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1 The Awaken Complexity

1.1 ∆+ 1-Coloring in O(∆) awaken rounds - Slide 3

Each node wakes up ∆ + 1 times. First at round 0 to learn the identifiers of the neighbors. Then
at each round corresponding to its own identifier and the one of their neighbors. At the round
corresponding to its own round, it learns the new color of its neighbors that have smaller identifier.
It then chooses the smallest available color. After this round, each times it wakes up, it provides
its new color to its awaken neighbor.

Note that it is actually not necessary to wake up in rounds of smaller identifiers, however local
minimas will have to do it, keeping the ∆ + 1 complexity. The total number of rounds will be
1+M, where M is the maximal identifier in the system.

1.2 Reduce K colors in logK awake rounds - Slide 4

Assume we have a K-coloring of the graph. We build a perfectly balanced binary research tree
containing the integers from 1 to K (adding nodes to reach the next power of 2 after K). At round
0, each node wakes up, learning about the colors in their neighborhood. After that, at round i, all
nodes that are in the subtree of node with value i (i.e. node i and the ones below in the binary
tree) wake up twice (i.e. each round is doubled).

At round i, nodes of color i will compute their final color. To do so, awaken nodes of color ≥ i
learn the new color that nodes of color < i have computed. Nodes of color i choose the smallest
color they know is not in their neighborhood, and provides it to the other nodes (this is why we
double each round).

To prove that this algorithm works, we need to be sure that when node of color i chooses its
final color, it knows the final color of its neighbor who had a color < i. Let j < i.

� If j is below i in the tree, i learned the final colors of nodes with starting color j in round i.

� Otherwise, j is in another part of the tree. Let k be the lowest common ancestor of i and j
(k can be j). If k = j, i learned the final color of j during the round j.

Otherwise, we must have j < k < i, as we are on a research binary tree. Hence, during
round k, nodes of initial color j have transmitted their final color while nodes of color i were
awaken.

Each node is awaken as many times as its depth in the binary tree, which is logK.
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2 The log n Complexity

2.1 Full Knowledge of the Graph- Slide 5

In this section, I will also call DLT the intermediate trees, as long as they respect the increasing
labels from root to leafs.

We assume that each node knows the maximal possible label (that actually depends of the
maximal identifier and size of the graph). To perform a broadcast in a DLT, each node wakes up
at two rounds, the one corresponding to its label x, and the one corresponding to its parent’s label
p(x). Hence, as its parent as a smaller label, it will get information from it, and will be able to
transmit the information to its own children at the round corresponding to its own label.

For convergecast (that consists in gathering the information from all nodes to some node), we
will gather everything to the root of the DLT. Let M be an upper bound on the maximal label,
nodes wake up at rounds M−x and M−p(x). Hence, at its round, it will get information gathered
by its children, and it will transmit this information (plus its own information) to its parent at
round M − p(x).

2.2 Building a DLT- Slides 6

Here are some more details on the steps:

1. With a convergecast, the root will know all the neighboring DLTs (and each vertex is neighbor
to what). It can know that way if there is one with smaller label.

2. During the convergecast, the root got also the full structure of the graph. With a broadcast, it
will give the new distance to compute for every node according to the choice of the neighboring
DLT and the corresponding node u.

3. A new convergecast allows roots to know if there tree got selected or not. In the second
case, if no neighboring DLT had smaller identifier, it chooses any neighbor. To merge, the
convergecast also gave the distance to the node v, hence it can broadcast the new identifier
and distance to the nodes in its current DLT.

We are sure that if a DLT u1 chooses a DLT u2, DLT did not choose any other DLT (as it
had at least one neighbor with smaller identifier).

5. + 6. For the merges, we see that we maintain the structure of increasing labels through each new
DLTs. Hence, a convergecast can be done for the root to learn the new structure, and then
broadcast it.

3 ∆+ 1 Coloring

3.1 Trade-Off- Slide 8

We can observe that even though we can find awaken rounds that are lower than the usual number
of rounds in the LOCAL model, we get the drawback that nodes run for a longer time. For
example, the (∆ + 1)-coloring in ∆ + 1 rounds use the maximal identifier total rounds.

On paths, we can notice that each communication round allows to perform two simplification
steps of the Cole-Vishkin Algorithm, reducing twice by log the maximal identifier. One can then
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wonder what are all the possible trade-offs between awaken complexity and round complexity. For
example, by doing Linial’s algorithm to reach O(∆2) colors in O(log∗ n) awaken and regular rounds,
we can then reduce the number of colors in O(log∆) awaken rounds to reach a ∆ + 1-coloring.

3.2 Coloring in O(
√
log n log∗ n) awaken rounds - Slides 9-14

The full paper for this construction is [1] (it solves more general problems, including (∆ + 1)-
coloring). Feel free to contact me for more details.

About Slide 13: We repeat the process as many times as needed to have given colors to
clusters. When a cluster becomes colored, it ends with final color being (i, γ′

i−1(li−1), i.e. they also
remember in which level they got their color. It ensures that at the end, two neighboring clusters
do not have the same γ. Indeed, either they left on two different levels, or they left on the same
level and had different colors. As they are uniquely labeled, we repeat the algorithm on the other
clusters, using the property from Slide 12.
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