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Creating Complexities



Complexities on Graphs with the LOCAL Model

Figures from https ://jukkasuomela.fi/landscape-of-locality/ 2 / 14



Infinite Number of Complexities

Chang, Pettie (2019)
For any k > 0, there exists a problem Pk that is solvable in time Θ(n1/k).
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21
2-coloring Example

Comb Tree : A path V2 of degree 3
nodes. To each of those nodes there
is a path appended.
For each node v ∈ V2 either :

• Its appended path is 2-colored
(v ∈ D2)

• It is 2-colored with its V2 \ D2

neighbors

Question : Find a O(
√

n) algorithm.
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Worst Case Graph

Question : On which graphs the problem needs Ω(
√

n) ?
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Generalization to any graphs

• G1 : input graph
• V1 = {v ∈ V (G1) : degree(v) ≤ 2}
• G2 = G1 \ V1

• V2 = {v ∈ V (G2) : degree(v) ≤ 2}
• V1 nodes accept if, in regard to its neighbors in V1 :

• They are 2-colored with colors 1 and 2
• They all are in color 3
• They are on an oriented cycle

• D2 = {v ∈ V2 : its V1 neighbors are 2-colored}
• D2 nodes accept if they are in color 4

• V2 \ D2 nodes accept if, in regard to its neighbors in V2 \ D2 :
• They are 2-colored with colors 1 and 2
• They have 2 neighbors and they all are in color 3
• They are on an oriented cycle
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Generalization to n1/k

• G1 : input graph
• Vi = {v ∈ V (Gi) : degree(v) ≤ 2}
• Gi = Gi−1 \ Vi−1

• Vk+1 = V (Gk+1)
• A vertex in V (G) is exempted if

• It has a lower level exempted neighbor
• It has a lower level 2-colored neighbor
• It is on an oriented cycle on its level
• It is in Vk+1

• Di ⊆ Vi are the exempted nodes of level i
• Vi \ Di nodes (i ≤ k) accept if, in regard to its neighbors in Vi \ Di :

• They are 2-colored with colors 1 and 2
• They all are in color 3 (and have degree=2 if i = k)
• They are on an oriented cycle
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Maximal Matchings



Lower Bounds

Balliu et. al (2019)
Maximal Matching needs Ω(min{∆, log n/ log log n}) rounds in the LOCAL Model.

Linial (1992)
An algorithm which colors the n-cycle with three colors requires at least 1

2(log∗ n − 3)
communication rounds.

⇒ Maximal Matching needs Ω(log∗ n) rounds in the LOCAL Model.

Panconesi, Rizzi (2001)
There exists a LCL algorithm to produce a Maximal Matching in O(log∗ n + ∆)
communications.
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Partition into Rooted Trees
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• At most one parent
• No cycles
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Maximal Matching Algorithm

1. Partition G into ∆ Rooted Forests.

2. For each Forest, 3-color it in O(log∗ n) communications (in parallel)

3. For Forest f = 1 to ∆ do :
• For Color c = 1 to 3 do :

• For all node, add if possible an edge connecting it to one of its children of Color c in Forest f .
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3-Coloring Trees



3-Coloring in O(log n)

Bonamy et. al (2018)
There exists an algorithm that 3-colors trees in O(log n) rounds.

Tree Shattering
There exists an algorithm that computes an MIS in trees in O(log n) rounds. This MIS is
such that, after its removal, connected components have size 1 or 2.

• Build a O(log n) light labeling of the nodes :
1. Any node labeled i has at most two neighbors with label ≥ i , at most one of which with

label ≥ i + 1
2. No two adjacent nodes labeled i both have a neighbor with label ≥ i + 1

• Compute a 3-coloring for each paths of nodes with the same label
• Build the MIS by considering labels decreasingly.
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Tree Shattering
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Constructing the Maximal Independent Set

• In parallel, compute a 3-coloring on each level
• From higher to lower level
• Add, if possible, neighbors to higher level nodes
• Greedily complete the MIS

1level i

3level > i
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1
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2
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