Distributed Computing 11 - LOCAL Algorithms

Mikaël Rabie Université Paris-Cité, IRIF

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

Creating Complexities

Complexities on Graphs with the LOCAL Model

Figures from https ://jukkasuomela.fi/landscape-of-locality/

2/14

Chang, Pettie (2019) For any k > 0, there exists a problem P_k that is solvable in time $\Theta(n^{1/k})$.

 $2\frac{1}{2}$ -coloring Example

Comb Tree : A path V_2 of degree 3 nodes. To each of those nodes there is a path appended. For each node $v \in V_2$ either :

- Its appended path is 2-colored $(v \in D_2)$
- It is 2-colored with its V₂ \ D₂ neighbors

Comb Tree : A path V_2 of degree 3 nodes. To each of those nodes there is a path appended. For each node $v \in V_2$ either :

- Its appended path is 2-colored $(v \in D_2)$
- It is 2-colored with its V₂ \ D₂ neighbors

Question : Find a $O(\sqrt{n})$ algorithm.

Question : On which graphs the problem needs $\Omega(\sqrt{n})$?

Worst Case Graph

Question : On which graphs the problem needs $\Omega(\sqrt{n})$?

Generalization to any graphs

- G₁ : input graph
- $V_1 = \{v \in V(G_1) : degree(v) \le 2\}$
- $G_2 = G_1 \setminus V_1$
- $V_2 = \{v \in V(G_2) : degree(v) \le 2\}$
- V_1 nodes accept if, in regard to its neighbors in V_1 :
 - They are 2-colored with colors 1 and 2
 - They all are in color 3
 - They are on an oriented cycle
- $D_2 = \{v \in V_2 : \text{ its } V_1 \text{ neighbors are 2-colored}\}$
 - D_2 nodes accept if they are in color 4
- $V_2 \setminus D_2$ nodes accept if, in regard to its neighbors in $V_2 \setminus D_2$:
 - They are 2-colored with colors 1 and 2
 - They have 2 neighbors and they all are in color 3
 - They are on an oriented cycle

Generalization to $n^{1/k}$

- G₁ : input graph
- $V_i = \{v \in V(G_i) : degree(v) \leq 2\}$
- $G_i = G_{i-1} \setminus V_{i-1}$
- $V_{k+1} = V(G_{k+1})$
- A vertex in V(G) is **exempted** if
 - It has a lower level exempted neighbor
 - It has a lower level 2-colored neighbor
 - It is on an oriented cycle on its level
 - It is in V_{k+1}
- $D_i \subseteq V_i$ are the exempted nodes of level i
- $V_i \setminus D_i$ nodes $(i \le k)$ accept if, in regard to its neighbors in $V_i \setminus D_i$:
 - They are 2-colored with colors 1 and 2
 - They all are in color 3 (and have degree=2 if i = k)
 - They are on an oriented cycle

Maximal Matchings

Balliu et. al (2019) Maximal Matching needs $\Omega(\min{\{\Delta, \log n / \log \log n\}})$ rounds in the LOCAL Model.

Linial (1992)

An algorithm which colors the *n*-cycle with three colors requires at least $\frac{1}{2}(\log^* n - 3)$ communication rounds.

 \Rightarrow Maximal Matching needs $\Omega(\log^* n)$ rounds in the LOCAL Model.

Balliu *et. al* (2019) Maximal Matching needs $\Omega(\min{\{\Delta, \log n / \log \log n\}})$ rounds in the LOCAL Model.

Linial (1992)

An algorithm which colors the *n*-cycle with three colors requires at least $\frac{1}{2}(\log^* n - 3)$ communication rounds.

 \Rightarrow Maximal Matching needs $\Omega(\log^* n)$ rounds in the LOCAL Model.

Panconesi, Rizzi (2001) There exists a LCL algorithm to produce a Maximal Matching in $O(\log^* n + \Delta)$ communications.

At most one parent

- At most one parent
- No cycles

- 1. Partition G into Δ Rooted Forests.
- 2. For each Forest, 3-color it in $O(\log^* n)$ communications (in parallel)

- 1. Partition G into Δ Rooted Forests.
- 2. For each Forest, 3-color it in $O(\log^* n)$ communications (in parallel)
- 3. For Forest f = 1 to Δ do :
 - For Color c = 1 to 3 do :
 - For all node, add if possible an edge connecting it to one of its children of Color *c* in Forest *f*.

3-Coloring Trees

Bonamy *et. al* (2018) There exists an algorithm that 3-colors trees in $O(\log n)$ rounds.

Tree Shattering

There exists an algorithm that computes an MIS in trees in $O(\log n)$ rounds. This MIS is such that, after its removal, connected components have size 1 or 2.

Bonamy et. al (2018) There exists an algorithm that 3-colors trees in $O(\log n)$ rounds.

Tree Shattering

There exists an algorithm that computes an MIS in trees in $O(\log n)$ rounds. This MIS is such that, after its removal, connected components have size 1 or 2.

- Build a $\mathcal{O}(\log n)$ light labeling of the nodes :
 - 1. Any node labeled i has at most two neighbors with label $\geq i,$ at most one of which with label $\geq i+1$
 - 2. No two adjacent nodes labeled i both have a neighbor with label $\geq i + 1$

Bonamy *et. al* (2018) There exists an algorithm that 3-colors trees in $O(\log n)$ rounds.

Tree Shattering

There exists an algorithm that computes an MIS in trees in $O(\log n)$ rounds. This MIS is such that, after its removal, connected components have size 1 or 2.

- Build a $\mathcal{O}(\log n)$ light labeling of the nodes :
 - 1. Any node labeled i has at most two neighbors with label $\geq i,$ at most one of which with label $\geq i+1$
 - 2. No two adjacent nodes labeled i both have a neighbor with label $\geq i + 1$
- Compute a 3-coloring for each paths of nodes with the same label
- Build the MIS by considering labels decreasingly.

- In parallel, compute a 3-coloring on each level
- From higher to lower level
- Add, if possible, neighbors to higher level nodes
- Greedily complete the MIS

- In parallel, compute a 3-coloring on each level
- From higher to lower level
- Add, if possible, neighbors to higher level nodes
- Greedily complete the MIS

- In parallel, compute a 3-coloring on each level
- From higher to lower level
- Add, if possible, neighbors to higher level nodes
- Greedily complete the MIS

- In parallel, compute a 3-coloring on each level
- From higher to lower level
- Add, if possible, neighbors to higher level nodes
- Greedily complete the MIS

- https://jukkasuomela.fi/landscape-of-locality/
- Marthe Bonamy, Paul Ouvrard, Mikaël Rabie, Jukka Suomela, Jara Uitto. Distributed Recoloring. DISC 2018.
- Yi-Jun Chang, Seth Pettie. A Time Hierarchy Theorem for the LOCAL Model. In SIAM J. Comput. 48, 2019.
- Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 1992.
- Alessandro Panconesi, Romeo Rizzi. Some simple distributed algorithms for sparse networks. In Distributed Comput., 2001.