decomposition of T is a colouring of its
inner edges in three colours cg, c1 and cy satisfying the following conditions:

— for eachi € {0,1,2}, edges of colour ¢; form a spanning tree of T\{vit1,Vit2}
rooted on v;; this induces an orientation of edges of colour ¢; toward v;, such
that each vertex has exactly one outgoing edge of colour c;;

— around each inner vertex, outgoing edges of each colour always appear in the
cyclic order shown on Figure 6(a), and entering edges of colour c; (if any)
appear between outgoing edges of the two other colours.

From now on, this second condition is referred to as Schnyder condition.

The Schnyder rule can be restated in the following way. For any vertex v,
let us define a corner at v as a couple of edges (e,e’) incident to v such that
¢’ immediately follows e when turning clockwise around v. A corner (e, e’) at v
satisfies the local Schnyder rule if
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(b) Local Schnyder rules for a corner.

Fig. 6. Property of a Schnyder tree decomposition.

— either e is ingoing at v with colour ¢; and €' is ingoing at v with colour ¢;,
— or e is ingoing at v with colour ¢; and €' is outgoing at v with colour ¢;41,
— or e is outgoing at v with colour ¢; and €’ is ingoing at v with colour ¢;41,
— or e is outgoing at v with colour ¢; and €’ is outgoing at v with ¢;_1.

These four types of Schnyder corners are shown on Figure 6(b). A vertex v with
outdegree 3 satisfies the Schnyder rule if and only if any corner at v satisfies
the local Schnyder rule, so that both are equivalent as far as triangulations are
concerned. However this local point of view will be useful in Section 5.

Schnyder tree decompositions of triangulations satisfy a number of nice prop-
erties [14,17,37], among which we shall use the following ones:

Proposition 2.6. — FEvery triangulation has a Schnyder tree decomposition.
— The set of Schnyder tree decompositions of a triangulation can be endowed
with an order for which minimal and mazimal elements are unique.
— The minimal Schnyder tree decomposition of a triangulation T is the unique
Schnyder tree decomposition of T that has no counterclockwise circuit.
— The minimal Schnyder tree decomposition of a triangulation can be computed
in linear time.

Depth-first search opening Let 7" be a triangulation endowed with its min-
imal Schnyder tree decomposition, and let E(T') denote the set of edges of T'.
Let (v1,v2) be its root edge, oriented from vy to ve, and vy be the third outer
vertex. We construct a covering tree on E(T) \ {(v1,v2)} using a right-to-left
depth-first search traversal of T' modified to traverse edges only in the direction
opposite to their orientation in the Schnyder tree decomposition:
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1. delete (v1,v2), and detach (vo,v1) and (vg,v2) from v; and vy to form two
leaves /1, £5 attached to vy,

2. set v ¢ vg and e < (v, £2),

3. as long as e # (vg, £1), repeat:

(a) €' « (v,u), the edge after e around v in clockwise direction,

(b) special orientation test: if ' is unmarked and oriented from v to v in the
Schnyder tree decomposition, then mark e, detach it from u to create a
leaf ¢ attached to v, and set e < (v, £),

(¢) standard traversal condition: if ' is unmarked and u was already visited,
then detach e’ from wu to create a leaf £ attached to v and set e « (v, {),

(d) otherwise, mark e’ and set e « (u,v) and v + u.

As usual for a depth-first search, Step 3c prevents the opening algorithm from
creating a cycle of marked edges. The set of marked edges therefore forms a
tree and the algorithm clearly terminates. Let S(T) be the tree containing all
marked edges. Without Step 3b, the opening algorithm would be a standard
right-to-left depth-first search, the inner edges of S(T") would form a spanning
tree of T'\ {v1,v2}, and S(T) would be a covering tree of E(T) \ {(v1,v2)}. A
priori, because of Step 3b, one could expect the opening algorithm to visit only
part of the edges. We shall prove in fact the following proposition:

Proposition 2.7. For any triangulation T, the tree S(T) is a covering tree
of E(T) \ {(vi,v2)} and belongs to B*. Moreover it is the unique balanced tree
having the triangulation T as complete closure.

Because of the minimal orientation of T' (without counterclockwise circuit),
we shall see that the condition of Step 3c is actually never satisfied. This line of
the algorithm could thus as well be ignored: it was included only to make clear
the fact that the algorithm terminates.

