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Abstract

The factorizations of an n-cycle of the symmetric group &,, into m permutations
with prescribed cycle types a1, . . . , a;, describe topological equivalence classes of one
pole meromorphic functions on Riemann surfaces. This is one of the motivations
for a vast literature on counting such factorizations. Their number, denoted by
Cz(ﬁ),...,am, is also known as a connection coeflicient of the center of the algebra of the
symmetric group, whose multiplicative structure it describes.

The relation to Riemann surfaces induces the definition of a genus for factoriza-
tions. It turns out that this genus is fully determined by the cycle types az, ..., am,
and that it has a determinant influence on the complexity of computing connection
coefficients. In this article, a new formula for c(ofi),___,am is given, that makes this
influence of the genus explicit. Moreover, our formula is cancellation—free, thus con-
trasting with known formulae in terms of characters of the symmetric group. This

feature allows us to derive non trivial asymptotic estimates.

Our results rely on combining classical methods of the theory of characters of the
symmetric group with a combinatorial approach that was first introduced in the
much simpler case m = 2 by Goupil and Schaeffer.

Key words: symmetric group, conjugacy classes, connection coefficients.

1 Introduction

1.1 Definitions and notations

Let us first recall some notations. Let n and k be positive integers; a partition
of n into k parts is a non increasing k-tuple of positive integers 8 = (5, . - ., B)
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such that 81+ - -+ Br = n. Let | 8| denote the weight n of 8, and £(f) its length
k. We also write S F n. The rank r(53) of 5 is defined by r(8) + £(8) = |B].
If b; is the number of parts of 5 equal to ¢, then the exponential notation
B =1 .. . nb will be used as well. The cycle type of a permutation o € &,, is
the partition of n whose parts are the lengths of the cycles in the representation
in disjoint cycles of 0. The permutations of &,, of given cycle type [ form a
conjugacy class denoted by Cg.

Let n and m be positive integers, «4,. .., a,, and 8 be m—+1 partitions of n. For
convenience’s sake, we shall consistently use the notations ¢; and r; instead of
£(cy) and 7(q;). Denote by ¢f  ,  the number of m-tuples of permutations
in &, of respective cycle type oy, as, .. .a,, whose product is equal to a given
permutation of cycle type . In other terms, for any permutation 7 of cycle

type 3,

v, = (01 00) € Cay X+ X Capy | 01 =T

QU yeeny Oy

The formal sums Cp = X ;¢c, 0 for § = n belong to the group algebra of the
symmetric group &,, and, more precisely, form a basis of its center Z,,. Thus
the (multiplicative) structure constants cgl,“ can equivalently be defined
by the following linearization relations in Z,:

Qm

Cop---Co,, = ? Cs,

QU yeeny Oy

BFn

from which they got their name.
1.2 Context and motivations

It was already known by Hurwitz that factorizations in the symmetric group
have a topological interpretation. We refer to [7,14,17| for a description of this
connection and simply indicate — somewhat loosely — that factorizations rep-
resent topological equivalence classes of meromorphic functions on Riemann
surfaces, up to homeomorphisms of the domain. As only connected surfaces
are usually considered, the corresponding factorizations must satisfy the addi-
tional transitivity condition that their factors should generate a group acting
transitively on {1,...,n}. In this case, up to labelling the sheets over a reg-
ular point, the correspondence can be made one-to-one. Factorizations are
used in practice to conduct the experimental topological classification of func-
tions, and, in this context, enumerative results like ours are used to check for
exhausion of the search space [6].

A remarkable feature of the above mentionned correspondence is that it de-
fines a genus of transitive factorizations, which turns out to have a simple
combinatorial description in terms of the cycle type of factors: the genus g of



a transitive factorization of a permutation of cycle type [ into m permutations
of respective cycle types a1, ..., o, is given by

S ori=L4(B)+n—2+2g.
i=1

The fact that g has to be a non negative integer so that such factorizations
exist is immediate from its topological interpretation, but can also be proved
inductively directly from its combinatorial definition (see e.g. [5]). The topo-
logical intuition suggests that the situation should become more and more
involved as the genus increases, and one would expect this to show on enu-
merative result. As a first result, Hurwitz gave a remarkable formula for the
number of genus zero transitive factorizations in transpositions ([14], see also
[1,5,10,24] for recent development).

In the general case, the classical expression for the structure constants ¢
is a summation over products of evaluations of irreducible characters of the
symmetric group (see Proposition 4). Unfortunately, huge cancellations often
occur in these sommations, hiding the influence of the genus and precluding
any prediction of the order of magnitude of the constants. Moreover the eval-
uation of characters is usually done via Murnaghan—Nakayama rule so that
these formulae are more properly described as evaluation algorithms, from
which infinite families of constants cannot be evaluated simultaneously.

1.8  The particular case of n-cycles

It was observed in [9,16] that the formula expressing structure constants in
terms of characters translates into a remarkably simple expression of their
generating function in terms of Schur functions. However, extracting coeffi-
cients in these generating functions also involves alternating sign summations
and, unsurprisingly, are more or less equivalent to the direct computations
via characters. Factorizations of an n-cycle are somewhat less involved be-
cause the character generating function is simpler, but, even in this case, large
cancellations occur.

However, besides Hurwitz’ transpositions, a few other families of structure
constants are known to be given by simple explicit formulae, the most intrigu-
ing of which may be c{;,) ,_11) = 2(n — 2)! if permutations of cycle type « are
odd, and 0 otherwise. Several results of this type have been obtained in the
early 80’s, by Walkup [25], Boccara [4], Bertram and Wei [3] or Stanley [23],
and later by Jackson [15], Goulden [8], Goupil [12] or Jones [18]. Almost all
these results concern decompositions of an n-cycle into very restricted families
of factors, and they do not rely on any kind of topological intuition.



Observe that factorizations of an n-cycle are necessarily transitive, since the
factorized cycle belongs to the group generated by the factors. Hence the genus
of such a factorization is well-defined and satisfies:

Zri = n—1+2g.

