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Abstract. We present a simple encoding of plane triangulations (aka.
maximal planar graphs) by plane trees with two leaves per inner node.
Our encoding is a bijection taking advantage of the minimal Schnyder
tree decomposition of a plane triangulation. Coding and decoding take
linear time.
As a byproduct we derive: (i) a simple interpretation of the formula for
the number of plane triangulations with n vertices, (ii) a linear random
sampling algorithm, (iii) an explicit and simple information theory opti-
mal encoding.

1 Introduction

This paper addresses three problems on finite triangulations, or maximal planar
graphs: coding, counting, and sampling. The results are obtained as consequences
of a new bijection, between triangulations endowed with their minimal realizer
and trees in the simple class of plane trees with two leaves per inner node. A
complete version of this article is available from the authors.

Coding. The coding problem was first raised in algorithmic geometry: find an
encoding of triangulated geometries which is as compact as possible. As demon-
strated by previous work, a very effective “structure driven” approach consists in
distinguishing the encoding of the combinatorial structure, – that is, the trian-
gulation – from the geometry – that is, vertex coordinates (see [26] for a survey
and [16] for an opposite “coordinate driven” approach). Three main properties
of the combinatorial code are then desirable: compacity, that is minimization
of the bit length of code words, linear complexity of the complete coding and
decoding procedure, and locality, that is the possibility to navigate efficiently
(and to code the coordinates by small increments).

For the fundamental class Tn of triangulations of a sphere with 2n triangles,
several codes of linear complexity were proposed, with various bit length αn(1+
o(1)): from α = 4 in [6, 11, 18], to α = 3.67 in [21, 28], and recently α = 3.37
bits in [7]. The information theory bound on α is α0 = 1

n log |Tn| ∼
256
27 ≈ 3.245

(see below). In some sense the compacity problem was given an optimal solution
for general recursive classes of planar maps by Lu et al. [19, 22]. For a fixed
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class, say triangulations, this algorithm does not use the knowledge of α0, as
expected for a generic algorithm, and instead relies on a cycle separator algorithm
and, at bottom levels of recursion, on an exponential optimal coding algorithm.
This leads to an algorithm difficult to implement with low complexity constants.
Moreover the implicit nature of the representation makes it unlikely that locality
constraints can be dealt with in this framework: known methods to achieve
locality require the code to be based on a spanning tree of the graph.

Counting. The exact enumeration problem for triangulations was solved by
Tutte in the sixties [30]. The number of rooted triangulations with 2n triangles,
3n edges and n+ 2 vertices is

Tn =
2 (4n− 3)!

n!(3n− 1)!
. (1)

(This formula gives the previous constant α0 = 256
27 .) More generally Tutte was

interested in planar maps: embedded planar multigraphs considered up to home-
omorphisms of the sphere. He obtained several elegant formulas akin to (1) for
the number of planar maps with n edges and for several subclasses (bipartite
maps, 2-connected maps, 4-regular maps). It later turned out that constraints
of this kind lead systematically to explicit enumeration results for subclasses
of maps (in the form of algebraic generating functions, see [5] and references
therein). A natural question in this context is to find simple combinatorial proofs
explaining these results, as opposed to the technical computational proofs à la
Tutte. This was done in a very general setting for maps without restrictions on
multiple edges and loops [9, 27]. However these methods do not apply to the case
of triangulations.

It should be stressed that planar graphs have in general non-unique em-
beddings: a given planar graph may underlie many planar maps. This explains
that, as opposed to the situation for maps, no exact formula is known for the
number of planar graphs with n vertices (even the asymptotic growth factor is
not known, see [7, 23]). However according to Whitney’s theorem, 3-connected
planar graphs have an essentially unique embedding. In particular the class of
triangulations is equivalent to the class of maximal planar graphs (a graph is
maximal planar if no edge can be added without losing planarity).

Sampling. A perfect (resp. approximate) random sampling algorithm outputs
a random triangulation chosen in Tn under the uniform distribution (resp. under
an approximation thereof): the probability to output a specific rooted triangu-
lation T with 2n vertices is (resp. is close to) 1/Tn. Safe for an exponentially
small fraction of them, triangulations have a trivial automorphism group [25],
so that as far as polynomial parameters are concerned, the uniform distribution
on rooted or unrooted triangulations are indistinguishable.

