A BIJECTION FOR LOOPLESS TRIANGULATIONS OF A POLYGON
WITH INTERIOR POINTS

DOMINIQUE POULALHON AND GILLES SCHAEFFER

ABSTRACT. Loopless triangulations of a polygon with k vertices in k + 2n triangles (with interior
points and possibly multiple edges) were enumerated by Mullin in 1965, using generating functions
and calculations with the quadratic method.

In this article we propose a simple bijective construction of Mullin’s formula. The argument
rests on conjugation of trees, a variation of the cycle lemma designed for planar maps. In the
much easier case of loopless triangulations of the sphere (k = 3), we recover and prove correct an
unpublished construction of the second author.

RESUME. Les triangulations sans boucles d’un polygone & k cotés en k + 2n triangles (avec des
points intérieurs et éventuellement des arétes multiples) ont été énumérées par Mullin en 1965, a
l’aide de séries génératrices et de la méthode quadratique.

Dans cet article, nous proposons une construction bijective simple de la formule de Mullin.
L’argument repose sur la conjugaison d’arbres, une variation sur le lemme cyclique adaptée a
I’énumération des cartes planaires. Dans le cas beaucoup plus facile des triangulations (k = 3),
nous retrouvons et démontrons une construction esquissée par le second auteur.

1. INTRODUCTION

In 1965, R.C. Mullin published the following formula for the number of planar loopless triangu-
lations of a rooted k-gon into k + 2n triangles (see below for precise definitions):
2"F2(2k + 3n — 1)!(2k — 3)!
(n 4+ 112k + 2n)!(k — 2)!2

for all K > 2 and n > 0 (see [Mul65] or [GJ83, p145]), which extends the well-known formula for
triangulations of a k-gon without interior points:

(1) Tin = |Ten

(2k — 4)!

(2) Ti, 1 = |Tel = -1k —2)

for all £ > 3. By duality this formula also accounts for the number of rooted non-separable planar
maps with a root vertex of degree k and k + 2n vertices all of degree 3.

In his work, R.C. Mullin was closely following the seminal steps of W.T. Tutte in his census
papers [Tut62a, Tut62b, Tut63]. In particular Formula (1) extends Tutte’s formula

27+1(3n)!

(3) Th = T35, 9 = (2 + 2)1

for rooted loopless triangulations of the sphere with 2n triangles (or non-separable cubic maps with
2n vertices). The proof itself relies, following Tutte, on a recursive decomposition of triangulations
that yields a recurrence for their number. Encoding the latter into generating functions then allows
for a solution through the quadratic method and a few pages of calculus.

Ever since their discovery, efforts have been made to find derivations reflecting the elegant and
simple product form of this and other formulas of Tutte for planar maps. In particular a construction
based on the conjugation of trees principle was proposed in the second author’s PhD thesis [Sch98§]
for Formula (3) and a few other formulas of Tutte (all, bipartite, non-separable maps). A new
generalization of both Tutte’s formula and a formula of Hurwitz was also proved along these lines
to enumerate planar constellations [BMS00].
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FIGurE 1. A triangulation of an hexagon and its dual

However two parameter formulas for triangulations like (1) seem to resist conjugation of trees.
In this article we introduce a slight variation of the family under consideration, which cardinality
can be easily deduced from Ty o and that appears more suitable for bijective constructions.

In view of this family 7} ,, Mullin’s formula reads

ont2 9k — 2\ (2k + 3n
4 Thn = |Ton| = =——— .
(4) k, k.| 2k+2n( k )(n+1)

The purpose of the present article is to provide a bijective construction of the latter formula. A
main ingredient of our construction is again the conjugation of trees principle, and this confirms the
adequacy of this approach to the bijective enumeration of planar maps.

However the bijection involves two new ingredients with respect to the treatment of Tutte’s
formulas. On the one hand, a special vertex is introduced in the construction, that allows to account
for parameter k of Mullin’s formulas. On the other hand, as opposed to the case of constellations
[BMSO00], the inverse construction does not rely on breadth-first search. Instead, in order to deal
with non-separability, one has to resort on more difficult recursive arguments.

The rest of the article is organized as follows: after we establish Formula (4) for the cardinality of
Tk,n, we exhibit a simple family & ,, of trees (balanced blossom trees), that are clearly enumerated
by the same formula, and we define in a few lines an application ¢ from &}, that we claim onto
Tk,n- Then comes the harder part, as often with bijections, namely the proof for the unbeliever that
the image of the application ¢ is indeed 7y , and that it is one-to-one.