2 Main theorem
2.1 Two former results

An important progress was made for the study of such factorizations with
Goulden and Jackson’s formula in the minimal genus case [2,9,28,27]: for all
partitions aq, ..., a,, of n such that ry +---+r, =n —1,

¢ (4; —1)!
(n) = nm" 1 4 = pm 1 A\ )
Car,am H (az Lyenns aim) H 1 Aut(a;)

in which, for any partition 3 = (S1,...,8:) = 1% ...n% Aut(B8) = b!---b,!is
the number of permutations o in &, such that S,(;y = §; for all ¢ in [1, £] (no-

tation borrowed from [27]). Remark that this formula generalizes the classical

Cayley formula cng)L 29)n-1 = n=2

Then, a detailed case analysis of low genera led Goupil to introduce the fol-
lowing symmetric polynomials for all non negative g and ¢:

Sy(t1,.ym) = Y H <2pj+1>

pit..+pe=9 j= 145

They have a simple generating function:

1 T
> Sg(@r, .zt = I — > <2pi1>t2p+1

920 j=1 p=0
B f[ 1+1)% — (1 —t)%
j=1 2.Tjt

Using these symmetric polynomials, Goupil and Schaeffer were able in [13]
to extend Goulden and Jackson’s result in the special case m = 2: for all
partitions a; and ay of n,

(n) _ n (K — 1 (29:)
Cal,a2 229 H Aut(az) Z Hg ng sz

g1+92=9 i=1

where g = 1(n—1—r;—r3) and 2* is the raising factorial z(z+1) ... (z+k—1).



2.2  Statement of the main theorem

In view of Goulden and Jackson’s and Goupil and Schaeffer’s formulae, it is
natural to conjecture an immediate extension of the latter to m > 2. However,
this extension turns out to be false because of the existence of a factor P trivial
for m < 2. In order to define this factor, let us fix some notations. Recall that
the elementary symmetric functions are defined by e, = ey, ...e,, for any
partition g = (pq,. .., ) , where for each k € N:

€x = Z Tjy Ty =+ = Ly
1<j1<g2<--<Jg

Falling factorial powers are defined by (z), = z(x —1)--- (z — k + 1) for any
integer k, and the mapping D : z* — (x); can be extended multiplicatively
to monomials in distinct variables and then linearly to symmetric functions.
Finally, for 4 = 1™ ...n™» the partition 3™5™2 ... (2n + 1)™» is denoted by
2u + 1.

With these notations, we define symmetric functions P, by setting Py = 1,
and for all positive g:

€2u+1
P, = E .
—  Aut(p)
ug

The main result of the present article can now be stated as follows:

Theorem 1 Let n be a positive integer, and o, ...,q, be partitions of n,
with, for all i, a; = 1% .. .n%n~ {(a;) = £; and (o) = r;. Let the genus g be
defined by > ;v =n — 1+ 2g. Then:

g“)’ som = T92g g Aut(w;) ) Z (Pgo(r - 2g) ng@g )Sgi(ai)> (1)

go+---+gm=g =1

where t — 2g = (11 — 291, - - -, T — 20m)-

2.8 A discussion of the main theorem

Let us point out some properties of Formula (1).

e First of all, it is a summation over positive contributions. This is certainly
not the case of character theoretic formulae, and a substantial part of our
proof is directed towards the construction of a sign reversing involution to
eliminate negative contributions. This allows us to derive asymptotic results
for different kinds of limit at fixed genus (see below).



e The symmetric polynomial Py(z1, ..., xn,) has degree 3¢, so that the number
of terms involved in its summation is a polynomial in m of degree 3g. First
few values of P, and S, are given in Appendix.

e The symmetric polynomial Sy(x1,...,z,) has degree 2¢g and the number of

terms in its summation is (“3:‘(]]71), i.e. a polynomial in ¢ of degree 2¢g. Since

Sg(x1, ... xe) = Sy(x1,...,20,1,...,1,0,...,0), the evaluation S,(c;) only
depends on the partition a; = 2% ... k%*. (In fact it does not depend on
parts equal to 2 either.)

e The higher genus correction to Goulden and Jackson’s formula

> Py(r—2g) Hﬁzgl)S

go+--+gm=g

is a polynomial in the parts ¢; ; (for fixed g, m, n and ¢;). In other words,
besides Aut(cy;), there is no further dependence on the multiplicities a; j, i.e.
on the fact that some parts may be equal. Moreover, in terms of reduced par-
titions @ = 2%2...k%* (i.e. withdrawing parts equal to 1), the correction
reads, using the equalities ¢; = (Z#i rj) +1—2g, and r(o;) = r(a7),

m

> pe-2 [l (Sr@) +1-20) " s, @),

go+--+gm=g =1 " j#i

and is, for fixed g, m and ¢(a;) but independantly of n, a polynomial of
total degree 4¢g in the parts of the reduced partitions.

To sum up, Theorem 1 shows that the genus g has a determining influence
on the complexity of connection coefficients computing: as mentioned above,
the number of terms in the summation is polynomial for fixed g, but increases
exponentially with ¢g. Similar phenomena are observed in related results of
Goulden et al. [10,11, and references therein|. These authors consider transi-
tive factorizations of a permutation of type [ into transpositions. Their ex-
pression overlaps with ours when 3 = n (our restriction) and a; = 1" 22 (their
restriction).

2.4 Some asymptotic corollaries

Asymptotic results for structure constants were mainly considered in the limit
where n is fixed and m goes to infinity. In particular, this implies that the genus
goes as well to infinity. While this is natural in the study of random walks in
the symmetric group (see [19]), it is also of interest to obtain asymptotic results
at fixed genus in view of the connection with topological interpretations. In
this context, parts of length one are not interesting (since they correspond to
regular points as opposed to critical points), so that it is more natural to stress



the genus and reduced cycle types in notations: for «q,...a,, being reduced
partitions (i.e. without parts equal to 1), let

s e ema, i > maxi(jal),
e m 0 otherwise,

where n = ;7 + 1 — 2g and a; = n — [o;]. In other terms, fg _ ~is the
number of factorizations of genus g of a maximal cycle into m permutations
of respective reduced cycle types aq,...,Qu,.

