Distributed Computing
12 - Complexities, Volume and Exercises

Mikaël Rabie
Université de Paris, IRIF
Creating Complexities
Complexities on Graphs with the LOCAL Model

Figures from https://jukkasuomela.fi/landscape-of-locality/
For any $k > 0$, there exists a problem P_k that is solvable in time $\Theta(n^{1/k})$.

Chang, Pettie (2019)
Comb Tree: A path V_2 of degree 3 nodes. To each of those nodes there is a path appended. For each node $v \in V_2$ either:

- Its appended path is 2-colored ($v \in D_2$)
- It is 2-colored with its $V_2 \setminus D_2$ neighbors

Question: Find a $O(\sqrt{n})$ algorithm.
Comb Tree: A path V_2 of degree 3 nodes. To each of those nodes there is a path appended. For each node $v \in V_2$ either:

- Its appended path is 2-colored ($v \in D_2$)
- It is 2-colored with its $V_2 \setminus D_2$ neighbors

Question: Find a $O(\sqrt{n})$ algorithm.
Question: On which graphs the problem needs $\Omega(\sqrt{n})$?
Question: On which graphs the problem needs $\Omega(\sqrt{n})$?
Question: On which graphs the problem needs $\Omega(\sqrt{n})$?

Question: How to generalize this problem with the same results on any graphs?
Question: On which graphs the problem needs $\Omega(\sqrt{n})$?

Question: How to generalize this problem with the same results on any graphs?

- G_1: input graph
- $V_1 = \{ v \in V(G_1) : \text{degree}(v) \leq 2 \}$
- $G_2 = G_1 \setminus V_1$
- $V_2 = \{ v \in V(G_2) : \text{degree}(v) \leq 2 \}$
- V_1 nodes accept if, in regard to its neighbors in V_1:
 - They are 2-colored with colors 1 and 2
 - They all are in color 3
- $D_2 = \{ v \in V_2 : \text{its } V_1 \text{ neighbors are 2-colored} \}$
 - D_2 nodes accept if they are in color 4
- $V_2 \setminus D_2$ nodes accept if, in regard to its neighbors in $V_2 \setminus D_2$:
 - They are 2-colored with colors 1 and 2
 - They have 2 of those neighbors and are in color 3
Generalization to $n^{1/k}$

- G_1: input graph
- $V_i = \{v \in V(G_i): \text{degree}(v) \leq 2\}$
- $G_i = G_{i-1} \setminus V_{i-1}$
- $V_{k+1} = V(G_{k+1})$
- A vertex in $V(G)$ is **exempted** if
 - it has a lower level exempted neighbor
 - it has a lower level 2-colored neighbor
 - it is in V_{k+1}
- $D_i \subseteq V_i$ are the exempted nodes of level i
- $V_i \setminus D_i$ nodes ($i \leq k$) accept if, in regard to its neighbors in $V_i \setminus D_i$:
 - They are 2-colored with colors 1 and 2
 - They have 2 of those neighbors and are in color 3
The Centralized Local Model
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- Greedy problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- Greedy problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- Greedy problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
CentLOCAL Model

- In parallel, each node v:
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k), with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity: maximal number of requests from a node
CentLOCAL Model

- In parallel, each node v:
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k), with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w

- Complexity: maximal number of requests from a node

Request: $(14, 2)$
CentLOCAL Model

- In parallel, each node v:
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k), with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity: maximal number of requests from a node

Request: (14,2)
- In parallel, each node v:
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k), with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u,v) \in E$ are connected by port k from u and k' from w
- Complexity: maximal number of requests from a node

Request: $(14, 2) \Rightarrow (2, 4, 1)$
CentLOCAL Model

- In parallel, each node \(v \):
 - Knows its own \(Id_v \) and degree \(d_{Id_v} \)
 - At each step, they send a request \((Id_u, k)\) with \(k \leq d_{Id_u} \)
 - They get \((Id_w, d_{Id_w}, k')\) such that \((u, v) \in E\) are connected by port \(k \) from \(u \) and \(k' \) from \(w \)
- Complexity: maximal number of requests from a node

