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Abstract

Loopless triangulations of a polygon with k vertices in k + 2n triangles (with inte-
rior points and possibly multiple edges) were enumerated by Mullin in 1965, using
generating functions and calculations with the quadratic method.

In this article we propose a simple bijective interpretation of Mullin’s formula. The
argument rests on the method of conjugacy classes of trees, a variation of the cycle
lemma designed for planar maps. In the much easier case of loopless triangulations
of the sphere (k = 3), we recover and prove correct an unpublished construction of
the second author.
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1 Introduction

In 1965, R.C. Mullin published the following formula for the number 7y, of
planar loopless triangulations of a rooted k-gon into k+2n triangles (see below
for precise definitions):

. P22k +3n—1)!(2k — 3)!

Ten = (n + 1)1(2k + 2n)!(k — 2)!2 (1)
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for all £ > 2 and n > 0 (see [1] or [2, p. 145]), which extends the well-known

formula for the number of triangulations of a k-gon without interior points:
(2k — 4)!

(k — 1)k —2)!

Tp_, = (2)

for all £ > 3. By duality this formula also accounts for the number of rooted
non-separable planar maps with a root vertex of degree k£ and k + 2n vertices
of degree three.

In his work, R.C. Mullin was closely following the seminal steps of W.T. Tutte
in his census papers [3-5]. In particular Formula (1) extends Tutte’s formula

2"t (3n)!

In = dsp = n!(2n + 2)!

(3)

for the number 7,, of rooted loopless triangulations of the sphere with 2n
triangles (or non-separable cubic maps with 2n vertices). The proof itself relies,
following Tutte, on a recursive decomposition of triangulations that yields a
recurrence for their number. Encoding the latter into generating functions
then allows for a solution through the quadratic method and a few pages of
calculus.

Ever since their discovery, efforts have been made to find derivations reflect-
ing the elegant and simple product form of this and other formulas of Tutte
for planar maps. The first bijective results were for general planar maps [6].
A simpler and more versatile construction, the conjugation of trees, was pro-
posed in the second author’s PhD thesis [7,8]. It led to the proof of a new
formula for planar constellations, generalizing results of Tutte and Hurwitz
[9]. This method was recently further extended to include refined enumera-
tions according to degree distributions [10-12].

However these extensions do not apply to families of loopless or non-separable
maps. The first bijective results in this context were recursive constructions
for the family of all non-separable maps [13,14]. A simpler direct bijection
was later given for this family using an adaptation of the conjugation of tree
principle [8]. As for loopless triangulations, a similar construction was outlined
in [8] for the case k = 3, that is Formula (3), but it could not be extended to
fit the two parameter formula (1) for 7},

In this article we introduce a slight variation of the family of triangulations
under consideration, the cardinality of which is easily deduced from Ty . In
view of this new family 7y ,, which is defined below, Mullin’s formula reads

2 (9 — 2\ [2k + 3n
T,, = = = . 4
kn = |Tin| 2k+2n( k )(n—i—l) (4)



The purpose of the present article is to provide a bijective construction of
Formula (4). A main ingredient in our construction is again the conjugation
of trees principle, and this confirms the adequacy of this approach to the
bijective enumeration of planar maps. However the bijection involves two new
ingredients with respect to the treatment of Tutte’s formulas. On the one hand,
a special vertex is introduced in the construction, that allows to account for
parameter k of Mullin’s formulas. On the other hand, as opposed to the case
of constellations [9], the inverse construction does not rely on breadth-first
search. Instead, in order to deal with non-separability, one has to resort to
more difficult recursive arguments.

The triangulations we consider here have no loop but may have multiple edges.
Although the number of triangulations without multiple edges has a simple
expression, it is not easily given by restriction of the present construction. The
conjugation of tree principle can be applied as well to triangulations without
multiple edge, but involves yet another kind of inverse construction, so as to
take into account 3-connectivity [15].