This question was first considered by physicists willing to test experimentally
properties of two dimensional quantum gravity: it turns out that the proper
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Fig. 1. A random triangulation with 30 triangles.

discretization of a typical quantum universe is precisely obtained by sampling
from the uniform distribution on rooted triangulations [4]. Several approximate
sampling algorithms were thus developed by physicists for planar maps, including
for triangulations [3]. Most of them are based on Markov chains, the mixing times
of which are not known (see however [17] for a related study). A recursive perfect
sampler was also developed for cubic maps, but has at least quadratic complexity
[1]. More efficient and perfect samplers were recently developed for a dozen of
classes of planar maps [5, 28]. These algorithms are linear for triangular maps
(with multiple edges allowed) but have average complexity O(n5/3) for the class
of triangulations.

Most random sampling algorithms are usually either based on Markov chains,
or on enumerative properties. On the one hand, an algorithm of the first type
perform a random walk on the set of configurations until it has (approximately)
forgotten its start point. This is a very versatile method that requires little
knowledge of the structures. It can even allow for perfect sampling in some re-
stricted cases [31]. However in most cases it yields only approximate samplers
of at least quadratic complexities. On the other hand, algorithms of the second
type take advantage of exact counting results to construct directly a configura-
tion from the uniform distribution [15]. As a result these perfect samplers often
operate in linear time with little more than the amount of random bits required
by information theory bounds to generate a configuration [2, 13]. It is very de-
sirable to obtain such an algorithm when the combinatorial class to be sampled
displays simple enumerative properties, like Formula (1) for triangulations.

New results. The central result of this paper is a one-to-one correspondence
between the triangulations of Tn and the balanced trees of a new simple family
Bn of plane trees. We give a linear closure algorithm that constructs a trian-
gulation out of a balanced tree, and conversely, a linear opening algorithm that
recovers a balanced tree as a special depth-first search spanning tree of a trian-
gulation endowed with its minimal realizer. Realizers, or Schnyder tree decom-
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Fig. 2. The smallest triangulations with their inequivalent rootings.

Fig. 3. The 9 elements of the set B3.

positions, where introduced by Schnyder [29] to compute graph embeddings and
have proved a fundamental tool in the study of planar graphs [8, 10, 14, 20]. The
role played in this paper by minimal realizers of triangulations is akin to the
role of breadth-first search spanning trees in planar maps [28], and of minimal
bipolar orientations in 2-connected maps [24]. Our bijection allows us to address
the three previously discussed problems.

From the coding point of view, our encoding in terms of trees preserves the
entropy and satisfies linearity: each triangulation is encoded by one of the

(
4n
n

)

bit strings of length 4n with sum of bits equal to n. The techniques of [18] to
ensure locality apply to this 4n bit encoding. Optimal compacity can then be
reached still within linear time, using for instance [7, Lemma 7].

From the exact enumerative point of view, the outcome of this work is a
bijective derivation of Formula (1), giving it a simple interpretation in terms of
trees. As far as we know, this is the first such bijective construction for a natural
family of 3-connected planar graphs.

As far as random sampling is concerned, we obtain a linear time algorithm to
sample random triangulations according to the (perfect) uniform distribution. In
practice the speed we reach is about 100,000 vertices per second on a standard
PC and triangulations with millions of vertices can be generated.

2 A 2n-to-2 and a one-to-one correspondences

Let us first recall some definitions, illustrated by Figure 2.

Definition 1. A planar map is an embedding of a planar graph in the oriented
sphere. It is rooted if one of its edges it distinguished and oriented; this deter-
mines a root edge, a root vertex (its origin) and a root face (to its right), which
is usually chosen as infinite face for drawing in the plane.
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(a) A tree in B7. (b) A first step. (c) A second step.

Fig. 4. Beginning of the partial closure construction.

A triangular map is a rooted planar map with all faces of degree 3. It is a
triangulation if moreover it has no loop or multiple edge. A triangular map of
size n has 2n triangular faces, 3n edges and n + 2 vertices; the three vertices
incident to the root face are called external, as opposed to the n − 1 internal
other ones. The set of triangulations of size n is denoted by Tn.