2. THE ENUMERATIVE FORMULA FOR ROOTED LOOPLESS TRIANGULATIONS

2.1. Definitions around planar maps. Let us make more precise the definitions of the objects
under consideration. A (planar) map is a two-cell embedding of a connected planar graph into the
sphere considered up to orientation preserving homeomorphisms of the sphere. Multiple edges are
allowed. The degree of a vertex or a face is the number of (sides of) edges incident to that vertex
or face. The vertex-degree of a face is the number of vertices incident to that face.

A planar map is non-separable if it contains no cut-vertex, that is to say no vertex that can be
cut into two vertices (each taking part of the edges) in a way that the resulting graph would not be
connected anymore.

A map is rooted if one edge is chosen and oriented, which ensures that the considered object
has a trivial automorphism group. The startpoint of the root (edge) and the face on its right hand
are called respectively root vertex and root face. By convention, this face will be chosen to be the
infinite face when representing maps in the plane.

The dual M* of a map M is obtained from M by putting a vertex in each face of M and an
edge of M* across each edge of M. If M is rooted, the root edge of M* is the dual of the root edge
of M, oriented in such a way that the root vertex of M™* is the dual of the root face of M. This
construction is clearly involutive on unrooted maps (see Figure 1).
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2.2. Rooted loopless triangulations. A triangulation is a planar map such that each face has
degree 3. We will only consider loopless triangulations, hence faces are “real” triangles, in the sense
that their vertex-degree is 3.

A loopless triangulation of a rooted k-gon is a planar map such that the root face has vertex-
degree k while all other faces have degree 3. A rooted triangulation of a k-gon is the same thing
except that the root face need not be the distinguished face of degree k. The terminology refers to
the possibility, in order to draw the map in the plane, to take the k-gon as infinite face.

A loopless triangulation of a k-gon has k + 2n triangles for some integer n > —1, and hence
2k + 3n edges and k + n + 1 vertices (k exterior and n + 1 interior ones). Let Ty, be the set of
rooted loopless triangulations of a k-gon into k + 2n triangles. Then

kTkn = 2(2k+3n) T,

as immediately follows upon considering doubly rooted triangulations with one root on the polygon
and the other anywhere: these can be regarded either as rooted loopless triangulations of a k-gon in
which some edge of the k-gon is distinguished (and implicitly oriented in such a way that the k-gon
is the corresponding root face), or as loopless triangulations of a rooted k-gon in which some edge
is distinguished and oriented.

Hence Mullin’s formula becomes

7. _ gnes__ (2k+3n)l(2k — 3)!
o = k (n+ )12k + 2n)!(k — 2)12°

and can be rewritten as previously claimed:

T - 272 2k — 2\ [(2k+ 3n
BT 9kt 2n\ k n+1l )
This formula stands for any ¥ > 2 and any n > —1: it specializes correctly for k > 3, n = —1,
according to Formula 2; as for the degenerate case k = 2, n = —1, which can only be interpreted as
the case of a loop at the special vertex, it boils down to 1.

Observe that T, = n T3 ,_»: it expresses the fact that a map in 73 ,-2 can be regarded as a
rooted loopless triangulation with n triangles among which one is distinguished.

2.3. Dual family. A cubic map is a map with all vertices of degree 3, and a near-cubic map is
a map with all vertices of degree 3, except maybe one. Let C, and Cj,, be respectively the set
of non-separable cubic maps with 2n vertices and the set of non-separable near-cubic maps with a
special vertex of degree k and k + 2n vertices of degree 3. They are respectively the dual sets of 7,
and Tk p-

3. THE CONSTRUCTIVE CENSUS OF TRIANGULATIONS

In this section we construct a set of simple objects counted by T}, and a transformation of these
objects that we claim is a bijection onto T .

Terminology for trees. All the trees we are interested in are planted plane trees. In the context
of planar maps, it is convenient to define a plane tree as a planar map with only one face, although
this is equivalent to classical recursive definitions. Planted means that one vertex of degree 1 is
distinguished and called the root.

