
Course 2.18.1: Distributed Algorithms for Networks
LOCAL Algorithms

Mikaël Rabie

1 Creating Complexities

1.1 21
2-coloring - Slides 4-5

We assume that all nodes know the size n of the graph. Either nodes are colored with color 1 or
2, or use color 3 to ignore the coloring restriction. There exists a O(

√
n) algorithm that solves the

problem:

� In one round, detect if you are in V2 or not.

� If you are on an appended path, spend
√
n rounds to know if the path you are in is of length

at most
√
n or not:

– If it is the case, choose your color as your distance to the end of the path modulo 2

– Otherwise, take color 3.

� If you are in V2, first check in
√
n rounds if your appended path is of length at most

√
n:

– If it is the case, take color 3.

– Otherwise, spend
√
n more rounds to detect the longest subpath in V2 you belong to

where all nodes are in the same situation as yours. This subpath cannot be longer than√
n, otherwise you would see more than n nodes. 2-color this subpath.

Note that all nodes you need to see are at distance at most 2
√
n from you.

This problem must have complexity Ω(
√
n). Indeed, consider a path of V2 of length

√
n, where

all appended paths are of length
√
n. Either one of those subpaths is 2-colored, and it needed

√
n

rounds to do it, either none of them are 2-colored, and the V2 path (of length
√
n) is 2-colored,

needing
√
n rounds.

For a better understanding of the generalization of the problem, see [2].

2 Maximal Matching - Slides 9-10

The algorithm works in three steps:

1. Partition the edges of the graph into ∆ rooted forests:

1



� Each node order its edges increasingly in regards to their neighbor’s identifiers. It gives
colors 1 to the first one, 2 to the second. . .

� for each edge, orient the edge towards the bigger identifier, choosing the color selected
by the corresponding node.

For each color from 1 to ∆, we have a rooted forest:

� A node cannot have two incoming edges of the same color: Each incoming edge has its
color chosen by the node it points toward, and each node gave a different color to each
of its edges in the first step.

� We cannot have a cycle, as each edge goes toward an higher identifier

2. We compute a 3-coloring of each forest in O(log∗ n) rounds. This can be done by applying
Cole-Vishkin’s algorithm with your parent in log∗ n rounds, which leads to a 6-coloring. To
remove a color, first each node takes the color of its parent (the root chooses a color different
from its previous one). This step ensures that each node in the forest sees at most two
different colors. Nodes of maximal color can always choose 1, 2 or 3. Repeating this process
3 times ensures that we reach a 3-coloring.

Note that each node can do this computing for the ∆ forests at the same time in parallel.

3. For Forest f = 1 to ∆ do:

� For Color c = 1 to 3 do:

– For all node, add if possible an edge connecting it to one of its children of Color c
in Forest f .

We are sure that in the 3rd loop, no pairs of adjacent edges are added at the same time, as
they are of the form ”parent of color c to one of its children”. Each node has at most one
parent, and if you choose one of your children, as it has a different color from yours, it is not
choosing itself one of its edges at the same time. Hence, a matching is computed.

Moreover, the matching is maximal. Indeed, assume that the matching is not maximal, i.e.
an edge uv (u being the parent) could have been added. The parent u was considered at
some point in the loop. Either it chose another child (meaning that u is already matched),
or it must have added uv, which is also a contradiction.

3 3-coloring Trees

3.1 Tree Shattering - Slides 12-13

The goal is to compute an MIS such that, after its removal, each connected component is of size
1 or 2. Just computing an MIS in trees is not helpful. For example, if you are given a tree T , and
add a leaf pending to each node of T , selecting those pending nodes form an MIS, and its removal
gives you back the initial tree.

The process used is called Rake and Compress:

1. i = 0

2. While we still have an unlabeled node:

2



� Identify leafs (i.e. nodes of degree 1) and nodes in induced path of length at least 3 (i.e.
at least 3 consecutive nodes of degree 2 or less)

� Give them label i

� i++

One can prove that this process uses O(log n) steps (see [1] for a proof). We have the following
properties on each level:

� Each node of level i has at most two neighbors of level ≥ i.

� Each node has at most one neighbor of higher level.

� Each connected component of nodes in the same level is either a single node (with at most
one higher level neighbor), or a path of length at least 3.

Let max be the maximal level. We build the MIS as follows:

1. For each level, in parallel, compute a 3-coloring (in O(log∗ n) rounds).

2. I = ∅

3. From level i = max to 0, for each node u of level i:

� If u has a neighbor of higher level that is not in I, add u to I

� For c = 1 to 3:

– if u has color c and has no neighbor in I, add u to I

This process has complexity O(log∗ n + log n). We have computed an MIS, as each node was
considered to be added sequentially. Moreover, the MIS has the following properties:

� for each edge uv, if u and v have different levels, u ∈ I or v ∈ I.

� For each paths of length at least 3 with the same level, the nodes in I from this path form
an MIS of that path.

This allows us to deduce that the MIS we computed as the desired properties.

From this MIS, computing the 3-coloring is direct. Nodes in I take color 1, isolated remaining
nodes take color 2, and components of size 2 after the removal of I take color 2 and 3 (for example,
2 for the node of smallest identifier and 3 for the other one).

References

[1] Marthe Bonamy, Paul Ouvrard, Mikaël Rabie, Jukka Suomela, and Jara Uitto. Distributed
recoloring. arXiv preprint arXiv:1802.06742, 2018.

[2] Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the local model. SIAM Journal
on Computing, 48(1):33–69, 2019.

3