3 Proofs

3.1 The closure produces a triangulation

At all steps of the closure construction, unmatched leaves are incident to the
unbounded face and each local closure creates a triangular face without violating
planarity. It is thus clear that the complete closure yields a triangular map B
with outer vertices vg, v1 and v2, and with exactly two more vertices than B has
nodes. Let us show that B is indeed a triangulation, 4.e. that it has no multiple
edge.

Let B be a balanced tree in B*. By definition the root leaf ¢; of B is im-
mediately followed around vy in clockwise direction by a second leaf Z5. Assign
colour ¢; to #1, colour ¢ to £, and colour ¢g to the other edges incident to vp.
Upon orienting all inner edges of B toward vy and all pendant edges toward their
leaf, all vertices but vy have three outgoing edges. Since the tree B is acyclic, its
orientation induces a unique colouring of edges satisfying the Schnyder condition
at all vertices but vy, which we call the canonical Schnyder colouring of B. An
example is shown on Figure 7(a).
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(a) On the tree, (b) the partial closure, (c) and the complete closure.

Fig. 7. Colouring of the example of Figure 4.

Lemma 3.1. The orientation and colouring of edges still satisfy the Schnyder
condition on each node but vy after the partial closure of B.

Proof. This lemma, is checked iteratively, by observing that each face created dur-
ing the partial closure falls into one of the four types indicated on Figure 8 (up to
cyclic permutation of colours). Indeed, consider an admissible triple (eq, ez, e3).
Assuming without loss of generality that the pendant edge e3 to be closed is of
colour ¢g, only two colours are possible for es in view of the Schnyder condition
at v"”. In each case again, only two colours are possible for e;. Finally in all
four cases, the merging of £ into v does not contradict the Schnyder condition
at v. O

o

\

§

/
T

Fig. 8. The different cases of closure of a leaf.
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Fig. 9. Colouring of the partial closure.

Lemma 3.2. After the complete closure, the Schnyder condition is satisfied at
each inner vertex, and, apart from the three outer edges, each outer verter v; is
incident only to entering edges of colour ¢;.

Proof. As illustrated by Figure 9, the Schnyder condition on nodes along the
border of the partial closure implies that all pendant edges between ¢; and £,
(resp. £5 and £}) are of colour ¢; (resp. ¢3). This is readily checked iteratively by
a case analysis akin to the previous one. O

Let us define a Schnyder coloured orientation of a planar map as an ori-
entation and a 3-colouring of its inner edges as in Lemma 3.2. The following
proposition can be seen as an independent result on Schnyder tree decomposi-
tions.

Proposition 3.3. Any triangular map endowed with a Schnyder coloured ori-
entation is in fact a triangulation endowed with a Schnyder tree decomposition.

Proof. Let us first consider the colour ¢y of the outer vertex vg. By Schnyder
condition each inner vertex has exactly one outgoing edge of colour ¢g. In par-
ticular any cycle of edges of colour ¢p is in fact a circuit. Moreover from each
inner vertex originates a unique oriented path of colour ¢y, ending either in v
or on a circuit of colour ¢g.

Now consider two paths with distinct colours, say ¢g and ¢;. In view of the
Schnyder colouring, a crossing between these two paths is necessarily of the type:

7

-
-
-

Hence two such paths can not cross more than once, otherwise this rule would
be violated at least at one crossing (where crossing is taken in the (weak) sense
of having one vertex in common, even if this is just the origin of the path.) In
particular, this excludes multiple edges with different colours.

On the other hand, since each vertex has only one outgoing edge of each
colour, two monochrome circuits of the same colour can not cross at all. As a
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consequence, any two monochrome circuits must be vertex disjoint. Therefore
monochrome circuits are ordered by inclusion with respect to the unbounded
face.

Now consider a vertex v on an innermost circuit C. The Schnyder condition
at v provides an edge e going out of v into the inner region delimited by C.
Since this region contains no monochrome circuit, the oriented path extending e
has to cross C' a second time, in contradiction with the previous discussion. This
excludes monochrome circuits and proves that, for each i = 0, 1, 2, edges of colour
¢; form an oriented tree rooted at v;. In particular multiple edges are excluded,
and the colouring satisfies the definition of a Schnyder tree decomposition. O

Thus the complete closure of B is a triangulation endowed with a Schnyder
tree decomposition, but not any Schnyder tree decomposition:

Property 3.4. If a (triangular) face of B is oriented so that its sides form a circuit,
then this circuit is necessarily oriented in the clockwise direction. More generally,
each circuit in B is created by the closure of a (last) leaf, the orientation of which
imposes on the circuit to be clockwise.