The rest of the article is organized as follows: after Formula (4) for the cardi-
nality of 7;, has been proved equivalent to Formula (1) for 7}, we exhibit a
simple family &, of trees (balanced blossom trees) that are clearly enumer-
ated by Formula (1), and we define a mapping ¢ from & ,, that we claim onto
Tien (Sections 2 and 3). This first part is rather simple and hopefully gives
a convincing bijective interpretation of Formula (1). For the yet unconvinced
and conscientious reader comes then the hardest part, as often with bijections,
namely the proof that the image of the mapping ¢ is indeed 7, and that it
is one-to-one (Section 4).

It is worth indicating here that the proof was considerably simplified with
respect to a preliminary version that was presented at the International Con-
ference on Formal Power Series and Algebraic Combinatorics, in Melbourne,
july 2002.

2 The enumerative formula for rooted loopless triangulations

2.1 Definitions on planar maps

Let us make more precise the definitions of the objects under consideration.
A (planar) map is a two-cell embedding of a connected planar graph into the
oriented sphere considered up to orientation preserving homeomorphisms of
the sphere. Multiple edges are allowed. The degree of a vertex or a face is the
number of (sides of) edges incident to that vertex or face. A face is a k-gon



Fig. 1. A triangulation of an hexagon with a double edge; another one and its dual.

if it has degree k and it is incident to k distinct vertices. A cut-vertex is a
vertex whose deletion disconnects the map. A planar map is non-separable if
it contains no cut-vertex and no loop.

A map is rooted if one edge, called the root, is chosen and oriented. The
startpoint of the root and the face on its right hand side are called respectively
root vertex and root face. Unless explicitely mentioned, the root face is taken
as infinite face when representing maps in the plane. The dual M* of a map
M is obtained from M by putting a vertex in each face of M and an edge of
M* across each edge of M. If M is rooted, the root edge of M* is the dual of
the root edge of M, oriented in such a way that the root vertex of M* is the
dual of the root face of M. This construction is clearly involutive on unrooted
maps (see Figure 1).

2.2 Rooted triangulations

A triangulation is a planar map such that each face has degree three. We will
only consider loopless triangulations, hence faces are “real” triangles, in the
sense that they are 3-gons. However they are only “topological” triangles, in
the sense that multiple edges are allowed. In particular these triangulations
do not necessarily admit a representation with straight edges.

A triangulation of a rooted k-gon is a planar map without loops such that
the root face is a k-gon while all other faces have degree three. A rooted
triangulation of a k-gon is the same thing except that the distinguished k-gon
need not be the root face. A triangulation of a k-gon has k + 2n triangles
for some integer n > —1, and hence 2k + 3n edges and k + n + 1 vertices (k
exterior and n + 1 interior ones). Let 7, be the set of rooted triangulations
of a k-gon into k + 2n triangles, and let T}, = |7k |- Then

ETon = 202k +30) T3,

as immediately follows upon considering doubly rooted triangulations with
one root on the polygon and the other anywhere: these can be viewed either



as rooted loopless triangulations of a k-gon in which an edge of the k-gon is
distinguished (and oriented so that the k-gon is on its right hand side), or as
loopless triangulations of a rooted k-gon in which an edge is distinguished and
oriented.

Hence Mullin’s formula (Formula (1)) becomes

(2k + 3n)!1(2k — 3)!

Tip = 2"
o k(n+ )2k + 2n)!(k — 2)12°

and can be rewritten as previously claimed:

o 2" (2k =2\ (2% +3n

fon = 2k+2n( k )( n+1 )

This formula holds for any & > 2 and any n > —1: it specializes correctly
for k > 3, n = —1, according to Formula (2); the degenerate case k = 2
and n = —1 yields 75 _; = 1 and accounts for a special vertex with a sin-
gle loop. Observe also that 2n7T, = T3,_o: indeed a map in 73,_o can be

viewed as a rooted loopless triangulation with 2n triangles among which one
is distinguished (the 3-gon).