2.1 From trees to triangulations

In view of Formula (1), it seems natural to ask for a bijection between trian-
gulations and some kind of quaternary trees: indeed the number of such trees

with n nodes is well known to be (4n)!
n!(3n+1)! . It proves however more interesting

to consider the following less classical family of plane trees, illustrated by Fig. 3:

Definition 2. Let Bn be the set of plane trees with n nodes each carrying two
leaves and rooted on one of these leaves.

It will prove useful to make a distinction between nodes (vertices of degree at
least 2) and leaves (vertices of degree 1), and between inner edges (connecting
two nodes) and external edges (connecting a node to a leaf).

The partial closure. We introduce here a partial closure operation that merges
leaves to nodes in order to create triangular faces.

Let B be a tree of Bn. The border of the infinite face consists of inner and
external edges. An admissible triple is a sequence (e1, e2, e3) of two successive
inner edges followed by an external one in counterclockwise direction around
the infinite face. An admissible triple is thus formed of three edges e1 = (v, v′),
e2 = (v′, v′′) and e3 = (v′′, `). such that v, v′ and v′′ are nodes and ` is a leaf.
The local closure of such an admissible triple (e1, e2, e3) consists in merging the
leaf ` with the node v so as to create a bounded face of degree 3. The external
edge e3 = (v′′, `) then becomes an internal edge (v′′, v). For instance the first
three edges after the root around the infinite face of the tree of Figure 4(a) form
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(a) Partial closure. (b) Two more vertices. (c) Complete closure.

Fig. 5. End of the closure construction for the tree of Figure 4(a).

an admissible triple, and the local closure of this triple produces the planar map
of Figure 4(b). In turn, the first three edges of this map form a new admissible
triple, and its local closure yields the map of Figure 4(c).

The partial closure B̃ of a tree B is the result of the greedy recursive applica-
tion of local closure to all admissible triples available. The partial closure of the
tree of Figure 4(a) is shown on Figure 5(a). At a given step of the construction,
there are usually several admissible triples, but their local closures are indepen-
dent so that the order in which they are performed is irrelevant and the final
map B̃ is uniquely defined.

In the tree B there are two more external edges than sides of inner edges
in the infinite face, and this property is preserved by local closures. When the
partial closure ends, there is no more admissible triple but some leaves remain
unmatched. Hence in the infinite face of B̃ no two inner edges can be consecutive:
each inner edge lies between two external edges, as illustrated by Figures 5(a)
and 6 (ignore orientations and colors for the time being). More precisely the
external edges and sides of inner edges alternate except at two special nodes:
these two nodes v0 and v′0 each carry two external edges with leaves `1, `2 and
`′1, `

′

2 such that `1 (resp. `′1) follows `2 (resp. `′2) in the infinite face.
Observe that the partial closure of a tree is defined regardless of which of its

leaves is the root. A tree B of Bn is balanced if its root leaf is one of the two
leaves `1 or `′1 of its partial closure B̃. The following immediate property shall
be useful later on.

Property 1. Let B be a balanced tree. Then local closure is performed between
a leaf ` and a vertex v such that v is before ` in the left-to-right preorder on B.

The complete closure. Let B be a tree of Bn, and call v0 and v′0 the two
special nodes of B̃ that carry the leaves `1, `2, `

′

1 and `′2. The complete closure
of B is obtained from its partial closure as follows (see Figures 5 and 6):

1. merge `1, `
′

2 and all leaves in between at a new vertex v1;



7

`1

`′2

`2

`′1

v0

v′

0

v0

v1 v2

Fig. 6. Generic situation after partial and complete closures.

2. merge `′1, `2 and all leaves in between at a new vertex v2;
3. add an edge (v1, v2).

This complete closure does not depend on which of the 2n leaves is the root
of the tree, so that in general 2n trees have the same image, which is clearly a
triangular map with a marked edge (v1, v2). This edge can be made a root edge
in two ways, by choosing v1 or v2 as root vertex. We shall prove the following
theorem in Section 3:

Theorem 1. The complete closure is a 2n-to-2 correspondence between the set
Bn of plane trees with n nodes with two leaves per node, and the set Tn of
rooted triangulations of size n. It is one-to-one between balanced trees and rooted
triangulations.

From now on we restrict our attention to balanced trees and fix a convention:
given a balanced tree B, v0 and v′0 are named so that `1 is the root leaf, and v1
is taken as the root of the complete closure B̄ of B.

Although the constructions are formally unrelated, the terminology we used
here is reminiscent from [9, 24, 27], where bijections were proposed between some
trees and planar maps with multiple edges.