Request: \((14,3)\)
CentLOCAL Model

- In parallel, each node v:
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k), with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity: maximal number of requests from a node

Request: $(14, 3) \Rightarrow (8, 2, 2)$
CentLOCAL Model

- In parallel, each node v:
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k), with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity: maximal number of requests from a node

Request: (2,3)
CentLOCAL Model

- In parallel, each node v:
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k), with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity: maximal number of requests from a node

Request: $(2, 3) \Rightarrow (10, 4, 3)$
Greedy Problems

Problem A can be solved in time $\Theta(f(n))$ in the LOCAL model

\Rightarrow A can be solved in time $\Omega(f(n))$ and $O(\Delta f(n))$ in the CentLOCAL model.
Problem A can be solved in time $\Theta(f(n))$ in the LOCAL model.

\Rightarrow A can be solved in time $\Omega(f(n))$ and $O\left(\Delta^{f(n)}\right)$ in the CentLOCAL model.
Problem A can be solved in time $\Theta(f(n))$ in the LOCAL model

$\Rightarrow A$ can be solved in time $\Omega(f(n))$ and $O\left(\Delta^f(n)\right)$ in the CentLOCAL model

Even et. al (2018)

There is a CentLOCAL algorithm in time $O(\Delta \times \log^* n + \Delta^3)$ for $\leq \Delta^2$-coloring a graph.

There is a CentLOCAL algorithm in time $O(\Delta \times \log^* n + \Delta^3)$ for orienting a graph where the longer oriented path is of length $\leq \Delta^2$.

Any greedy problem can be solved in time $O(f(\Delta) \times \log^* n)$.
In the CentLOCAL model, if n is not given in advance and identifiers do not require to be polynomial in n, there is no problem whose time complexity is in $\omega(\log^* n) \cap o(n)$.
Rosenbaum and Suomela (2020)
In the CentLOCAL model, if \(n \) is not given in advance and identifiers do not require to be polynomial in \(n \), there is no problem whose time complexity is in \(\omega(\log^* n) \cap o(n) \).

- Take \(N \) such that \(T(N) \ll N \)
- Do a distance \(N \)-coloring
- Simulate the algorithm with the new identifiers
Maximal Matching Lower Bound
Maximal Matching Algorithm

- Computer network with port numbering
- Bipartite, 2-colored graph
- \(\Delta \)-regular (here \(\Delta = 3 \))

Output: maximal matching
Maximal Matching Algorithm

Very simple algorithm

unmatched white nodes:
send proposal to port 1
Maximal Matching Algorithm

Very simple algorithm

unmatched white nodes:
send proposal to port 1

black nodes:
accept the first proposal you get, reject everything else
(break ties with port numbers)
Very simple algorithm

unmatched white nodes:
send *proposal* to port 1

black nodes:
accept the first proposal you get, *reject* everything else
(break ties with port numbers)
Maximal Matching Algorithm

Very simple algorithm

unmatched white nodes:
send *proposal* to port 2
Maximal Matching Algorithm

Very simple algorithm

unmatched white nodes: send proposal to port 2

black nodes: accept the first proposal you get, reject everything else (break ties with port numbers)
Maximal Matching Algorithm

Very simple algorithm

unmatched white nodes:
send *proposal* to port 2

black nodes:
accept the first proposal you get, *reject* everything else
(break ties with port numbers)
Maximal Matching Algorithm

Very simple algorithm

unmatched white nodes: send proposal to port 3
Maximal Matching Algorithm

Very simple algorithm

unmatched white nodes:
send proposal to port 3

black nodes:
accept the first proposal you get, reject everything else
(break ties with port numbers)
Very simple algorithm

unmatched white nodes: send proposal to port 3

black nodes: accept the first proposal you get, reject everything else (break ties with port numbers)
Maximal Matching Algorithm

Very simple algorithm

Finds a maximal matching in $O(\Delta)$ communication rounds

Note: running time does not depend on n
Maximal Matching in Δ-regular graphs

- Maximal Matching, $\Sigma = \{M, O, P\}$
- $B = (MO^{\Delta-1} | P^\Delta)$, $W = (M[PO]^{\Delta-1} | O^\Delta)$
Maximal Matching in Δ-regular graphs