2.8  Dual family

A cubic map is a map with all vertices of degree three, and a near-cubic map
is a map with all vertices of degree three, except maybe one. Let C,, and Cy,,
be respectively the set of non-separable cubic maps with 2n vertices and the
set, of non-separable near-cubic maps with a special vertex of degree k£ and
k + 2n vertices of degree three. They are respectively the dual sets of 7, and
Tk, since a loop is mapped by duality onto a separating edge.

3 The constructive census of triangulations

In this section we construct a set of simple objects counted by T}, and a
transformation of these objects that we claim is a bijection onto 7y ,.

3.1 Terminology for trees

All the trees we are interested in are planted plane trees. In the context of
planar maps, it is convenient to define a plane tree as a planar map with



Fig. 2. A plane tree of Ajz ;.

only one face. This is equivalent to the classical recursive definitions. Planted
means that one vertex of degree one is distinguished and called the root.

We shall consider an enriched terminology for trees, with two kinds of ver-
tices of degree one (buds and leaves), three kinds of vertices of larger degree
(generic, pathological and special), and four kinds of edges (generic links, spe-
cial links, inner edges and stems). Buds and leaves shall always be incident to
stems (as opposed to links or inner edges). In pictures, buds are represented by
arrows, links by dashed lines, and generic and pathological vertices by circles
and the special vertex by a square. The root of a planted tree shall always be
a leaf (that is, not a bud). This terminology reflects the very different roles
played in our contructions by otherwise similar items.

3.2 Planted plane trees

The first remark is that the following binomial coefficient, taken from For-
mula (4),

A 2k +3n\ 1 2k +3n+1
P\ n+1 ) 2k+3n+1 1,n+1,2k+2n -1

is the number of planted plane trees with (see also Figure 2)

e one special vertex of degree 2k — 2,

e n + 1 generic vertices, of degree four,

e 2k + 2n leaves (including the root) and their 2k + 2n stems,

e and n + 1 inner edges connecting the generic and special vertices.

This is nothing but the classical formula for planted plane trees with given
numbers of vertices of each degree [2, p. 113]. Let us call the family of these
trees Ay p.

Formula (4) now reads

2 2k — 2
Ty = ——— 201 A 5
T 2k + 2n ( k ) & )
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(a) Generic vertices. (b) Special vertex, with k = 2.

Fig. 3. From trees to blossom trees.

Observe in this formula the numbers of leaves (2k + 2n), of generic vertices
(n+ 1), and of edges incident to the special vertex (2k — 2).

3.3 Blossom trees

The interpretation of the formula continues with the factor

2k — 2
Brn = 2"“( L >A1c,n.

Since a tree A of Ay, has n+1 generic vertices of degree four, the factor 2"+
can be interpreted as the number of ways to select two opposite corners on
each generic vertex, while the binomial factor appears as the number of ways
to select k — 2 of the 2k — 2 edges incident to the special vertex.

Given such a selection, let us apply the transformation of Figure 3.(a) to
generic vertices and, that of Figure 3.(b) to the special vertex. Each generic
vertex is expanded into two generic vertices of degree four joined by a generic
link, each one carrying a bud. Each selected edge around the special vertex is
transformed to make room for a special link and two buds attached to a patho-
logical vertex of degree four. In these constructions, buds always immediately
precede links in counterclockwise direction around new vertices.

The set By, of trees that are constructed in this manner from trees of Ay,
is of course of cardinality By ,. We call them blossom trees. By construction
blossom trees are exactly the planted plane trees with (see also Figure 4)

e one special vertex incident to £ — 2 special links and & edges;

e k — 2 pathological vertices of degree four, incident to the k£ — 2 special links,
and each carrying two buds right before the link in counterclockwise order;

e 2n+ 2 generic vertices of degree four, organized in n+ 1 pairs connected by
generic links, each vertex carrying one bud right before the link in counter-
clockwise order;

e 2k + 2n leaves, 2k 4+ 2n — 2 buds, and their 4k + 4n — 2 stems;

e n + 1 inner edges connecting some generic, pathological or special vertices.