Combining Proposition 3.3 and Property 3.4, we obtain the following corol-
lary that concludes the first part of the proof.

Corollary 3.5. The closure maps any balanced tree B of B}, endowed with its
canonical Schnyder colouring on a triangulation with n+2 vertices endowed with
its minimal Schnyder tree decomposition.

3.2 The depth-first search opening is inverse to closure

The following Lemmas 3.6 to 3.9 imply Proposition 2.7, and, together with
Corollary 3.5, conclude the proof of Theorem 2.4.

Lemma 3.6. The depth-first search opening visits all vertices of T \ {v1,v2}.

Proof. Assume that the inner vertex v is not visited by the opening algorithm,
that is to say, v does not belong to S(T"). By definition of Schnyder tree decom-
positions, there is a unique oriented path P of colour ¢y starting in v and ending
in vg. Let t be the last vertex on P that does not belong to S(T"), and u € S(T)
the next vertex on P. Then the edge between ¢ and u is oriented toward u. Let
(s,u) be the first edge before (¢,u) in clockwise direction around u such that s
belongs to S(T'). Then (s,u) is oriented from s to u, and is the first edge of a
backward oriented path P’ from u to an earlier visited vertex w. But this path
forms with P a counterclockwise circuit, which contradicts the minimality of the
orientation. O

Lemma 3.7. The conditions of Step 3c are never satisfied.
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Proof. Consider the first time the conditions of Step 3c are satisfied. Up to that
point an oriented tree S was constructed that contains v and u but not the
edge (v,u). Since the unmarked edge (v, u) was not considered by Step 3b, it is
oriented from u toward v.

Let E be the set of edges that were already cut by Step 3b. Then S is the
initial part of the right-to-left depth-first search tree of T\ E. In particular,
only ancestors of v in S are partially visited, and since the edge (u,v) is probed
from v, u is an ancestor of v in that tree (and in S(T")). But then the tree S(T')
contains an oriented path from v to w, that forms a counterclockwise circuit with
(u,v). This contradicts the minimality of the orientation. O

Lemma 3.8. Edges that are cut by the opening algorithm lie on the left-hand
side of the tree, in the sense of Property 2.3. Hence the complete closure of S(T)
is T.

Proof. As already observed, as the algorithm proceeds, the tree that is con-
structed can be thought of as the right-to-left depth-first search tree of a submap
of T. In particular when the algorithm probes edge ¢ = (v,u) from vertex v,
the vertex u must be before v in the left-to-right preorder, as in Property 2.3.
To check that the complete closure of S(T') is T, it is sufficient to check
that a cut edge would be properly closed by the local application of the closure
algorithm. Since cut edges are bordered on one side by the unbounded face
and the final tree is a spanning tree, then the other face is bounded, that is,
triangular. Hence when e’ = (v, u) is cut, the vertex u lie two corners away from
v along the unbounded face in clockwise direction, as specified for admissible
triples. O

Lemma 3.9. At most one covering tree of E(T) \ {(vi,v2)} satisfies Prop-
erty 2.3.

Proof. Assume there are two such trees S and S’. Consider a left-to-right depth-
first search traversal of both trees in parallel. Let e = (v,u) be the first edge
met that belongs to one of them — say S — and not to the other one. The tree S’
being also a spanning tree, there exists in S’ a path from u to vg, the first edge of
which (u,t) is oriented from u toward ¢. This orientation forbids the edge (u, t)
to belong to the tree S; thus it corresponds in that tree to the closure of a leaf
of u. But since the edge (v,u) has been visited before (u,t) in the depth-first
search traversal, this contradicts Property 2.3. O

4 Applications

4.1 An explicit optimal code for triangulations

As a first byproduct of Theorem 2.4, we obtain an encoding of triangulations
in T, by balanced trees in B,. Since a triangulation can be endowed with its
minimal Schnyder tree decomposition in linear time (Proposition 2.6), the tree
code can be obtained in linear time. Elements of B,, can themselves be coded by
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bit strings of length 4n — 2 and weight n — 1 using a trivial variant of the usual
prefix code for trees:

Lemma 4.1. A tree B in B can be linearly represented by the word s(B) that is
obtained by writing 1 for “down” steps along inner edges, and 0 for leaves and for
“up” steps along inner edges, during a right-to-left depth-first search traversal.