We shall consider an enriched terminology for trees, with two kinds of vertices of degree 1, buds
and leaves, three kinds of edges, links, inner edges and stems, and three kinds of vertices of larger
degrees, generic, pathological and special. Buds and leaves are always incident to stems (as opposed
to links or edges) and in pictures, buds are represented by arrows. This terminology reflects the very
different roles played by otherwise similar items and hopefully makes things clearer once accepted...
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(a) Generic vertices (b) Special vertex

FIGURE 2. From trees to blossom trees

3.1. Planted plane trees. The first remark is that the following binomial coefficient, taken from

Formula (4),
Akn=<2k+3n): 1 ( 2k+3n+1 )
’ n+1 2k+3n+1\1,n+1,2k+2n—-1
is the number of planted plane trees with (see also Figure 4.a)

e one special vertex of degree 2k — 2,

e 1 + 1 generic vertices, of degree 4,

e 2k + 2n leaves (including the root) and their 2k + 2n stems,

e and n + 1 inner edges connecting the generic and special vertices.

This is nothing but the classical formula for planted plane trees with given numbers of vertices of
each degree ([GJ83, p113]). Let us call Ay, the family of these trees.

Formula (4) now reads

2 (2k =2
(7) Tk,n — 2k‘+2n 2 ( k ) Ak,n:

and one can recognize in this formula, the appearance of the numbers of leaves, generic vertices and
edges incident to the special vertex.

3.2. Blossom trees. Let proceed with the interpretation of the formula by considering the factor

Bk,n = 2n+1 <2kk_ 2) Ak:,n.

Since a tree A of A, has n + 1 generic vertices of degree 4, the factor 2! can be interpreted as
the number of ways to select two opposite corners on each generic vertex, while the binomial factor
appears as the number of ways to select k — 2 of the 2k — 2 edges incident to the special vertex.

Given such a selection, let us apply the transformation of Figure 2.a to generic vertices and, that of
Figure 2.b to the special vertex. Each generic vertex is expanded into two vertices of degree 4 joined
by a generic link, each carrying a bud. The selected edges on the special vertex are transformed to
make room for a special link and two buds attached to a pathological vertex of degree 4. Observe
that in these constructions buds always immediately precede links in counterclockwise direction
around created vertices.

The set By, of trees that are constructed in this manner from trees of A, is of course of
cardinality By, ,. We call them blossom trees. By construction blossom trees are exactly the planted
plane trees with (see also Figure 3 left, or Figure 4.b)

e one special vertex incident to k — 2 special links and £ edges;

e k — 2 pathological vertices of degree 4, incident to the k — 2 previous links, each carrying
two buds right before the link in counterclockwise order;

e 2n + 2 generic vertices of degree 4, organized in n + 1 pairs connected by generic links, each
vertex carrying one bud right before the link in counterclockwise order;

o 2k + 2n leaves, 2k + 2n — 2 buds, and their 4k + 4n — 2 stems,

e 1 + 1 inner edges connecting some generic, pathological or special vertices.
Formula (4) now reads
2
(8) Tk,n =

—— B
2k +2n M
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F1GURE 3. The partial closure of an unbalanced blossom tree

making it inviting to distinguish two leaves among the 2k + 2n.

3.3. Balanced blossom trees. The partial closure of a blossom tree B consists in the following
greedy procedure (see Figure 3 or Figure 4.d). Start with BO = B,i=1.

(1) Find a bud b; and a leaf ¢; such that, walking from b; to ¢; around the infinite face of ﬁ(i_l)
in counterclockwise direction, no other bud or leaf is met.

(2) Fuse b;, £; and their stems into an edge m; so as to create a bounded face around the
previous walk. In particular this new bounded face contains no bud or leaf.

(3) Call B the resulting map and, if it still contains buds, increment 4 and return to Step (1).

Observe that the latter loop continues until there is no more free bud. The operation in Step (2) is
called the matching of b and ¢, and the resulting edge is called a matching edge.

The result of this partial closure is a planar map B = B2 ith k + 2n vertices of degree
4, one special vertex of degree 2k — 2, and two remaining leaves that we call free in the infinite face.
This map B is independent of the exact order in which buds and leaves have been matched, (exactly
like in a balanced parenthesis word, there is a partial order of inclusion of pairs, and the freedom of
the algorithm lies in ordering incomparable pairs).