- Maximal Matching, $\Sigma = \{M, O, P\}$
- $B = (MO^{\Delta-1} \mid P^\Delta)$, $W = (M[PO]^{\Delta-1} \mid O^\Delta)$

Question: Do one-round reduction on the W-algorithm.
Parametrized Matching

Parametrized problem $\Pi_{\Delta}(x, y)$

- Addition of joker output X.
- $B_{\Delta}(x, y) = \left(MO^{d-1} | P^d \right) O^y X^x$
- $W_{\Delta}(x, y) = \left([MX][POX]^{d-1} | [OX]^d \right) [POX]^y [MPOX]^x$

Questions:

1. Prove that: Maximal Matching in T rounds, $\Rightarrow \Pi_{\Delta}(0, 0)$ in T rounds.
2. (At home) Prove that: $\Pi_{\Delta}(0, 0)$ on W in T rounds $\Rightarrow \Pi_{\Delta}(1, 0)$ on B in $T - 1$ rounds.

We have: $\Pi_{\Delta}(x, y)$ in T rounds $\Rightarrow \Pi_{\Delta}(x + 1, y + x)$ in $T - 1$ rounds.

3. What lower bound on the complexity can you deduce?
Weak k-matching

Weak k-matching: For each node v,

- v is matched to $l \in [1, k]$ nodes
- v is unmatched and all the neighbors of v are matched

Questions: Suppose that we can solve Maximal Matching in $o(\Delta)$ rounds

1. Prove that we solve weak $\Delta^{1/2}$-Matching in $o(\Delta^{1/2})$ rounds.
2. Deduce that we solve $\Pi_{\Delta}(\Delta^{1/2} - 1, 0)$ in $o(\Delta^{1/2})$ rounds.
3. Deduce that we solve $\Pi_{\Delta}(\Delta^{1/2} + o(\sqrt{\Delta}), o(\Delta))$ in 0 rounds.
Weak $\sqrt{\Delta}$-matching
Weak \(k \)-matching

Weak \(k \)-matching : For each node \(v \),

- \(v \) is matched to \(l \in [1, k] \) nodes
- \(v \) is unmatched and all the neighbors of \(v \) are matched

Questions : Suppose that we can solve Maximal Matching in \(o(\Delta) \) rounds

1. Prove that we solve weak "\(\Delta^{1/2} \)-Matching" in \(o(\Delta^{1/2}) \) rounds.
2. Deduce that we solve \(\Pi_\Delta(\Delta^{1/2} - 1, 0) \) in \(o(\Delta^{1/2}) \) rounds.
3. Deduce that we solve \(\Pi_\Delta(\Delta^{1/2} + o(\sqrt{\Delta}), o(\Delta)) \) in 0 rounds.

Reminder :

- \(B_\Delta(x, y) = \left(\MO^{d-1} \right| \P^d \right) \O^y \X^x \)
- \(W_\Delta(x, y) = \left([\MX][\POX]^{d-1} \right| [\OX]^d \right) \POX^y \MPOX^x \)

\[d = \Delta - x - y \]
Weak \(k \)-matching

Weak \(k \)-matching: For each node \(v \),

- \(v \) is matched to \(l \in [1, k] \) nodes
- \(v \) is unmatched and all the neighbors of \(v \) are matched

Questions: Suppose that we can solve Maximal Matching in \(o(\Delta) \) rounds

1. Prove that we solve weak "\(\Delta^{1/2} \)-Matching" in \(o(\Delta^{1/2}) \) rounds.
2. Deduce that we solve \(\Pi_\Delta(\Delta^{1/2} - 1, 0) \) in \(o(\Delta^{1/2}) \) rounds.
3. Deduce that we solve \(\Pi_\Delta(\Delta^{1/2} + o(\sqrt{\Delta}), o(\Delta)) \) in 0 rounds.

Balliu et. al (2019)

There is no deterministic distributed algorithm that solves Maximal Matching in \(o(\Delta) \) rounds in the LOCAL model.