Formula 1 is useful to give asymptotic estimate for connection coefficients in
the limit where g is fixed and n goes to infinity. As an illustration, we prove in
Section 6 the following two corollaries. (Throughout this article, f(x) o g(x)

means lim, o, f(z)/g(z) =1.)

Corollary 2 (Large number of factors) Let g be a non negative integer,
and o = 2% .. k™ qa partition (without parts equal to 1) of rank r and length £.
Then there exists a constant c(g, ) (given in the proof) such that, for m going
to infinity,

(£—1)m

g ~ . mé—1+3g
f(a)m m—00 C(g, a) Aut(a)m ’

- (mr)

In particular, for «q, . . . ayy, being transpositions, this yields a generalized Cay-
ley formula:

mm—1—|—3g

g Lo
f(2)m m—oo 249 g'

This latter formula nicely extends either to involutions with & cycles:

fg N (km)km71+3g
(2F)™ oo km9249 g' ?

or to k-cycles:

f(qk)m oo C(ga k) ) ((k - 1)m)m71+3g'
Corollary 3 (Large factors) Let g be a non negative integer, and consider
m partitions a; = 1%t .. k%*k. Let x - a; denote the partition x®: ... (kx)%*.
For x going to infinity, there exists a constant c¢(g; o, ..., qy) (given in the
proof) such that:

g . L Ag—1+Y 4
L-QU1 yee ey T Qi z:;oo C(gu A1y .ney am) X E’ .

Considering this homothetic limit was suggested to us by Dimitri Zvonkine.



2.5 Qutline of the proof

Let us mention that structure constants have an interpretation in terms of
some 2-cell embeddings of graphs, called cacti, maps or more generally constel-
lations. This interpretation is intermediate between factorizations and mero-
morphic functions (see [5]). This allows to work with discrete, combinatorial
objets, without completely loosing the topological intuition. In this context,
the special case m = 2, ap = 2/? was known to Walsh and Lehman [26]. But
unlike Goulden and Jackson in [9], and although we also use some graphical
interpretations in the course of the proof, we were unable to use constellations.
Such a relation would be very interesting to find in so far as it could provide
a constructive proof of our result: in the present state, our derivation starts
from the (non constructive) character theoretic formula and we are unable to
present a reasonable algorithm to list all the factorizations counted by cgi) et
The proof relies on the same approach that was successfully applied to the
much simpler case m = 2 in [13]. In Section 3, the formula given by character
theory is interpreted as a weighted sum over some combinatorial objects. This
first interpretation is closely related to the one used by Goulden in [8] and
similar to that of [13]. Then, in Section 4, a new interpretation in terms of
starry graphs is developed. These graphs are the key ingredient allowing us
to proceed in a formal analogy with the case m = 2, although the objects and
details are more involved. An involution principle is applied to cancel negative
contributions and to obtain a weighted sum involving cyclomatic numbers of
graphs (Theorem 15). In Section 5, this weighted sum is finally related to the
number of orientations of graphs and explicitly computed.

3 A combinatorial interpretation of the character theoretic formula

Character theory provides an expression for c((ﬁ),___,am. For any partition /3
of n, the cardinality zz of the centralizer of any permutation in Cs is equal
to 1%1b,! 2%2b,! ... nP»b,!. For convenience, we consistently use the notation
z; for z,,. If moreover we denote by x” the irreducible character of &,, indexed
by the partition v, its evaluation at the conjugacy class Cz by X?sa and its
degree by f7, then Frobenius formula can be expressed as (see e.g. [21, p68]):

Proposition 4 Let aq,...,a,, and (3 be partitions of n € N. Then:

5 _ nlm=1 Z X’qu .. 'chm X,y
2 2m (f”r)m_1 B

Ql,..,0m



This formula motivates the search for a convenient expression for evaluations
of irreducible characters of G,,. We first recall a classical rule for computing
them using Ferrers diagrams, and then seek for simplifications that occur in
the particular case § = (n).

3.1 Murnaghan-Nakayama rule

Let o and 8 be two partitions of a positive integer n. A rim hook tableau of
type («, B) is a Ferrers diagram of shape « filled with positive integers such
that, for all ¢ € [1,£(B)],

e the cells filled with integers i to ¢(f) form a Ferrers diagram of weight

Bi+ -+ Bup),
e the ; cells filled with ¢ form a rim hook, i.e. a connected set that contains

(K

no pattern of the type:

(K

This means that a rim hook tableau of type («, §) can be regarded as a diagram
of shape « filled with the rows of [, in such a way that each row of 3 forms
a rim hook of . The weight W (T') of a rim hook tableau 7" is the number of

patterns  in it.

EXAMPLE: A rim hook tableau of type ((5,4, 3,1), (6,4, 3)):

[2]

21111 Its three rim hooks have respective contribu-
212111 tions 2, 2 and 0, hence its weight is 4.
3[3[3]1]1

¢

With these definitions, the following rule allows to compute evaluations of
irreducible characters of &,, (see [20]):

Proposition 5 (Murnaghan-Nakayama rule) Let « and 8 be two parti-
tions of a positive integer n. Then:

X5 = (="

T

where the sum runs over all rim hook tableauz of type (o, B).

Evaluations of the irreducible characters of &,, at the class of the n-cycles can
be immediately deduced from this rule, since no diagram can be filled with a
single rim hook unless it is itself a hook:



Proposition 6

Xm) =

~ _ J(=1)" if there exists r € [0,n — 1] such that v = 1"(n —r),
0 otherwise.