2.2 From triangulations to trees

Minimal realizer We shall use the following notion, due to Schnyder [29].

Definition 3. Let T be a triangulation, with root edge (v1, v2), and with v0 its
third external vertex. A realizer of T is a coloration of its internal edges in three
colors c0, c1 and c2 satisfying the following conditions:

– for each i ∈ {0, 1, 2}, edges of color ci form a spanning tree of T \{vi+1, vi+2}
rooted on vi; this induces an orientation of edges of color ci toward vi, such
that each vertex has exactly one outgoing edge of color ci;

– around each internal vertex, outgoing edges of each color always appear in
the cyclic order shown on Figure 7, and entering edges of color ci appear
between outgoing edges of the two other colors.
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c0
c1
c2

Fig. 7. Local property of a realizer.

From now on, this second condition is referred to as Schnyder condition.

Realizers of triangulations satisfy a number of nice properties [12, 14, 29],
among which we shall use the following ones:

Proposition 1. – Every triangulation has a realizer.
– The set of realizers of a triangulation can be endowed with an order for which

there is a unique minimal (resp. maximal) element.
– The minimal realizer of a triangulation T is the unique realizer of T that

contains no direct cycle.
– The minimal realizer of a triangulation can be computed in linear time.

Depth-first search opening Let T be a triangulation, endowed with its min-
imal realizer. Let (v1, v2) be its root edge, v0 be the other external vertex. We
shall construct a spanning tree of T \{v1, v2} using a kind of right-to-left depth-
first search traversal of T . The absence of counterclockwise cycle in the minimal
orientation allows to describe the depth-first search as follows:

1. delete (v1, v2), and cut (v0, v1) and (v0, v2) to form two leaves `1, `2 on v0;
2. mark `2, and set v ← v0 and e← (v0, `2);
3. As long as an unmarked edge remains, do:

(a) e′ ← (v, u), the edge after e around v in clockwise direction;
(b) if e′ is unmarked and has origin v, cut e′ to produce a leaf attached to v;
(c) otherwise, mark e′ and set e← e′ and v ← u.

We shall see that this algorithm indeed performs a depth-first search traversal
and in particular, terminates in linear time. Let S(T ) be then the connected
component of v0, rooted at `1. We shall prove the following proposition:

Proposition 2. For any triangulation T , the map S(T ) is a spanning tree of T \
{v1, v2}. Moreover it is the unique balanced tree with complete closure T .

3 Proofs

3.1 The closure produces a triangulation

The closure construction adds edges to a planar map and only creates triangular
faces. It is thus clear that the resulting map is a triangular map with external
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Fig. 8. The different cases of closure of a leaf.

vertices v0, v1 and v2, and with exactly two more vertices than B has nodes. Let
us show that B̄ is indeed a triangulation, i.e. has no multiple edge.

Let B be a balanced tree of Bn. By definition the root leaf `1 of B is immedi-
ately followed around v0 in clockwise direction by a second leaf `2. Set `1 in color
c1, `2 in color c2, and other edges incident to v0 in color c0. Upon orienting all
inner edges of B toward v0 and all external edges toward their leaf, all vertices
but v0 have three outgoing edges. This orientation induces a unique coloration
of the edges of the tree B satisfying the Schnyder condition (Figure 7) at all
vertices but v0.

Lemma 1. The orientation and coloration of edges still satisfy the Schnyder
condition on each node but v0 after the partial closure of B.

Proof. This lemma is checked iteratively, by observing that each face created
during the partial closure falls into one of the four type indicated on Figure 8
(up to cyclic permutation of colors).

Property 2. If a (triangular) face of B̃ is oriented so that its sides form a circuit,
then this circuit is necessarily oriented in the clockwise direction. More generally,
each circuit in B̃ is created by the closure of a (last) leaf, the orientation of which
imposes on the circuit to be clockwise.

Lemma 2. After the complete closure, the Schnyder condition is satisfied at
each internal vertex, and, apart from the external edges, each external vertex vi

is incident only to entering edges of color ci.

Proof (Sketch). As illustrated by Figure 6, the Schnyder condition on nodes
along the border of the partial closure implies that all external edges between
`1 and `′2 (resp. `2 and `′1) are of color c1 (resp. c2).