A blossom tree is called balanced if its root is one of the two leaves that remain free throughout
partial closure. Let &, be the balanced subset of By, ,. Two blossom trees are called conjugated if
they can be obtained one from another simply by changing the root leaf. The resulting conjugacy
classes of By , are naturally associated with unplanted trees. Matchings between buds and leaves
only depend on the conjugacy class of the blossom tree, hence we can also consider the partial
closure of an unplanted tree.

Now consider a blossom tree B with root leaf r and £ one of the two free leaves of B. Taking now
¢ as root of B, we obtain a balanced blossom tree with a second distinguished leaf r. This yields:

2 Bk,n = (2k + 2’)’L) Ek,n

where Fj, ,, denote the number of balanced blossom trees.
As a consequence, Formula (4) finally reads

Tk,n = Ek,n;
and we are lead to seek a bijection between triangulations and balanced blossom trees.
3.4. Case of T,. A similar (but much simpler) construction provides an interpretation of Tutte’s

enumerative formula for the set 7, of loopless triangulations with n triangles, that can be rewritten
in the following way:

2 1 3n
T, = 2n .
©) " 2n + 2 2n—|—1<n>

1Observe that this relation is the translation for conjugacy classes of trees of the cycle lemma for conjugacy classes
of Lukasiewicz words. This lemma, initially due to Dworetzki and Motzkin, underlies Raney’s combinatorial proof of
the Lagrange inversion formula [Lot97, Chap. 11]. This analogy motivates our choice of terminology.
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(a) A tree in A4 4, in which some (b) the corresponding (balanced)
corners and edges are distinguished, blossom tree,

¢) its partial closure, indicating the d) and the corresponding rooted
g g
two free leaves near-cubic map.

FIGURE 4. An example of complete closure

The coeflicient 2n1+1 (3:) is the number of planted plane ternary trees with n internal nodes, that
is trees with n generic vertices of degree 4, n — 1 inner edges and 2n + 2 stems and leaves (including
the root). The blossom trees obtained from these trees by the transformation of Figure 2.a have 2n
generic vertices, their n links and 2n buds, 2n + 2 leaves, 4n + 2 stems and n — 1 inner edges. Let
B,, be the set of these blossom trees without special vertex. After the partial closure of any of these
trees, two leaves remain unmatched, so the ratio of balanced blossom trees in B Hence

the corresponding subset &, has cardinality

2 1
E, = Con . M _ o,
2n+ 2 2n+1\n

Notations. In the following, £ denotes the set of all balanced blossom trees, and U the set of all
unplanted blossom trees (with or without special vertex). Any tree in U corresponds to one or two
trees in &, depending on its automorphism group.

: 2
n 1S nt2°

3.5. The complete closure. In fact the bijection was almost already completely described. Let
us define the complete closure ¢ as an application defined on the set £: given B a tree of £,
(1) construct the partial closure B of B,
(2) remove all the links and call B the result,
(3) fuse the two remaining stems of B into a root edge oriented away from the root of B,
the resulting rooted planar map is ¢(B). (See Figure 4 for a complete example.)
Our main result, to be proved in the rest of the paper, is the following theorem.
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Theorem 1. The complete closure ¢ is a bijection from the set &, (resp. &) of balanced blossom
trees onto the set Cy,, (resp. Cpn) of (near-)cubic maps and by duality onto the set Ty (resp. Tn)
of triangulations.

The proof is twofold. First we prove that the complete closure of a tree is indeed a non-separable
(near-)cubic map. Then we prove that the application is one-to-one.

4. THE CLOSURE OF A BALANCED BLOSSOM TREE

Let B be a balanced blossom tree of & ,. In this section we prove that the complete closure
©(B) is indeed a non-separable near-cubic map with the expected number of vertices of each kind.

The vertices of degree 4 of B, either generic or pathological, are incident to exactly one link. After
Step (2) of the complete closure, they result in vertices of degree 3. As for the special vertex, it is
incident to k — 2 links and k edges so that it yields a vertex of degree k in ¢(B). The rooted planar
map (B) hence contains a vertex of degree k and k + 2n vertices of degree 3. As a consequence,
¢(B) belongs to Cyp, if and only if it is non-separable, a fact we shall now prove. Similarly, if B
belongs to &,, ¢(B) belongs to C, if and only if it is non-separable.

Observe that, since the matching of buds and leaves only depends on the conjugacy class of a
blossom tree, the non-separability of the complete closure is indeed a property of the underlaying
unplanted tree, and not of the balanced rooting. In the sequel, for convenience’s sake, we consider
an unplanted blossom tree U in U.