Fig. 4. A selection on the tree of Figure 2, and the resulting blossom tree of B3 ;.

Formula (4) now reads

2

= ——— B
2k + 2n k. (6)

making it inviting to distinguish two leaves among the 2k + 2n.

Tk,n

3.4 Balanced blossom trees

The partial closure of a blossom tree B consists in the following greedy pro-
cedure (see Figure 5). Start with B®) = B, i = 1.

(1) Find a bud b; and a leaf ¢; such that, walking from b; to ¢; around the
infinite face of B~Y in counterclockwise direction, no other bud or leaf
is met.

(2) Fuse b;, ¢; and their stems into an edge m; so as to create a bounded
face f; enclosing the previous walk. In particular this new bounded face
fi contains no bud or leaf.

(3) Call the resulting map B® and, if it still contains buds, increment i and
return to Step (1).

Observe that the latter loop continues until there is no more free bud. The
operation in Step (2) is called the matching of b and ¢, and the resulting edge
is called a matching edge.

The result of this partial closure is a planar map B = B®+2"~2) with k + 2n
vertices of degree four, one special vertex of degree 2k — 2, and two remaining
leaves that we call free in the infinite face. This map B is independent of the
exact order in which buds and leaves have been matched, (exactly like in a
balanced parenthesis word, there is only a partial order of inclusion of pairs,
and a greedy algorithm performing the matching has a freedom in the order
it deals with incomparable pairs).

A blossom tree is called balanced if its root is one of the two leaves that remain
free throughout partial closure. Let & 5, be the subset of balanced trees in B ,.
Two blossom trees are called conjugated if they can be obtained one from
another simply by changing the root leaf. The resulting conjugacy classes of
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Fig. 5. The partial closure of the unbalanced blossom tree of Figure 4.

By, are naturally associated with unplanted trees. Matchings between buds
and leaves only depend on the conjugacy class of the blossom tree, hence we
can also consider the partial closure of an unplanted tree.

Now consider a blossom tree B with root leaf r and let £ be one of the two
leaves of B that remain free throughout partial closure. Taking now ¢ as root of
B, a balanced blossom tree with a secondary distinguished leaf r is obtained.
This yields®:

2 Bk,n = (2k + 2”) Ek,n
where Ej , denote the number of balanced blossom trees. This relation and
Formula (6) allow to rewrite finally Formula (4) as

Tk,n = Elc,na

and we are led to seek a bijection between triangulations and balanced blossom
trees.

3.5 The case of T,

A similar (but much simpler) construction provides an interpretation of Tutte’s
enumerative formula for the set 7, of loopless triangulations with 2n triangles,
that can be rewritten in the following way:

T, = 2 gn ! (3:) (7)

2n+ 2 2n+1

The coefficient ﬁ(?) is the number of planted plane ternary trees with
n internal nodes, that is trees with n generic vertices of degree four, n — 1

inner edges and 2n + 2 stems and leaves (including the root). The blossom

1 Observe that this relation is the translation for conjugacy classes of trees of the
cycle lemma for conjugacy classes of Lukasiewicz words. This lemma, initially due
to Dvoretzki and Motzkin, underlies Raney’s combinatorial proof of the Lagrange
inversion formula [16, Chap. 11]. This analogy motivates our choice of terminology.



Fig. 6. The partial and complete closure of a balanced conjugate of the blossom tree
of Figure 4.

trees obtained from these trees by the transformation of Figure 3.(a) have
2n generic vertices with their n links and 2n buds, 2n + 2 leaves, 4n + 2
stems and n — 1 inner edges. Let B,, be the set of these blossom trees without
special vertex. After the partial closure of any of these trees, two leaves remain
unmatched, so the ratio of balanced blossom trees in B, is 5—=-. Hence the

n+2°
corresponding subset &, has cardinality

2 1 3
E, = o ") =1,
2n+ 2 2n+1\n

Let £ denote the set of all balanced blossom trees (with or without special
vertex).