This reduces the summation in Proposition 4 to a summation over hook dia-
grams. Moreover, we obtain from Murnaghan-Nakayama rule the value of f”
when 7 is a hook:

r (n—r -1
VTG[[O,H—l]], fl =) = X}n( ) = (TLT )

Hence Proposition 4 can be rewritten into:

() U S A P(nmr) ()
Broe = T ("7T) g @)
o &

3.2 Quasi-painted diagrams

In order to give a combinatorial interpretation of Formula (2), we derive from
Murnaghan-Nakayama rule another expression of characters involved in it.
Let us define a painted diagram of shape « as a Ferrers diagram whose cells
are painted in black (e) or white (o), such that each row is monochrome. A
quasi-painted diagram is such that all cells are black or white but one which
contains a cross, and all rows are monochrome but the last one which has the
form:

[o]e]---[e[x][o]---[o]o]

i.e. o x o for some p > 0, ¢ > 0. Let & be a quasi-painted diagram of shape
o, |@|, denote the number of its black cells, and £,(&) the number of its black
rows (in particular the last row, which contains the cross, does not count).

Proposition 7 Let r € [0,n — 1] and o = (av,...,0) F n. Then the rim
hook tableaux of type (1"(n — 1), @) are in one-to-one correspondence with the
quasi-painted diagrams of shape o with r black cells.

PROOF. White cells of o are those that fill the horizontal part of the hook
1"(n — r), black ones fill the vertical part, and the crossed cell corresponds to
the position of the corner cell of 1"(n — 7). O

10



EXAMPLE: A rim hook tableau of type (1712,(7,6,6)) and the associated
quasi-painting of (7,6, 6):

3[3[3]3]ta]1]e]1]1]1] o|o|o]o]o]o]0]

¢

Hence we get the following reformulation of Murnaghan-Nakayama rule in
terms of quasi-paintings, in the special case of . (»~");

Proposition 8 Let r € [0,n — 1] and o = (o, ..., o) b n. Then:

Xg (n—r) _ Z(_l)r—f. (@) ’

~

(6]

where the sum runs over the quasi-paintings & of o with r black cells.
3.8 Painted heightened diagrams

In this section, we derive from Proposition 8 an expression for characters
;’W—") that involves painted diagrams instead of quasi-painted ones.

Let {e,0}? denote the set of words of length p over the alphabet {e, 0}, and
G (eP07) the set of words of length p+ ¢ with exactly p letters e and ¢ letters o.

With these notations, the following lemma is straightforward:
Lemma 9 (shuffle lemma) Let p and q be positive integers. Define:
©:{e o}ttt — fe o0}* x {e,0}*
u — (v,w)

where vw = u and |v| is mazimal with respect to the conditions: |v|e < p and
vo < q.

Then ¢ maps {e,o}PT9+L bijectively onto

=

(G(Qioq) x ofe, o}p_i) U Ql (6(.Poj) x ofe, o}q—j) )

=1

11



Let o = (v, - - ., o) be a partition of an integer n > 1. For any & in [0, ap— 1],
its k-th heightened partition o is the partition of n — 1 defined as follows:

a® = (g, ..oy a1, 1, ..., 1),
%/_/

ay—1 times
and for all integer 1 < k < ay,

o = (o, ..., o1, k, 1, ..., 1).
———

ay—1—k times

The partition (v, ..., ;) is denoted by o*, and the partition 1% %k is

called a heightened hook of «; 1% 17% is its vertical part and k (if k # 0) its
horizontal part.

EXAMPLE: Let us consider the partition a = (7,6,6) =

Then o* = | and the heightenings of « are:
. 3
A A
NRERE > >[>[> S>>
o = | . at= R - :
- i i
Ay 1A 1A
18] 1A 1A
A 1A 1A
>|> > A
a? = |, a'= |, o= |

Y

where cells of the vertical part of the heightened hook are marked with a a,
and those of its horizontal part with a . &

With these notations and Lemma 9, Proposition 8 becomes:

Proposition 10 Let r € [0,n — 1] and a = (v, ..., ap) - n. Then:

ap—1 ~
"(n—r —0(ak)— r—Lle(a*
X(lx( ) — 224 £( )12(_1) Lo )’
k=0 ;;

where the inner sum runs over all painted diagrams ok of shape o with r

black cells.

12



Remark that any painting ok induces a painting o* of a*; in particular, E.(@)
is well defined and equal to £, (ak).

PROOF. The summation in Proposition 8 can be rewritten as follows:

"(n—r 1 r—Le (X
WO = LY S (@

~

[0 ue {.ao}al
1

= g2 X (-1 e,

~

a ue{eo)o

Let us define a one-to-one correspondence between couples (&;\u) consisting of
a quasi-painting of @ and a word u in {e, 0}* and triples (k, a*, w') consisting
of a non negative integer k < o, a painting of o* and a word of length & + 49,
where §) denotes Kronecker’s symbol.

For any painting & of o, let p and ¢ be such that its last row is e” x o9. For
any word u, let (v, w) = ¢(u) defined as in the shuffle lemma, and £ = |w|—1.
Then the corresponding painting o of the heightened diagram o is defined
as follows:

e the painting of rows ay,...,ap_1 of o induces a painting of the same rows
in ot.

e the colour of the horizontal part of the heightened hook, if any, i.e. if £ # 0,
is not the first letter of w.

e the colour of the remaining cells is given by the word v.
Moreover, we take w' to be w if k£ = 0 and w without its first letter otherwise.

The mapping & — (k, 547“, w') is one-to-one and preserves the number of black
cells, so that:

1

"(n—r 1 &~ —le (&
PGS 35 DD DI CE Yy
k=0 % wle{.’o}k-HSS
ap—1 ~
— Z 2—04[—}—]«:—}—62 Z(_l)r—e,(a*)’
k=0 %

ak

where the internal sum runs over the painted diagrams of shape o with r
black cells. Since 1 + £(a*) — £ = ay — k — 69, the proof is complete. O

13



ExXAMPLE: Consider the painting & = [o[o]o[o]o[o[o];thenp=1and¢=4

Let u = oeecce € {e,0}° then ¢(u) = (ce,e00e), k = 3, and the correspond-

ing painting of o3 is

olelo]e]o]
)
)
<

4 A graphical summation

For any m-tuple a of partitions o; = (1, .., a5y;) of n, let I, denote the set
10, cvy ¢, — 1]] X -+ % [0, uny,, —1]. Then, for any k = (ki,...,kn) € I, the
m-tuple (o, ..., afm) is denoted by a*. Last, let /& = £(a}).