A preliminary observation is that any separating vertex of degree 3 is incident to a separating
edge. Tt is thus sufficient to prove on the one hand that ¢(U) has no separating edge (Section 4.1
to 4.4) and on the other hand that the possible special vertex is not separating (Section 4.5).

4.1. A preliminary lemma on the structure of blossom trees. Consider U a blossom tree of
U and e = (v1,v2) an inner edge or a link of A. The decomposition of U at e consists in cutting e in
its middle, so as to create two new leaves #; and /3, attached by two stems e; and ez respectively
to v; and vy. As a result, the tree U yields two subtrees U (e) and Usx(e), respectively containing
vy and ve. A leaf £ of U is said incoming with respect to e if, in the partial closure of U, it is free or
matched to a bud b that does not belong to the same subtree as £ (with respect to €). By extension,
the matching edge (b,£) is also called incoming with respect to e.

The following lemma is immediate upon counting leaves and buds in each subtree and considering
the cyclic orders around v; and vs.

Lemma 1. Let U be a blossom tree and e an inner edge or a link of U.

o If e is an inner edge, then Uj(e) and Us(e) are well formed blossom trees, with two more
leaves than buds (including €1 and £3), and thus at least one incoming leaf each.

e If e is a link between two generic vertices, then Ui(e) and Usz(e) contain two more leaves
than buds (including €1 and €>). Moreover in the partial closure of U, the bud adjacent to
vy in Uy (e) is matched with an incoming leaf of Us(e).

o Ife is a link incident to the special vertex (assumed in Uy (e)), then Uy (e) has four more leaves
than buds and Uz (e) has as many buds as leaves (including €1 and £3). As a consequence, in
the closure of U, the two buds adjacent to vy in Usz(e) are matched to two incoming leaves
of Uy(e), and Ua(e) has at least two incoming leaves.

4.2. The incremental complete closure. Let us now consider an application of the (greedy)
partial closure procedure of Section 3.3 to U, resulting into the map {/ through the sequences b;,
£;, m; and fj(i), for 4 > 1. Given a matching edge m, obtained from (b,£), we define e(m) to be
the unique link incident to the vertex adjacent to b. By construction, for each link e of A there are
exactly two indices j < i such that e(m;) = e(m;) = e. Let us call these indices, the dates of e.
Finally define a planar map U @) by deleting from U( ) every generic link which largest date is less
or equal to i. In other terms, UVis constructed from U~V by adding m; and removing e(m;) if it
is generic and the other matchmg edge m; such that e(m;) = e(m;) satisfies j < i. Let U be the
resulting map.
The following technical lemma precisely describes the evolution of connectedness in U (@)



8 DOMINIQUE POULALHON AND GILLES SCHAEFFER

FIGURE 5. Simultaneous decomposition of U at e and e’

Lemma 2. For all i > 0 the planar map U is connected. Moreover for any link or inner edge e
of U, the graphs induced in U respectively by the vertices of Uy (e) and by the vertices of Us(e) are
connected.

Proof. The lemma is obviously true for the tree U®) = U. Assume now the lemma true for indices
until i — 1 and consider the construction of U® from U™V, Let ¢’ = e(m;) and j be the other
date of €'.

There is a deletion only if €’ is a generic link and j < i. In this case, observe first that, according
to Lemma 1, the matching edge m; connects a vertex of Ui(e') to a vertex of Usz(e') so that by
induction hypothesis U (@) remains connected upon deleting e'.

Then consider another link or inner edge e and the decompositions of U at e and e’: performing
both decompositions yields three subtrees, U, U, and U, where the indices refer to incidences
with e and €' (see also Figure 5). In U ('.71), the graphs induced respectively by U, and U, are
connected by induction hypothesis. The deletion of €' does not touch the graph induced by U, so
that we only have to deal with the graph induced by U, U U,e. Since €' is generic, one of m; or
my; is incident to the endpoint of €' in U, and has its other endpoint (the leaf) in U,r. Since U,
is connected, the deletion of €' does not disconnect Uy U Up,r.

O

4.3. Separating edges and generic links.
Lemma 3. The only separating edges in U are inner edges of U that separate the two free leaves.