Hence we obtain a code for triangulations in 7,, which is a subset of the set S
of bit strings with length 4n — 2 and weight n—1. According to [7, Lem. 7] it can
be given in linear time a representation as a bit string of length log |S| + o(n) ~

log () ~ 5.

4.2 A bijective proof of Formula (1)

The enumeration of simple families of trees is a classical problem.

Proposition 4.2. The set B, has cardinality 4n:’_2 . (4::12).

Proof. As for classical prefix code of trees, the code words corresponding to trees
of B,, can be easily characterized: they are the bit strings of length 4n — 2 with
weight n — 1 such that any proper prefix u satisfies 3|u|; — |u|o > —2, where |u|;
denotes the number of occurrences of the letter 7 in u. Now the number of such
bit strings is readily obtained by the cycle lemma (see [16]): in each cyclic class
of words with length 4n — 2 and weight n — 1, exactly 2 elements among 4n — 2
are code words (or 1 among 2n — 1 for symmetric classes). O

Now as seen in Section 2.1, any tree in B,, has two particular leaves among
its 2n ones, and it is balanced if and only if one of these two is its root. Hence

the proportion of balanced trees in B,, is % From Theorem 2.4 we obtain:

Theorem 4.3. The number of triangulations with 2n triangles, 3n edges and

n+ 2 vertices is o - 72 - ("), which is ezvactly Formula (1).

4.3 Linear time perfect random sampling of triangulations
The closure construction provides a sampling algorithm with linear complexity:

generate a random bit string of length 4n — 2 and weight n — 1;

choose randomly one of its two cyclic shift that code an element of B,,;
decode this word to construct the corresponding tree;

construct its partial closure by turning around the tree; using a stack, this
can be done in at most two complete turns, hence in linear time;

5. complete the closure and choose a random orientation for the edge (v1, v2).

Ll

Proposition 4.4. This algorithm produces in linear time a random triangula-
tion uniformly chosen in Ty,.

Observe that Steps 1-3 correspond to a special case of the classical algorithm
described e.g. in [2] for sampling trees.
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5 Triangulations of a polygon

5.1 A counting formula and cycles of trees

The triangulations we considered in the previous sections have the topology of
the sphere. It is also possible to define triangulations with the topology of other
surfaces (of higher genus and/or with boundary). We deal here with triangula-
tions of a disk, that is, of a surface of genus 0 with a connected boundary. Upon
gluing a face to this boundary, they can be considered as planar maps with all
faces but one of degree 3.

Definition 5.1. A rooted near-triangular map is a rooted planar map with all
non-root faces of degree 3, and with a root face of degree k for some k > 3. An
annular triangular map s a rooted near-triangular map with a marked non-root
face.

Rooted near-triangulations and annular triangulations are defined accord-
ingly by the restriction that loops and multiple edges are forbidden. The sets of
rooted near-triangulations and of annular triangulations with a root face of de-
gree k, m inner vertices and 2m + k — 2 inner triangular faces are respectively
denoted T 1, and TT;JC.

Near-triangulations can be also viewed as internally 3-connected triangula-
tions of a polygon, i.e. such that chords are allowed but at least 3 inner vertices
must be removed to disconnect the map. Except in Section 5.4, we shall always
represent annular triangular maps and annular triangulations in the plane with
their marked face taken as unbounded face (instead of the root face). However
we shall keep the terminology inner vertices for the vertices of an annular map
that are not on the polygon, even though this terminology makes more sense
when the root face is used as unbounded face. Similarly, given a vertex v of the
polygon and two incident edges e; and ez, the inner wedge between e; and es
at v is among the two wedges delimited by e; and es, the one that does not
intersect the interior of the polygon.

The following formula is due to Brown:

Theorem 5.2 (Brown [11]). The number of triangulations of a rooted k-gon
with m inner vertices and 2m + k — 2 inner triangular faces is

2(2k — 3)! (2k + 4m — 5)!
(k= D!k —3)! m!(2k 4+ 3m — 3)!

|Tm,k| =

The number of annular triangulations with root face of degree k and m inner
vertices is (2m + k — 2) times this number, that is:

. _(2k—4\  2k—3  (4m+2k—4
|Tm7k|—(2m+k—2)|7-m,k|_(k_3) 3m+2k—3( m )
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Fig. 10. Example of an hexagonal forest with 10 inner vertices.