We are now able to derive from Formula (2) a new expression for connection
coefficient cg?,._.,am. Each evaluation of a character uses a summation over
painted diagrams with r black cells. Expanding these summations leads to
summing over configurations of m painted diagrams with the same number r

of black cells:

bl || EC ) ISR

Zmr OkEIa&i =1

where the innermost summation runs over paintings a* of a* with r black cells
in each diagram of.

4.1 Painted starry graphs

The factor [rI(n —1 —7)!]™ " in Expression (3) can easily be interpreted. In
order to give a natural description for other factors as well, we introduce the
following model:

Let o4, ..., oy, be partitions of a positive integer p, with o; = (a1, .., Qy,)
for all i € [1,m]. A starry graph of type a = (a4, ..., ) is a bipartite graph
' satisfying the following conditions:

e its two kinds of vertices are, on the one hand, ¢; + ...+ ¥, row vertices,

and on the other hand p star vertices,

14



row vertices correspond bijectively to rows of the diagrams,

for any 1 < i< m, 1< j <4, the row vertex (7,7) has degree o,

star vertices are unlabelled and have degree m,

edges incident to row vertex (¢, j) are labelled 1 to «; ;,

for any star vertex, and any 7 € [1, m], there is exactly one index j € [1, 4]
such that row vertex (7, j) is adjacent to the given star vertex.

A starry graph [is painted if its vertices are painted black or white in such a
way that any two adjacent vertices have the same colour. If the colour of its
row vertices is given by the colour of the rows of @, I is said to be of type a.
The set of starry graphs of type a is denoted by G(a) and the set of painted
starry graphs whose type is a painting of a by G (a).

EXAMPLE: Let us consider the partitions a; = 1%, oy = 122, a3 = 13. The
picture below represents a painted starry graph on (aq, ag, a3).

¢

Let us consider m painted diagrams with p black and ¢ white cells each. Any
starry graph on them has p black and ¢ white undistinguishable star vertices.
Each black (respectively white) cell of a given diagram is adjacent to a different
black (respectively white) star, hence the number of starry graphs on these
diagrams is - (p!g!)™.

Proposition 11 Let a be a m-tuple of partitions of n, and ak g painted height-

ening of a with r black cells in each diagram. Then the number of painted starry
ak is [rl(n — 1 — )™t

graphs of type a¥ is [rl(n — 1 —r)!|"" .

This gives an interpretation of factor [r!(n — 1 — 7)™ " in Expression (3) in
terms of painted starry graphs of type ak. Let us rewrite Expression (3) in
these terms. The summation over r leads to a summation over all paintings,

so that we obtain:
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Proposition 12

c(n) — 2 Z Z 2nI‘) cF) 1)(m 1)p(T) ZZ. (4)

O yensQpy
ARER Zm kel Feg(ak)

in which p(T') denotes the number of black stars of I', and k(") its cyclomatic
number, i.e. e(I') —v(T") 4+ ¢(T'), with e(T"), v(T") and c(T") denoting respectively
the numbers of its edges, vertices and connected components.

PROOF. Remark that p(I') corresponds to r, so that to derive Formula (4)
from Formula (3), we only have to prove:

m

H 22;’*2?*1 — QK(F)fC(F)fQ_q.
i=1
According to the definition of g, we have >/, (4; —1) = (m —1)(n — 1) — 2g.

The number r(I') of row vertices of I is Z:”lﬁf’, the number s(I') of star

vertices is n — 1 and the number of edges is m(n — 1), so that:
m

2Lt —1 = [(m-1)(n—1) -2~ ka

= [e(I') = (') = 29] — T(F)
= k([) —¢(T) — 2¢.

4.2  Connected components and evenness

Let T be a starry graph of type o = (of,..., o), and TM ... L TED) jtg
splitting in connected components. It induces a splitting of each partition af".

The following proposition is straightforward from the definition of painted
starry graphs:

Proposition 13 Let T bea painted starry graph. Then each connected com-
ponent of I' is monochrome. In other words, painted starry graphs T are in
bijection with couples made of a (non painted) starry graph ' and a subset B
of the set C(T") of its components — the black ones.

Hence we can derive from Proposition 13 a new formulation of the innermost
summation in Equation (4):

Z QH(F)—C(F) Z (_1)5(3)’

reg(ak) Bcc(D)
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in which (B) is defined as follows: let e(T'(©)), s(I'@), 7(I'¥) and h(I')) denote
respectively the numbers of edges, star vertices, row vertices and heightened
row vertices in the component I'(®); we associate to each connected component
the following parameter:

(M) = (m—1) s(I9) — 3 £a;")

- [e(p(c)) _ s(F(C))] Z:_ [T-(F(C)) _ h(F(C))]
= k() — 1 + B(TO),

and this notation is extended to subsets of C(I'):

VB C C(T), e(B) = > &(I'9).

ceEB

A starry graph is said totally even if £(I'(?)) is even for all ¢ € C(I"). We denote
by €(aF) the set of totally even starry graphs of type a*.

4.8 A sign-reversing involution
Lemma 14 Let T € G(a¥). Then:

> ()T -

Bce(T)

2¢1) 4 T is totally even,
0 otherwise.