3.6 The complete closure

In fact the bijection was already almost completely described. Let us define
the complete closure ¢ as a mapping defined on the set £. An example is
shown in Figure 6. Given B a tree in &,

(1) Construct the partial closure B of B,

(2) Remove all the links and call B the result,

(3) Fuse the two remaining stems of B into a root edge oriented away from
the root of B, and call ¢(B) the resulting rooted planar map.

Our main result, to be proved in the rest of the paper, is the following theorem.
Theorem 1 The complete closure ¢ is a bijection from the set &, (Tesp.
Ey) of balanced blossom trees onto the set Cy, (resp. C,) of non-separable

(near-)cubic maps and by duality onto the set Ty, (resp. Tp) of loopless tri-
angulations.

10
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Fig. 7. The chain organisation of a map of C.

4 A recursive proof

The very last step of the closure (Step (3) in Section 3.6) is clearly invertible:
given a non-separable (near-)cubic map C' with root edge r and root vertex
vy, cut r into two stems and reroot the resulting map on the leaf attached
to v;. Let C denote the set of maps obtained in this way from the set C of
non-separable cubic and near-cubic maps.

In order to prove Theorem 1, we exihibit first a recursive bijective decompo-
sition of maps of C into smaller maps of the same type. Then we present a
related decomposition of balanced blossom trees. These two decompositions
are clearly isomorphic, and this proves the existence of a bijection between the
two sets of objects. The proof that the closure realizes this bijection is then
immediate by observing that the closure transforms the rules of decomposition
of trees into the rules of decomposition of maps.

4.1 The decomposition of maps

We shall use the following property of maps of C, which is an immediate
consequence of the non-separability of maps of C. An illustration of this lemma
is given by Figure 7.

Lemma 2 The cut vertices of a map C ofCA are organised in a chain. There is
a unique sequence v}, vy, vh, vl ... vy such that: vi = vy, and v} is incident to
the second stem of C; v} and v!' are distinct vertices that belong to a same non-
separable component of C; (vi,vi,) forms a separating edge unless v;' = vj,
15 the special vertex.

Given a map C of C , let v1 and vy denote respectively the root vertex and the
vertex carrying the second stem of C.1f C has a special vertex, call it v. As
shown on Figure 8, let us define two oriented paths P, and P, that both turn
in counterclockwise direction around C. The left path Py starts from v, and
ends at the first vertex it reaches among vy and v». Similarly the right path
P, starts from vy, and stops at vy or v. For ¢ = 1,2, define pZ(CA’) to be the
number of distinct bounded faces sharing an edge with P;. The ith bounded
face to be met for the first time along P, is said to have indez i. By definition
the index of a bounded face incident to P, is an integer between 1 and po(C).

11



Fig. 8. The paths P; and P, around C. Small arrows indicate first incidences of
bounded faces with the paths: p;(C) = 2 and pa(C) = 2.

The parameters p; and ps, together with the number of generic vertices and
the degree of the special vertex, will serve to check the isomorphism of the
decomposition of maps with the decomposition of trees.

Let c¢o be the degenerate map formed of a stem with two leaves, and ¢, be
the degenerate map formed of a special vertex with one stem. Assume by
convention that these maps belong to C. Define moreover CAO, the subset of maps
without a special vertex, and €+, the subset of maps with a special vertex.
The set C is now divided into four subsets, and the recursive decomposition
is defined separately for a map C of each subset. The decomposition rules are
also given in Figure 9.

e C=cyorC= cy: base cases.

o Cec Co: There is a special vertex v and it belongs to P, and P,. This case
is shown as Case a. on Figure 9. Since v is incident twice to the infinite
face, it is a separating vertex of C. By Lemma 2, the map C is cut at
v into two submaps C; and Cy respectively containing v; and vy. Similar
decompositions are applied to C; and Cj. Let us describe the decomposition
on (1.