This formula agrees with Formula 1: for £ = 3 the total number of vertices is
m+3=mn+2and

— 2!
T sl = 3 (4m—|—2)_1 (4n — 2)!

— = - = (2n — 1)|7T,|-
3Im+3\ m n (n—1)1(3n —1)! (2n = DI

In view of Theorem 5.2, we define the following family of planar maps akin to
trees, as illustrated by Figure 10.

Definition 5.3. A k-gonal forest is a rooted planar map with two faces satisfy-
ing the following conditions:

— The border of the root face is a cycle of length k, which is referred to as the
polygon or the k-gon of the forest.

— There are k — 3 pendant edges attached to the k-gon.

— Any other edge incident to the k-gon is the root of a planted plane tree in
the set B+ of trees planted on a leaf and such that every node is adjacent to
two non-root leaves. The nodes of these subtrees are referred to as the inner
vertices of the forest.

Let Bi,m denote the set of k-gonal forests with m inner vertices.

From now on a k-gonal forest will always be represented in the plane taking
the non root face as unbounded face.

Proposition 5.4. The number of k-gonal forests with m inner vertices is

By x| = 2%k—4\  2k-3 (dm+2k—4
mE T\ k-3) 3m+2k—3 m '

Proof. A proof very similar to the proof of Proposition 4.2 allows to show that
the cardinality of the set (BL)* of sequences of trees of B with a total of m

nodes is =% (47;”), and more generally that the set of p-uples of such sequences

3m—+1
of trees with a total of m nodes has cardinality 52— (*™tP=1). The proposition

then follows from the way to produce uniquely all k-gonal forests with m inner
vertices:
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— start with a rooted k-gon, k > 3;

— attach k£ — 3 pendant edges in the unbounded face of the k-gon, in one of
the (2k 4) possible ways; this produces 2k — 3 places, where subtrees can be
attached;

— select a (Zk 3)-uple of sequences of trees, among the 5-26=3 _(4m+2k—4)

possible ones, and attach these sequences in the previous 2k — 3 places.

O

5.2 Revisiting the closure

Let us apply local closures, as defined in Section 2.1, to k-gonal forests. Recall
that the local closure of a pendant edge e takes place in clockwise direction
around the tree, thus creating a bounded triangular face on the right hand side
of e. The partial closure of a k-gonal forest is obtained by greedy iteration of
local closure until no more local closures are possible.

In a k-gonal forest with m inner vertices, the number of pendant edges is by
definition k — 3 + 2m, while the number of sides of inner edges incident to the
unbounded face is k 4+ 2n. There are thus three more sides of edges than leaves,
and this property is preserved by local closures. In particular as long as there
are leaves, there exists one leaf that is followed by at least two sides of inner
edges, that is, there exists one leaf eligible for local closure. The iteration of local
closures thus stops when all leaves have been matched. At this point, three sides
of edges remain, so that the unbounded face is triangular.

The complete closure of a k-gonal forest is the annular map obtained by
partial closure upon marking the unbounded face. The analog of Theorem 2.4 is
then the following.

Theorem 5.5. Complete closure is a one-to-one correspondence between the
set Bi,m of k-gonal forests with m inner vertices, and the set T,',, of annular
triangulations with root face of degree k and m inner vertices.

5.3 «a-orientations

Given a k-gonal forest, orient the k-gon in clockwise direction, the inner edges
of the forest toward the k-gon and the pendant edges toward their leaf. Then by
construction the closure does not change the outdegree of vertices, so that after
closure, each inner vertex has outdegree 3 and each vertex of the polygon with
i pendant edges has outdegree i + 1.

Proposition 5.6. The image of a k-gonal forest by closure with orientations is
an annular triangular map with root face of degree k endowed with an orientation
such that there is no counterclockwise circuit (when the marked face is taken as
unbounded face).

Proof. The fact that the orientation has no counterclockwise circuit follows from
the same remark as in Property 3.4: a circuit must be completed by the local
closure of a last edge, which by definition cannot occur in counterclockwise
direction. O
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Orientation without counterclockwise circuits play a particular role in Fel-
sner’s theory of a-orientations [18]. Let us recall some elements of this theory.