PROOF. First case is obvious. In the other case, let ¢ be the lowest index
such that £(I'¥) is odd. Consider the involution ¥ of the set of subsets C(I')
mapping B C C(I') on the symmetric difference BA{c}. Then 9 is an involution
without fixed point, and for all B C C(I'), e(B) # (9(B)) mod 2, so that the
contributions of all subsets cancel two by two. O

Hence the contribution of a starry graph is 2% if it is totally even and 0
otherwise, which proves the following theorem:

Theorem 15 Let a be a m-tuple of partitions of n. Then:

) = T T 2

1 kela Teg(ak)

Some particular cases can be directly deduced from this first expression of our

17



theorem. Observe that, for any starry graph I' built on any heightening of a,

m

3 ey = m—1)s(T) - > (6 —1)

ceC(T) i=1
= (m—=1)(n—1)—=[(m—1)(n —1) - 2g]
= 2g.

Remark that this supplies a proof that c&”) = 0 unless ¢ is an integer: if it is
not, no totally even starry graph can be built on a heightening of a, hence the
summation is empty.

Let us now assume that a is such that g is an integer, and consider a connected
starry graph I' in G(aF). Then its cyclomatic number only depends on a*:

k() = e)+1-hn{T) = 2¢g+1+ i (k, + 05 — Oéi’gi) .

=1

Suppose that a is such that any starry graph on any heightening a* is con-
nected. According to Theorem 15,

2 nm—l

(n) _ k kit+o) —ai,
Coryom = P k;acard (Q(a )) Q%% i
p—1 o
Now, card (g(ak)) = (n—1)!™!, and for any integer p, Y 2F"% = 2°. This
k=0

proves the following:

Corollary 16 If (aq,...,qy) is such that any starry graph on any of its

heightenings is connected, then either c((ﬁ),___’am =0 or
2 m

cgi),...,am = E H Card(cai)'
=1

(Recall that C,, is the conjugacy class of permutations of type ;.)

In particular, this connectedness condition is satisfied if one of the partitions
is equal to (n—1, 1). Hence this formula generalizes the well-known result that
), n—1,1) = 2(n — 2)! for any odd partition a.

18



5 Orientability and explicit enumeration
5.1 FEvenness function and orientability

Let I' be a graph, V its set of vertices. Let us call evenness function on I' any
mapping ¢ : V — {0,1}. The cardinality of ¢~1(0) is called its weight and
denoted by w(p). An orientation of edges of I is said ¢-compatible if for each
vertex v, p(v) and its outdegree have the same evenness. A graph I' which has
such an orientation is said ¢-orientable.

Proposition 17 A connected graph I is p-orientable if and only if
k() Z w(p) mod 2.

In this case, it has exactly 2°7) p-compatible orientations.

PROOF. First suppose that x(I') = 0, i.e. that ' is a tree. We prove the
result inductively on the number of vertices of I'. The case where I' has only
one vertex (and hence no edge) is obvious: I' is p-orientable if and only if
w(p) = 1, ie if w(p) Z k(') mod 2. In this case, there is only possible
orientation — the void one. Otherwise, [' has a leaf ¢ adjacent to a vertex
a. Let T be the graph obtained by deleting £ in I'. We define the following
evenness function on I":

. ¢(v) ifv#a
v v'_>{g0(a)+g0(€)+1 if v =a.

I" is p-orientable if and only if I is ¢'-orientable, and each compatible orienta-
tion of I' corresponds to exactly one orientation of I'V. Moreover, w(¢") = w(yp)
mod 2, hence by induction I' is ¢-orientable if and only if w(p) =1 mod 2,
and has only one compatible orientation. This proves the case x(I") = 0.

Let us prove the proposition inductively on (I"). Suppose that «(I') > 1,
then T" has a simple cycle (v1,...,vg), with & > 3. Let (v1,v2) be an edge of
the cycle. Let I be obtained from T' by deleting (v, v2). Let us consider the
-compatible orientations of I' in which (v, vy) is oriented from v to vo, and
denote by ¢’ be the evenness function on I'" defined by:

(pl: v —s QD(U) ?fv#vl
o(v) +1 ifv=nu.

Then the restrictions to I'' of these orientations are exactly its ¢'-compatible
orientations. Since (I'') = k(I') — 1, by induction x(I") # w(¢’) mod 2 and
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the number of these orientations is 2°("). Since w(¢y') # w(p) mod 2, there
exists p-compatible orientations of I' in which (vq, v3) is oriented from v; to ve
if and only if k(I') #Z w(yp) mod 2. In this case the number of such orientations
is 2N~ "and T has also 2"~ (-compatible orientations in which (vy,v,) is
oriented from vy to vy, which concludes the proof. Il

5.2 Last enumeration

We use the latter results on starry graphs with a judicious choice of evenness
function: let a be a m-tuple of partitions of n, a* a heightening of @ and ' a
starry graph in G(a*). We define the evenness function ¢ by p(v) =0 if v is a
row vertex taken from a heightened hook and ¢(v) =1 otherwise We denote
by (® the restriction of ¢ to the connected component I'(®) of T'.

Proposition 18 I is totally even if and only if it is p-orientable.

PROOF. A starry graph I' is totally even if and only if, for all connected
component I'® ¢(I'®) = 0 mod 2, and it is y-orientable if and only if, for
all T, k(I'®) £ w(p®) mod 2. But w(©) is by definition the number of
rows of the heightened hook that belong to the c-th component, i.e. h(I'®).
Since £(T'(®)) = k(I'®) — 1 + h(I'?), this ends the proof. O

The set of @-compatible orientations of graphs in G(a*) is denoted by G(ak).
We can immediately derive the following equality from Lemma 14 and Propo-

sitions 17 and 18:
> 280 = card <§(ak)) .
re&(ak)
Hence Theorem 15 becomes:

Theorem 19

R )

21 kel,

So we have reduced the problem to counting the elements of G (a¥). Let us
now partition G(a*) through the following criteria: the partition i composed
of the outdegrees of the star vertices, and the map v that associates to each
row vertex c; its outdegree 1);;. We consider [i as a partition because the star
vertices are not labelled, unlike row vertices. Then:

G(a*) = U G(a*

(¥,i1)
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Proposition 20 By construction, 1 and i satisfy the following properties.

e Since p(v) =1 on any star vertex v, the partition i has no even part. Hence
G| > n—1and |i)| =n —1 mod 2. Star vertices with outdegree 1 are said
simple, the others, i.e. those whose outdegree is at least 3, are said complex.

e For alli € [1,m], ezxactly ¢; — 1 indices j are such that row vertez (i, 7)
satisfies ¢(i,7) = 1; hence Z%‘ >/V;—1 and Z¢ij =/;—1 mod 2.