Observe that P, C C, and denote by P, the oriented path going from v
to v; in counterclockwise direction around C;. By Lemma 2, the separating
edges of C'; form a chain. They are moreover exactly given as the intersection
of P, and P,. Let e be the edge of P, N Pj that is the last on P; (and the
first on Pj). There are two subcases, as shown on Figure 9, Case a.:

- Case a. (z) e is not incident to v. Let v’ be the endpoint of e towards v.

Remove v' and transform the 3 incident edges into stems. Let ¢1(C7) be

the component containing v, rooted on the right stem, and ¢,(C1) be the

other component.

- Case a.(ii): e is incident to v. Then v has degree one in C. Let ¢1(C}) =
¢;, and ©o(C1) be the map of C that is obtained by transforming e into a
stem and v into a leaf.

Now set @,(C) = (p1(C1),#1(Ca), p2(C1), p2(Cs)). The mapping @, is a

bijection between C, and (Cp)? X ({c;} UC, UCy)2

o C € Cy: There is a special verter v, it belongs to Py, but not to P;. Let
®,(C) be obtained by rerooting C' on its second stem.

12



Fig. 9. The decomposition of maps.
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o C €C.: There is no special vertex on P,. Let f be the bounded face incident
to vy, and v3 be the first vertex incident to f on P,. There are two cases:

- Case c.(i): vs is a separating vertex of C. Upon deleting v; and v3, and

replacing the incident edges by stems, three maps are obtained. They are

given names C;, Cy and C3 and rooted as shown on Figure 9, Case c.(i).

~

Set (I)C(C) = (0, 01, CQ, 03) N

- Case c.(i1): v3 is not a separating vertex of C. Let g be the second bounded
face incident to v3. The face ¢ is incident to the path P, at least at the
edge before v3 on P». Let e be the first edge of P, that is incident to g.
Upon deleting v; and v3, and cutting e, three components are obtained.
They are named C', C5, and C3 and rooted as shown on Figure 9, Case
c.(ii). The component C contains four stems: form a new edge €’ by fusing
the stem from v3 and the stem from e. Observe that e’ is then still the
first edge of P, incident to g in C. Let ¢ be the index of the face g in Cj:
1 < €< pao(C). Set @c(C) = (£,Cy,Cy, Cs).

In Figure 9, Case c., positions where a special vertex can possibly appear are

indicated by a crossed box. The mapping ®. is a bijection from C,. onto the

restriction of the set {(¢,Cy,Cs, C3) | C; € CA, 0 < ¢ < po(Cy)} to elements

such that: at most one C; has a special vertex, and if the special vertex is

in Cy or (5 then it is not on their right path.

Finally observe that the parameters p;, ps, the number of generic vertices,
and the degree of the special vertex are parameters that can be traced easily
through the decomposition.

4.2 The decomposition of trees

In order to describe the parallel decomposition of trees, we need a few notations
and three lemmas.

Consider a blossom tree 7" and an edge e of T. A matching edge €' = (b, ),
with b the bud and ¢ the leaf, is called parallel to e if its endpoints belong to
distinct components of 7'\ e. In other terms, a matching edge is parallel to e
if the unique simple cycle formed by (b,£) and the tree contains e.

The following lemma is immediate upon counting leaves and buds in each
subtree.

Lemma 3 Tuke T a blossom tree, e a link of T, and b a bud incident to e.
Then the matching edge (b, £) is parallel to e.

Lemma 4 Take T a blossom tree, and let T be its partial closure, as defined
in Section 8.4. Let e be an inner edge of T. Then

14



e The two subtrees on each side of e each have one more leaf than buds.

e [f the inner edge e is a separating edge, then these two subtrees are balanced
and each contains one free leaf of T. In particular both subtrees are incident
to the infinite face, and so is e.