Definition 5.7. Let o be a valuation of the vertices of a planar map T such
that for a vertex v with degree d, a(v) € {0,...,d}. Then an a-orientation is
an orientation of the edges of the map T such that each verter v has outdegree

a(v).

Given a planar map 7" and a valuation « such that 7" admits an a-orientation,
the set of all a-orientations can be partially ordered by the relation induced by
the operation of reversing circuits. (Recall again that the clockwise or counter-
clockwise character of a circuit is defined with respect to a choice of unbounded
face.)

Theorem 5.8 (Felsner [18], Ossona de Mendez [14]). Circuit reversal en-
dows the set of a-orientations of a planar map with a lattice structure. In par-
ticular there is a unique minimal element of the lattice, that is, a unique a-
orientation without counterclockwise circuit (with respect to a given choice of
unbounded face).

In terms of a-orientations, the result of Proposition 5.6 is therefore that the
closure of a k-gonal forest is an annular triangular map endowed with its minimal
a-orientation with respect to the following valuation:

— for any inner vertex v, a(v) = 3,
— for any vertex v of the k-gon holding ¢ pendant edges, a(v) =i+ 1.

In particular the definition of the orientation of a k-gonal forest implies that
the k-gon forms a clockwise circuit in the minimal a-orientation of its closure.
In fact this is a general property of a-orientations of annular triangular maps
for a large class of valuations a:

Proposition 5.9. Let T' be an annular triangular map and o o valuation such
that a(v) > 1 if v belongs to the root polygon and a(v) = 3 otherwise. If T' can be
endowed with an a-orientation, then the root polygon forms a clockwise circuit
in the minimal a-orientation of T (for any choice of unbounded face that is not
the root face).

Proof. Consider the map T’ obtained from T by contracting the k edges of
the polygon, and define a valuation o/ by o'(vo) = >, (a(v) — 1) where the
summation runs over the k vertices of the polygon and vy is the contraction
vertex, and o/ (v) = a(v) otherwise.

Starting with the unique minimal o/-orientation of 7", one produces an a-
orientation of T" without counterclockwise circuit by replacing the polygon as a
clockwise circuit (one easily checks that the circuit cannot create new counter-
clockwise circuits). The uniqueness of this a-orientation of T without ccw circuit
ends the proof. O
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5.4 Schnyder tree decompositions for annular domains

The next step is to introduce the analog of Schnyder tree decompositions. Let B
be a k-gonal forest endowed with its orientation, and let T be its closure, which
inherits a minimal q-orientation.

The colouring of a k-gonal forest is defined by setting the colour of the root to
¢o and then propagating the colours using the local Schnyder rule at all corners
except inside the polygon.

Proposition 5.10. A k-gonal forest admits a unique colouring such that the
root has colour co and the local Schnyder rule is satisfied at all corners except
inside the polygon.

Proof. Let us number up from 0 the edges of the polygon, in clockwise direction
starting with the root, and the vertices, starting with the endpoint of the root.
By construction, the outgoing edges from the vertices of the polygon are the &
edges of the polygon and the ¥ — 3 pendant edges. The application of the local
Schnyder rule to all the inner corners of the /th vertex implies that the colour of
the (£+1)th edge is ¢;41—; if the vertex carries j pendant edges and the £th edge
has colour ¢;. The propagation of this relation in the clockwise direction from
edge 0 (which is the root) to edge k (which is again the root) yields the condition
Co = Cp—(k—3) which is coherent since colours are understood modulo 3.

Finally all other vertices have outdegree 3, so that the rest of the propagation
uses the standard Schnyder rule. O

Lemma 5.11. After the complete closure of a k-gonal forest, the colouring and
orientation induced on the resulting annular triangular map satisfy the local
Schnyder rule at all corners except inside the polygon.

Proof. The proof of Lemma 3.2 immediately adapts, since it relies only on the
local Schnyder rule at the 3 corners involved in a local closure, as illustrated by
Figure 8. o

For the purpose of the next lemma, it is more convenient to change our
representation of the map in the plane by taking the root face as unbounded
face: in particular the notion of interior and exterior of a cycle are taken in this
proof with respect to the root face.

The following lemma is the analog of Proposition 3.3 for annular triangular
maps.