Proof. Consider a matching edge m, and let ¢ = e(m) and m' be the second matching edge with
e(m') = e. Then Lemma 1 asserts that m and m' are incoming with respect to e. In view of
Lemma 2, their respective endpoints on both sides of e can be connected to construct a cycle
containing m and m'. Moreover, if e is special, the same argument provides a cycle through e and,
for instance, m.

Let now e be an inner edge of A that is still a separating edge in U. Consider the decomposition
of U at e. No matching edge connects a vertex of Ui(e) to a vertex of Us(e) otherwise e would
not be separating (Lemma 2). In view of Lemma 1, this implies that there is one free leaf in both
subtrees. Step (3) of the complete closure, fusing these two free leaves to form the root, will thus

provide a cycle containing e and the root.
d

4.4. Matching edges are not separating in ¢(U).
Lemma 4. The only separating edges in U are inner edges of U that separate the two free leaves.

Proof. If U has no special vertex, U = U, hence this lemma is equivalent to Lemma 3.

Now suppose that U has a special vertex with degree 2k — 2. In order to show that the removal of
the special links from U does not make any matching edge separating, it is sufficient to prove that
any two faces that are merged by removing some special links have no common matching edge.

Let us consider the 2k — 2 subtrees of U at the special vertex v, more precisely defined as the
subtrees not containing v in the decomposition of U at any edge or link incident to v. We call such
a subtree generic or pathological depending on whether it is attached to the special vertex by an
inner edge or by a link. At any step ¢ of the construction of Section 4.2, Lemma 2 ensures that these
subtrees induce connected subgraphs of U (i), and that, according to Lemma 1, any of them has at
least one incoming leaf.

Given a particular ordering of the matching in the application of the partial closure procedure,
let us consider the time j at which, for the first time, an incoming edge of a subtree at v is matched.
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FIGURE 6

This is also the first time that a matching edge is created between two subtrees. Let us now consider
an ordering such that j is as large as possible. In this case, at time j, all the matchings that are
internal to each subtree have been performed. More precisely, with the notation of Section 4.2, the
ordering is such that, for any ¢ < j, b; and ¢; belong to the same generic or pathological subtree,
and, for any i > j, b; and ¢; belong to different subtrees.

Perform then the construction until Step j —1. As already observed, at that moment the subtrees
are two by two independent. Moreover, at each pathological vertex, the bud that precedes the link
in counterclockwise order is in position to be matched with the first incoming leaf of the next subtree
(in counterclockwise order around the special vertex). Every such matching creates a bounded face,
which cannot be affected by any further step since it does not contain any generic link.

Once these k — 2 matchings are performed, only two kinds of buds can be matched in such a way
that the created bounded face contains a special link: the first bud (if any) of a generic subtree that
precedes a pathological one, or the second bud of a pathological vertex that precedes a sequence of
subtrees with no more unmatched leaf (or bud). These matchings also create faces that will not be
affected by any further step.

As illustrated by Figure 6 there are three different ways for a group of faces to be merged into
one face by the removal of special links. In each case, we need to argue that, as a whole, these faces
do not complete a turn around v.

e In the first case (Figure 6 left), a (non-empty) sequence of bounded faces merge with the
infinite face of U. In this case the bounded faces cannot perform a complete turn around
v. Hence two non successive faces in the sequence share no edge, and two successive faces
share a special link. In any case they do not have a matching or inner edge in common. As
for the infinite face, in view of the disposition of buds, it may only be incident twice to the
inner edge marked e in the figure. In this case the shaded subtree below e contains exactly
one of the two free leaves so that e separates the two leaves.

e The second case involves two generic subtrees and a (non-empty) sequence of pathological
ones. Since k > 2, the two generic subtrees are different, and hence again the complete turn
is excluded.

e In the third case, there exists a pathological vertex p; such that its second bud is matched
with a leaf that belongs to a pathological subtree attached on a pathological vertex ps. It
implies that the sequence S of subtrees that follow p; and precede p, around the special
vertex has only one free leaf. In other words, this sequence contains exactly one more generic
subtree than pathological ones. Hence the number of involved pathological subtrees is at
least the number of involved generic subtrees minus one, so that at least one generic subtree
is not involved, hence p; is different from any involved pathological vertex that follows S.
Hence the complete turn is not performed.

We conclude that matching edges are not separating edges and that all separating inner edges still
separate the two leaves. Since all links have been removed, the lemma is proved. d
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FIGURE 7

This lemma proves that U can be described as an alternating sequence Uy, es, U, . .., €y, U, of
submaps U; and edges e; (with p possibly equal to 1), such that U; and Up carry one free leaf each
(see Figure 7), and no U; contains a separating edge.