The next lemma provides us with a first analogy with non-separable maps.

Lemma 5 Take T a blossom tree, and let T its partial closure. The cut ver-
tices of T' are organised in a chain as in Lemma 2.

PROOF. According to Lemma 3, all matching edges and links belong to
cycles and are thus not separating edges. Consider a decomposition of 7" into
two components C; and C5 incident only at a cut vertex v'. Assume that C;
and C are not reduced to a stem. The three types of vertices are successively
dealt with.

e v' is a generic vertex. Let (b, e, e, e2) be the edges incident to v’ in counter-
clockwise order, starting with the bud b, and the generic link e. According
to Lemma 3, b and e belong to a simple cycle, hence to a same component,
say C7. The other bud incident to e creates a matching edge parallel to e,
and thus a cycle using e; or e;. The other inner edge (in fact eq) is then a
separating inner edge, and according to Lemma 4, both €} and C5 contain
a free leaf.

e v' is a pathological vertex. Let (b1, bo,e,e1) be the edges incident to v’ in
counterclockwise order, starting with the two buds b, b, and the special
link e. According to Lemma 3, b; (resp. by) and e belong to a simple cycle,
and thus to the same component. Hence e; is a separating inner edge, and
both C; and C; contain a free leaf.

e v’ is the special verter v. The partition C; and C; cuts the counterclock-
wise cyclic sequence of subtrees around v into two sequences of subtrees:
T1,...,T;, in C,and TY', ..., T} in Cy. At least one of the two components,
say Cy, contains a free leaf of T. Then (5 is incident to the infinite face.
This implies that no matching edge can arrive to 77 from a bud in another
subtree (it would come from C5 or enclose Cs in a bounded face).

If 77 is attached to v by a special link e then let 7T} be the subtree attached
to the pathological vertex incident to e. Otherwise let T; = 77. In both cases
T; has one more leaf than buds. Since no matching edge arrives to 77, it
thus has a free leaf. Hence both C; and Cs contain a single leaf.

The previous case analysis shows that a simple path from one free leaf to
the other must use all separating vertices and edges. This yields the chain
structure, and concludes the proof of Lemma 5.

In view of Lemma 5, the paths P, and P, can be defined for T as in the

15



Fig. 10. The paths P; and P, around 7. Matching edges are easily counted along
the paths: p1(T") = 2 and po(T) = 2.

previous section for C. The parameter p;(T) and p,(T) are then defined by
counting matching edges on P; and P, respectively. The ¢th matching edge
along P, is said to have index 7, so that the index of a matching edge on P,
is between 1 and py(T).

Let ¢y be the tree reduced to a stem with two free leaves, and ¢, be the tree
reduced to a special vertex with one free leaf. Assume by convention that these
two trees are balanced blossom trees. Recall that £ denote the set of balanced
blossom trees. Let moreover £, denote the subset of balanced blossom trees
without special vertex, and £, the subset of balanced blossom trees with a
special vertex, so that £ = £y U E,. The set £ is partitioned into four subsets,
and the recursive decomposition is defined separately for a tree T of each
subset. The decomposition rules are also given in Figure 11.

o T'=1ty orT =t,: base cases.

e T' e &,: There is a special vertex v, and it belongs to P, and P,. This case is
shown as Case a. in Figure 11. Since v is incident twice to the infinite face,
it is a separating vertex of 7. By Lemma 5, the map T is cut at v into two
submaps T; and T, respectively containing v; and v,. This decomposition
reflects a decomposition of 7" into two subtrees 77 and 75 at v. Similar
decompositions are applied to T} and T5. Let us describe the decomposition
on 7. There are two subcases, as shown on Figure 11, Case a.:

- Case a.(1): v has degree at least 2 in Ti. Reconsider the notation intro-
duced in the proof of Lemma 5 for the case of a special separating vertex:
T is decomposed into a sequence of subtrees T7,...,T} , ki > 2. Assume
first that 77 is attached to v by an inner edge. No matching edge enters
in 77 and this subtree has one more leaf than buds. It thus contains a free
leaf, and no matching edge leaves it towards another subtree. Therefore
the subtrees T3, ..., T}, span a component of T that is separable at v but
contains no free leaf. This contradicts Lemma 5, thus proving that 77 is
attached by a special link.