Lemma 5.12. Let T be an annular triangular map with a colouring and an
orientation of edges such that the local Schnyder rule is satisfied at all corners
except inside the polygon. Then for each i = 0,1,2, the set of edges of colour c;
forms a forest of trees, and each of these trees has a root on the polygon toward
which all edges are oriented.

Proof. The proof is essentially the same as the proof of Proposition 3.3 but
involves some technical details due to the fact that some vertices may have
outdegree larger than 3.
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Fig. 11. Possible configurations on vertices of a monochrome ¢y cycle with no co edge
toward the interior.

Let us first observe that inner vertices have outdegree 1 in each colour, so that
any monochrome oriented path must end on the polygon or on a monochrome
inner circuit (that is, a circuit visiting only inner vertices). But the proof of
Proposition 3.3 immediately rules out the existence of such inner circuits, so
that all monochrome oriented paths end on the polygon.

Let us now consider a monochrome cycle C', say of colour c¢g. It must visit
at least one vertex of the polygon, otherwise it would be a circuit since inner
vertices have outdegree 1.

Consider now a vertex z of the cycle C, and assume there is an edge e of
colour ¢ going out of z inside the cycle C'. Then the monochrome oriented path
starting with e defines with a part of C' a new cycle C’ of colour ¢y such that
the interior of C' is strictly included in the interior of C.

Upon iterating the previous construction, we can thus take C' such that there
is no edges of colour ¢y going out of a vertex of C toward its interior. In view of the
local Schnyder rule, this creates limitations on the colours of edges that can leave
or arrive to a vertex of C' on the inside. The possible configurations are listed in
Figure 11. If C is a circuit, we obtain a contradiction as in Proposition 3.3.

Therefore C' is not a circuit, and then it can be decomposed as the concate-
nation of 2k oriented paths: C' = P, Ps - - - Pay, such that the Pa; 11 are clockwise
around the interior of C' and the P; are counterclockwise around the interior
of C. Let z; be the common vertex of P; and P;11. Then generic vertices of path
Py;11 are of type 11(a), generic vertices of path P»; are of type 11(b), vertices
Z2;41 are of type 11(c) vertices z; are of type 11(d).

Considering outgoing edges of vertices x4, it is then easy to check that these
constraints cannot all be satisfied in the plane. O

Lemma 5.13. Let T be an annular triangular map with a colouring and an ori-
entation of edges such that the local Schnyder rule is satisfied ot all corners except
inside the polygon. Then two monochrome oriented paths cannot meet twice. In
particular T has no multiple edges, that is, T is an annular triangulation.

Proof. The proof is very similar to the previous one. Consider two monochrome
oriented paths Py of colour ¢y and P; of colour ¢; that meet twice. They define
a bicolour cycle C. Using an iteration as in the proof of the previous lemma, one
can easily exclude, without loss of generality, that there exists inside C' an edge of
colour ¢ originating from a vertex of Py or an edge of colour ¢; originating from
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Fig. 12. Possible bicolour cycles.

a vertex of P;. Now C can be either (a) a circuit, or (b) a cycle with Py turning
clockwise and P; counterclockwise, or (¢) the opposite. Figure 12 illustrates the
fact that these three cases are impossible.

O

5.5 Injectivity

For this paragraph, we return to the representation of annular triangulations in
the plane with their marked face taken as unbounded face.

Let us define a covering k-gonal forest of an annular triangulation as a k-
gonal forest obtained from the annular triangulation by detaching some edges
from their endpoint in order to form leaves.

Lemma 5.14. At most one covering k-gonal forest of T has only clockwise clo-
sure edges.

Proof. The proof is essentially the same as for Lemma 3.9 but since the root edge
is not necessarily incident to the unbounded face, some details must be adapted:
in particular, the depth-first search traversal of both trees will be replaced by
a contour walk around them. Observe that the border of the unbounded face
of T contains at least one clockwise edge. Starting from the left hand side of
this edge, perform a clockwise walk around both trees, that is, follow edge sides
in clockwise direction (in particular the two sides of a pendant edge are visited
successively, while for an inner edge the whole subtree on one extremity is visited
between the visit of the first side and that of the second side).

The first time this walk differs between the two trees, the same contradiction
appears as for Lemma 3.9, using the formulation of Property 2.3 in terms of
interiors of cycles. o

This lemma proves the injectivity of the closure. The rest follows from equal-
ity of cardinalities.
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