As a consequence, p(U) has no separating edge.

4.5. The special vertex. Suppose that U has a special vertex. The following lemma concludes
the proof that ¢(U) is non-separable.

Lemma 5. The special vertex v is not a separating vertex of @(U).

Proof. Assume that the special vertex v is separating in U (as given by Step (2) of complete closure)
and consider a decomposition of U into two components U; and U, connected only at v. This
decomposition induces a decomposition of {J: special links connect v to a vertex of U; or Uy and do
not interfere; once special links are replaced, generic links appear inside bounded faces and hence
inside the two components.

In turn the decomposition of {7 at v induces a decomposition of the tree U into two sequences
of subtrees rooted at v such that there is no matching edge from one to the other. Since Lemma 1
provides in particular an incoming leaf on the first tree of both these sequences, these leaves must
be the two free leaves of U.

Returning to U, we conclude that U; and Usy each contain one free leaf. Hence v is not a cut
vertex anymore after Step (3) of the complete closure. d

5. THE INVERSE CONSTRUCTION

In this section we define by induction on the number of edges a construction which is inverse to
the complete closure.

Let us first consider the minimal cases of non-separable (near-)cubic maps with at most two
vertices. The case k = 2, n = —1 is the degenerate case of the loop at a special vertex and
corresponds to the tree with one special vertex of degree 2. The case n = 1, without special vertex,
is the case of a bundle of three edges between two vertices and corresponds to the unique balanced
blossom tree with two generic vertices. The case k = 3, n = —1 is the case of a bundle of three edges
between two vertices, one of them being special; the two different rootings of this map correspond
to the two balanced rootings of the unique blossom tree with a special vertex of degree 3 and one
single pathological vertex.

Now suppose that C' is a rooted non-separable (near-)cubic map with at least three vertices among
which, possibly, a special vertex of any degree, and the others of degree 3. Let the root edge be
oriented from a vertex v; to a vertex v,, and define C' by cutting the root edge into two stems with
leaves f; and f2. If there exists B € £ such that C' = ¢(B), then B is necessarily planted on leaf
f1, and reconstructing B consists in recovering links between vertices: these links determine which
vertices are generic or pathological, and which stems carry leaves or buds.

In the following, for any map C, we determine at least one link between two vertices that exists
necessarily in any tree U in U such that U = C, and we construct two strict submaps of C' in which
links induce links in C. Since such a construction is well defined for any map C, it proves that pis
one-to-one.

The construction depends on whether C' is separable:

5.1. The map C contains a separating vertex other than v; or v,. Since C' is non-separable,
the map Cis organized as a chain of non-separable components between v; and vy. In the rest of
this section, separating vertices are implicitly supposed to be distinct from v; and vy and two cases
are distinguished.

— First case: the map C has a separating vertex v that is not the special vertex (see Figure 8).
In this case v has degree 3 and, as already argued, there is a separating edge e. In view of the
discussion of the previous section, if there is a tree U in i such that U = C' then e is an inner edge
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FI1GURE 9. Induction with separating special vertex.

of U, and in the decomposition of U at e, the leaves f1, £; and fy, €5 are the free leaves of U (e)
and Uz (e), (so that their partial closure are independent).

Now there is a unique way to recover such a structure. First cut e in C' into two stems e; and e,
with leaves #; and £,. The resulting two components of C' allow to recover U; and U, by induction
hypothesis and the unique tree U is obtained by fusing back e; and es between U; and Us,.

— Second case: the special vertex v is the only separating vertex of C' (Figure 9). Let Cy and C,
be the two non-separable components of C' at v. As was already analyzed in Section 4.5, if there is a
tree U such that U = C, then the links or edges incident to v in U are arranged in counterclockwise
order into two successive sequences e, ..., e, with endpoints in Cj and €}, . .. ,eﬁl with endpoints in
Cs, with p and ¢ greater or equal to two in order to avoid separating edges.

Let us prove that the subtree S of U attached to e; (resp. to e}) is reduced to a special link
carrying a pathological vertex. By construction of the two sequences, the incoming leaves of S are
free, so that there is at most one such leaf. In view of Lemma 1, there is exactly one. Now if e;
is an inner edge, Lemma 1 implies that there is no matching edge leaving this subtree, and e; is
a separating edge of C. Therefore e; is a special link, which by definition carries a pathological
vertex. Finally the subtree cannot be bigger otherwise the pathological vertex would carry an edge
and the latter would be separating in C.