Jjz1 jz1
e Fach edge of the graph contributes exactly once to the outdegree of a verter,

hence: ||+ Y > by =m(n—1).

1<i<m j>1

For any ¢ > 1, let m; denote the number of parts of size 2: + 1 in f, and
consider the partition g = 1™2™2 . ; let go = ||, i.e. half the number of
extra outgoing edges of star vertices, and for all i € [1,m], let g; be half the
number of extra outgoing edges of row vertices taken from diagram 7. In other
terms,

il=n—14+2gy and Vie [1,m], Y oy =0 —1+2g;.
jz1

Let us first compute card (Q’ (ak, 9, ,&)) for given v and p. We have to choose
for each row «;; the position of the 1;; outgoing edges. These give raise to

H (aij ) possible choices for each diagram.

J21 \7Yi

We next have to choose which of the other cells are linked to the complex star
vertices and how. Using the notations described in the introduction, this gives

(D (eauin)) (n =1 = 5y, — 1 = 5 hy)
Aut(p)

possible choices, i.e.

(D (e2u+1)) (11 = 291, - -+, " — 201m)
Aut(p) '

Linking the last incoming cells to the simple star vertices, which are not in-
dexed, yields no further choice, so it remains only to link the outgoing cells
to star vertices in such a way that each diagram is adjacent to each star. This
gives (Zj ¢z‘j)! choices for diagram «;.

Hence card (C;(a’“, W), /))) is equal to:

Qij | b (D (e2u+1)) (r — 2g)
11 (¢ij) I (; w”>! Aut(p) '

%, %
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Let us now sum over 9 with a prescribed m-tuple (g1, ..., gm). Since 1;; is
odd if and only if 7 < ¢;, we obtain:

e fi(eo e 3 ()R

i=1 p1+--+pr; =i 2py;) j=i

Summing over (gi,. .., gm) and u leads to card (g(ak)>:

m k4= s
Z P (I‘—Qg) H (gz —1 + 2gz)' Z < ! ) H < K )) .
g0t Tom=g i=1 prt-Fpe =g \2Pt:) =i \2Pj +1

Following Theorem 19, we now have to sum over k, but the identity

k;=0 2p£¢ 2péi +1 ’

yields the following expression for C(Ji),...,am, which is equivalent to Theorem 1:
nm—l
Z P 9o (I‘ - Qg)

29
Z1.--2Zm 2 gottgm=g

1 ((z,-+2g,-—1)! ) f‘[ (2;1'_1 1))

i=1 p1+-+pe, =9 j=1

O

6 Asymptotic results

Formula (1) allows to catch non trivial asymptotic results at fixed genus. We
shall here consider two different limits, both with the weight n of involved
partitions going to infinity.

6.1 Large number of identical factors

First we let m go to infinity together with n, with identical factors. The
simpler particular case is that of transpositions: let 7= 1""2 2 and o; =T
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for1 <i<m. Then m=n—1+2g and

n—2+2
Cgtlrz 1429 = z 929 ng(l,...,l)
_opnTt 1 n—1+2¢g () +2g
2% ;;g Aut(p) (E(,u) + 2¢g ) <2u1 +1,..., 20 + 1)
nv29 9 (p —1+2g 1 L+ 2g
T 2% §)< l+2g ) uzl_g Aut(,u)<2,u1+1,...,2,ug+1>’
Lp)=t

so that cg?,?_prgg is a polynomial of degree n — 2 + 5¢ in n. Remark the sur-
prising fact that the coefficient of (”Z;“;ﬂ is the number of set partitions of
{1,...,£+2g} into £ subsets of cardinality odd and at least three. It would be
interesting to have a combinatorial interpretation of this fact. Observe that
this cancellation—free result could have been obtained after some algebra from

those of [8,22], that give the following formulation:

| R

Remark that to compute large exact values, an efficient approach is to de-
termine the g coefficients of the polynomial using the g first evaluations of
Goulden’s formula (5), and then to use our expression.

Asymptotically, the dominant contribution is clearly obtained from our ex-
pression for p = 19, so that the number of factorizations of genus g into
m = n — 1 4+ 2¢ transpositions is estimated by

n—2+5¢g m—1+3g

(n) n

C, ~ - ( ) m
=129 ) oo 249 g' ’

or equivalently cy. —_
™ S0 249 g'

More generally, let us consider factorizations of genus g in m factors of type
1P, where o = 22 .. . k% is a partition of an integer ny without trivial parts,
with length ¢ and rank r. The relation mr = ny +p — 1+ 2g gives the number
of fix points p = mr —ng+ 1 — 2¢, so that such factorizations exist as soon as
ny + 2g —1
> f

Then, since Sy, (1Pa) = Sy, (@),

m—1 _ |m m
(notp) _ " (p+L—1)! (26:)
c = Poo(r —2g) |[(£+p)"5y,()
el = T Gl Aui(a) 2 I 9
where r—2g = (r—2¢i, . ..,7—2¢m). Summands corresponding to compositions
(91, -+, 9m) with same underlying partitions v are equal, and the factors of
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the product only contribute for g; > 0. Hence:

C(n0+p) _ n™ 1 (p + 40— 1)|m
(1pa)m 229 (p! Aut(a))™

{(90%9 <£$)> (m ,li(.y.) )Pgo (r —2v) au)(é +p)*98,.(a)

v=1"1...g"9

where r — 2v is the m-uple (r — 2v1,...,7 — 2vgy, 7, ..., 7).