Lemma 3. A triangular map endowed with a colored 3-orientation satisfying
the Schnyder condition on inner vertices is in fact a triangulation endowed with
a realizer.

Proof (Sketch). The proof is based on an analysis of monochrome directed paths:
first two such paths with different color are proved to intersect at most once;
as a consequence monochrome circuits are excluded. Hence multiple edges are
excluded and the tree structure is recovered.
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Proposition 3. Upon keeping colors, the closure maps a balanced tree B of Bn

on a rooted triangulation with n+ 2 vertices endowed with its minimal realizer.

This proposition, immediately following from Lemma 3 and Property 2, con-
cludes the first part of the proof.

3.2 The depth-first search opening is inverse to closure

Lemmas 4-7 imply Proposition 2, and, together with Proposition 3, conclude the
proof of Theorem 1. Proofs of these lemmas are in the complete paper.

Lemma 4. The depth-first search opening visits all vertices of T \ {v1, v2}.

Lemma 5. The depth-first search opening of a triangulation T produces a span-
ning tree S(T ) of T \ {v1, v2} and stops.

Lemma 6. The complete closure of S(T ) is T ; in particular edges that are cut
by opening lie on the left hand side of the tree, as in Property 1.

Lemma 7. At most one spanning tree of T \ {v1, v2} satisfies Property 1.

4 Applications

4.1 An explicit optimal code for triangulations

As a first byproduct of Theorem 1, we obtain a code of triangulations in Tn by
balanced trees in Bn. Since a triangulation can be endowed with its minimal
realizer in linear time (Proposition 1), the tree code can be obtained in linear
time. Another fundamental feature of our code is that the tree code is a spanning
tree of the original triangulation, making locality amenable to the techniques of
[18]. Elements of Bn can themselves be coded by bit strings of length 4n−2 and
weight n− 1 using a trivial variant of the usual prefix code for trees.

Lemma 8. A tree B of Bn can be linearly represented by the word s(B) that is
obtained by writing 1 for “down” steps along inner edges, and 0 for leaves and
“up” steps along inner edges, during left-to-right depth-first search traversal.

Hence a code for triangulations which is a subset of the set S of bit strings with
length 4n−2 and weight n−1. According to [7, Lem. 7] it can be given in linear
time a representation as a bit string of length log |S|+ o(n) ∼ log

(
4n
n

)
∼ 256

27 n.

4.2 A bijective proof of Formula (1)

Proposition 4. The set Bn has cardinality 2
4n−2 ·

(
4n−2
n−1

)
.
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Proof. As for classical prefix code of trees, the code words corresponding to trees
of Bn can be easily characterized: they are the bit strings of length 4n− 2 with
weight n − 1 such that any proper prefix satisfies 3|u|1 − |u|0 > −2. Now the
number of such bit strings is readily obtained by the cycle lemma: in each cyclic
class of words with length 4n − 2 and weight n − 1, exactly 2 elements among
4n− 2 are codes words (or 1 among 2n− 1 for symmetric classes).

Now as seen in Section 2.1, any tree in Bn has two particular leaves among
its 2n ones, and it is balanced if and only if one of these two is its root. Hence
the ratio of balanced trees in Bn is 2

2n . From Theorem 1 we obtain:

Theorem 2. The number of triangulations with 2n triangles, 3n edges and n+2
vertices is 2

2n ·
2

4n−2 ·
(
4n−2
n−1

)
, which is exactly Formula (1).

4.3 Linear time perfect random sampling of triangulations

The closure construction provides a sampling algorithm with linear complexity:

1. generate a random bit string of length 4n− 2 and weight n− 1;
2. choose randomly one of its two cyclic shift that code an element of Bn;
3. decode this word to construct the corresponding tree;
4. construct its partial closure by turning around the tree; using a stack, this

can be done in at most two complete turns, hence in linear time;
5. complete the closure and choose a random orientation for the edge (v1, v2).

Proposition 5. This algorithm produces in linear time a random triangulation
uniformly chosen in Tn.

Observe that Steps 1–3 correspond to a special case of the algorithm of [2]
for sampling trees.

Acknowledgments. We thank the authors of [7] for providing a draft of this
work and for interesting discussions. In particular special thanks are due to
Nicolas Bonichon for his invaluable knowledge of minimal realizers, and to Cyril
Gavoille for pointing out Lemma 7 in [7].
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