Remove this special link and the incident pathological vertex, so as to
detach a blossom tree po(T1) = Tj, and to create two new free leaves in the
component ¢q(73) of Ty spanned by T5,...,T; . Both ¢ (T1) and ¢5(13)
are balanced blossom trees (rooting the former on the second free leaf).
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Fig. 11. The decomposition of trees.
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Observe, for comparison with the case of maps, that the deleted inner
edge is the last separating edge on P, since the closure of ¢;(77) is non-
separable.

- Case a.(ii): v has degree 1 in Ti. Let ¢1(T1) = ti, and ¢o(T7) be the
balanced blossom tree that is obtained by transforming e into a stem and
v into a leaf.

Now set @a(T) = ((,Dl(Tl),QDl(TQ),QDQ(Tl),(pQ(TQ)). The mappmg (Da is a

bijection between &, and (&)* x ({1} UE, U &)2

T € &,: There is a special verter v, that belongs to P, but not to P;. Let

®,(T) be obtained by rerooting the tree on the second free leaf.

T € &.: There is no special vertex on P». In particular the rightmost son

of vy is neither the special vertex, nor a bud (7" is balanced), so that v is

a generic vertex. For the root leaf r» of T to remain free, the cyclic order

around v; must be (r,b, e, e;) with b the bud and e the generic link. Let v

be the generic vertex at the other end of e. Upon deleting v; and wv3, the

tree T is decomposed into three subtrees 77, T5 and T3, named and rooted
as indicated by Figure 11, Cases c.(i) and c.(ii). For T to be balanced, its
root leaf r must remain free, so that no matching edge can leave Tj: this
subtree is balanced. Since T3 has one more leaf than buds (by construction
of blossom trees), and has one leaf matched by the bud of v3, it can accept
no other entering matching edge. Hence no matching edge can leave 75, and

T5 is balanced. Since 15 also has one more leaf than buds, two cases remain:

- Case c.(i): The second free leaf of T is in Ty. In other terms the second free
leaf of T3, remains free, and no matching edge can leave T7: this subtree
is balanced as well. Observe, for comparison with the decomposition of
maps, that vs is separating in T. Set ®.(T) = (0,7}, Ty, T3).

- Case c.(i1): The second free leaf of T is not in T,. In this case the second
free leaf of T5, is matched by a bud of 77. Hence the choice of root for T}
ensures that it is balanced, and that it has a matching edge distinguished
that is incident to the infinite face on the right. Let £ be the index of this
matching edge in 77, so that 1 < ¢ < py(T7). Set ®.(T) = (¢,11,T5,T3).

In Figure 11, positions where a special vertex can possibly appear are in-

dicated by a crossed box. The mapping ®, is a bijection from &, onto the

restriction of the set {(¢,T1,T»,T3) | T; € £,0 < £ < po(T1)} to elements
such that at most one 7T; has a special vertex, and if the special vertex is in

T, or T5 then it is not on their right path.

Finally observe that the parameters p;, ps, the number of generic vertices,
and the degree of the special vertex are parameters that can be easily traced
through the decomposition.

The comparison of the decomposition of maps and the decomposition of trees
reveals that the two are isomorphic. In particular these decompositions allow
to define recursively a bijection between maps and trees that transports the
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number of generic vertices, the degree of the special vertex if any, and the
parameters p; and ps. To conclude the proof of Theorem 1, one checks that
the closure as defined in Section 3 transforms the rules of Figure 11 into the
rules of Figure 9.
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