Hence the tree U is decomposed at v into a special link e; that carries a pathological vertex,
followed by the tree U; formed of es,...,e, and their subtrees, by a special link e{ that carries a
pathological vertex, and by the tree Us formed of e}, .. .,e;, and their subtrees. Moreover U; and
U, are well formed blossom trees whose free leaves are respectively matched by the buds of the two
pathological vertices.

Now there is a unique way to recover such a structure. First v; and vy are identified as pathological
vertices (since they carry the free leaves). Then, deleting v; and vs from their respective non-
separable component yields two maps C; and C5 from which U; and Us can be recovered by induction
hypothesis. The unique tree U is obtained upon recreating the cyclic order around v.

5.2. The map C has no other separating vertex than v; and v,. A first easy case is when the
special vertex v carries one of the two free leaves of C, say fi so that v = v;. Then the analysis is
exactly the same as the analysis of the case where v is the only separating vertex (second case of the
previous section), with the second sequence reduced to a single leaf: vy is found to be pathological
and upon deleting v2 and f; the induction hypothesis applies to provide a unique reconstruction.

The main case is when the special vertex v is neither v; nor vs. Assume, without loss of generality,
that v is not on the counterclockwise path around the infinite face from vy to vo. (Even if v is incident
to the infinite face, it cannot appear in both path from v; to v and back from vs to v1.) Let us
discuss the constraints on a tree U such that U = C.

Observe first that v; cannot be a pathological vertex: even if the special vertex v is incident to
the infinite face, this immediately yields a contradiction in the way its buds are to be matched.
Hence v; is a generic vertex of U. Let F' be the bounded face incident to vy in C. A generic link e
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FIGURE 11. Two typical dispositions in the main case of recursion.

joins vy to another vertex vz in this face F'. Let us consider the subtrees attached to v; and w3 in
F (Figure 10).

Since vertex vq is adjacent to a free leaf f; and a bud, it carries a unique (possibly empty) subtree,
which precedes f; in counterclockwise order. Call this subtree S;. According to Lemma 1 and in
view of the free leaf f;, the subtree S; has only one incoming leaf. The latter is therefore matched
by the bud of v and this matching edge is incident to both F' and the infinite face. Moreover there
is no other edge incident to F' on the path from v, to vs along the infinite face in counterclockwise
direction. Indeed this could only be an inner edge (for A to be connected) and Lemma 1 would then
impose an incoming leaf in the infinite face between v, and v;.

Consider next the decomposition of U at e and take U (e) to contain v;. In view of its previous
definition, the tree S; is obtained from Uj (e) upon deleting vy and it is a balanced blossom tree. On
the other hand, define a tree Sy from Us(e) as follows. First delete the bud and the stem inherited
from e that are incident to vz, so that the latter vertex has degree 2. Then smooth this vertex out
so as to fuse its two incident edges into one single edge ¢’ (which may be a stem). The result is a
tree Us(e) whose closure leaves €’ in the infinite face, and whose free leaves are fo and the leaf ¢;
matched with the bud of v; in U.

Finally there is a unique way to recover the structure (Figure 11). First, taking F' to be the
bounded face incident to v, we dispose of a characterization of vertex v as the first vertex incident
to F on the path from v, to v; around the infinite face in counterclockwise direction. In particular
if vy is incident to F' then vs = vy (as illustrated on the right hand side of Figure 10). Second, the
complete closure of the trees S; and S are uniquely obtained as follows. Delete f; and its stem
and cut v; o as to create two new leaves £; (for the bud of v1) and ¢ (for the subtree). Detach the
edge that follows vs along the infinite face from vy to v1: this edge is also incident to F' and this
operation creates a leaf £3 in the same component as £». Call this component Ci. The vertex vs
remains of degree 2 and can be smoothed so as to fuse its two incident edges into one single edge
e that belongs to a second component, Cs, that also contains ¢ and v,. In view of the previous
analysis, the two maps C; and C, are the images of S; and S, by complete closure (upon opening
the roots). By induction hypothesis, there exists exactly one couple of such trees. From S; and S,
the tree U is readily recovered and the proof is complete.
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