Let us first consider P, (r —2v). For m going to infinity, the dominating term
is the term of degree 3go of D(e390)/go!:

m — £(v) 39 (mr)390
R

390 390

Indeed it is the contribution of largest degree in m among a finite number of
terms.

In the summation at fixed g¢q, the product contributes with a polynomial in
p whose degree is 2(g — go) i.e. does not depend on v. Hence the largest
contribution is determined by the degree of (Z"Z)) and given by v = 1979,
Therefore, since n ~ p ~ mr, we obtain the following equivalent:

" mi=1 (g 1)Im mIt (mr)390
cg13:)€r)b ~ L 2 ( )m 1 %pz‘“& ()
mp—oo 22 Aut(a)™ £ il 69!
~ ()™t (£-nm Si(a)”
m,p—>00 Aut(a)m gotgr=g 791 49 690 go! 91!'

This yields Corollary 2. Observe that Si(a) = §3;(a; — 1)(; — 2), so the
constant c(g,a) can also be expressed as:

1 1 ¢

ﬁ Z Z(az—l)(aZ—Q)

I g4
go+91=9 9 go: 91+ i

The special cases are obtained as follows: for involutions with & cycles, we
have a = 2%, r =4 =k, p=k(m —2)+1—2¢g, and S;(a) = 0; thus we obtain:

(2k-+p) (km)km—1+3g

c(1p2k)m m:oo km249 g'

For k-cycles, the result is straightforward. For instance, in the particular case

of 3-cycles, we have o = 3, r = 2, and £ = 1, hence we obtain more precisely:

(34p) (Qm)m—l—i—Sg 9 1 (Qm)m—l—l—Sg

C ™ ~ ~
W™ mooo 249 L= gol(g — go)! moee 129!
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6.2 Large factors

A second kind of limit was suggested to us by Dimitri Zvonkine: we fix m
and let non trivial parts go to infinity homothetically. In order to do that,
let us choose our m original partitions a; = 1%1 2%:2 k%t with respective
weights n;. We shall denote by x - o; the partition z%:! ... (kz)** and consider
the number of factorizations of genus g in permutations of respective reduced
cycle type x - aq,...,% - oy, when x goes to infinity. According to the genus
relation, these permutations must have additional fix points so that the total
number n of elements on which they act satisfies the equality:

m
n =Y r(z-o)+1-2g,
i1

where 7(z - ;) = zn; — ¢;. Hence, if we denote ny = ny + --- + n,, and
by =41+ -+ £, n must satisfy:

n = axng— ¥y +1—2g.

Let us first consider the behaviour of polynomials Sy(z - ) for any given
partition 5 and integer g: fix points of x - 5 do not interfere, so that:

Sy(z-B) = 2 ﬁi< “Ps ) ~ 2% 5,(8),
pittpe=g j=1 zf; \2p; +1) @0

where

sq(B) = Z H

pitTm=g o (2P DY

Now turn to Py, (r — 2g): since, for any i € [1,m], r(z - a;) ~ zn;, the contri-
bution is again dominated by the largest degree term D(ezs)/go!. Thus:

0! Pulr=2) v (Dlesn)) (@m,....omn)

LY. €0 (xny, ..., z0p)
m:oo x3go €390 (nl, P nm)

Finally, for any i € [1, m], denote by p; the number of fix points needed for «;.
Then p; =n — zn; ~ x(ng — n;), and

(Uz-c) +2g: = 1) (pi+ 4+ 29 —1)! it
Aut(z - o) B pi! Aut(;) z—oo Aut(oy)
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Hence:

2
2w
nm_1 T Q1,3 Om
5 ti+29i—1
N Z 2°9° egg9 (TLI,; M) ﬁ [2(ng — m) " 2% Sg: (i)
wi}oogo—{—---—{—gm:g 90- i=1 Aut(az)

This yields Corollary 3, since the dominating term is obtained for gy = O:

) N (7?,6”—1 Z ﬁ (7’),0 - ni)€¢+2!h‘*1 sgi(Oéi)) . plotig—1

Tl Om g y00 229 g1t-+tgm=g i=1 Aut(ai)

A First values

First values of the polynomials S, (i.e. for small g):

S()($1, ce ,.Ig) = 1,

1 V4
Si(zy,...,z) = 30 Z(xi—l)Q,
]
1 ¢ 1
So(x1,. . 20) = &l S (wi—1)s + 30?2 > (wi— 1)z — 1),
] (39 1<i<j<e
First values of P,:
PQ = ]_,
Pl = D(€3) = Z Lj Ly Tig,
11 <12<13

1
Py = Dles) + 579(632),

2
1
= Z PR + §D ( Z xilxizxi:g) )

11 <+ <15 11 <12<13
= Z mil"'xi5+10 Z le"'$j6+3 Z (xi)2$j1"'xj4
11 <--<15 Jj1<-<Jje 1, J1<-<ja
1
+ Z (xil)Z(a:iZ)ijlxj2 + 5 Z ($i1)2($i2)2($i3)2.
11<12, j1<J2 11<i2<13

The next case after Goupil and Schaeffer’s formula, i.e. m = 3, reads:

23 (4 —1)!

Cata a3 — 02g T
12,03 229 zzl—Il Aut(o;)

3
Z ! H(TZ - 291')9042%)5%(0@)'

gotrtga=g 90° i=1
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For g =1, this reduces to:

nzzzl_[l % . (7"17’27'3 + ZZZ(& -+ 1)51((1Z)>

i=1

with 4 =7y + 73 — 1, and 7; = r(@) so that the correction is indeed seen to
be a polynomial of degree 4 in the parts of @;.

For g = 2, we obtain, with ¢; = ry +r3 — 3,

s L) .(1(7"1)2(7“2)2(7’3)2+T1T2T3Z€Z(2)Sl(ai)

7','—2

2

i=1 {

3
+ 3 65”4”51(%)51(%)+Z«e£4>sz<ai>>.

1<i<j<3 i=1
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