Distributed Computing 13 - LOCAL Variants

Mikaël Rabie Université Paris Cité, IRIF

Volume Complexity

- In parallel, each node v :
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k) , with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity : maximal number of requests from a node

- In parallel, each node *v* :
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k) , with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity : maximal number of requests from a node

- In parallel, each node *v* :
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k) , with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity : maximal number of requests from a node

- In parallel, each node *v* :
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k) , with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity: maximal number of requests from a node

- In parallel, each node *v* :
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k) , with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity : maximal number of requests from a node

- In parallel, each node *v* :
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k) , with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity : maximal number of requests from a node

- In parallel, each node *v* :
 - Knows its own Id_{v} and degree $d_{Id_{v}}$
 - At each step, they send a request (Id_u, k) , with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity : maximal number of requests from a node

- In parallel, each node *v* :
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k) , with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity : maximal number of requests from a node

Greedy Problems

Problem A can be solved in time $\Theta(f(n))$ in the LOCAL model $\Rightarrow A$ can be solved in time in the CentLOCAL model

Greedy Problems

Problem A can be solved in time $\Theta(f(n))$ in the LOCAL model $\Rightarrow A$ can be solved in time $\Omega(f(n))$ and $O\left(\Delta^{f(n)}\right)$ in the CentLOCAL model

Greedy Problems

Problem A can be solved in time $\Theta(f(n))$ in the LOCAL model

 \Rightarrow A can be solved in time $\Omega(f(n))$ and $O\left(\Delta^{f(n)}\right)$ in the CentLOCAL model

Even et. al (2018)

There is a CentLOCAL algorithm in time $O(\Delta \times log^*n + \Delta^3)$ for $\leq \Delta^2$ -coloring a graph.

There is a CentLOCAL algorithm in time $O(\Delta \times log^*n + \Delta^3)$ for orienting a graph where the longer oriented path is of length $\leq \Delta^2$.

Any greedy problem can be solved in time $O(f(\Delta) \times log^*n)$.

Complexity Gap

Rosenbaum and Suomela (2020)

In the CentLOCAL model, if n is not given in advance and identifiers do not require to be polynomial in n, there is no problem whose time complexity is in $\omega(\log^* n) \cap o(n)$.

Complexity Gap

Rosenbaum and Suomela (2020)

In the CentLOCAL model, if n is not given in advance and identifiers do not require to be polynomial in n, there is no problem whose time complexity is in $\omega(\log^* n) \cap o(n)$.

- Take N such that $T(N) \ll N$
- Do a distance N-coloring
- Simulate the algorithm with the new identifiers

Mendability

Mendable Problems

 $\Gamma^*: V \to \mathcal{O} \cup \{\bot\}$ is a **Partial Solution** if :

- O is the Output Set,
- $\forall u \in V : \Gamma^*(u) \neq \bot \Rightarrow$ we can complete the labels of the neighbors of u.

A problem is T-Mendable if, from any partial solution Γ^* and any $v \in V$ such that $\Gamma^*(v) = \bot$, there exists Γ' :

- Γ'(ν) ≠ ⊥
- $\forall u \neq v, \Gamma'(u) = \bot \Leftrightarrow \Gamma^*(u) = \bot$
- $\forall u \in V$, $dist(u, v) > T \Rightarrow \Gamma'(u) = \Gamma^*(u)$

Mendable into LOCAL

Balliu et. al (2022)

Let Π be a T-mendable LCL problem. Π can be solved in LOCAL model if we are given a distance-(2T+1) coloring.

rounds in the

Mendable into LOCAL

Balliu et. al (2022)

Let Π be a T-mendable LCL problem. Π can be solved in $O\left(T\Delta^{2T}\right)$ rounds in the LOCAL model if we are given a distance-(2T+1) coloring.

Mendable into LOCAL

Balliu et. al (2022)

Let Π be a T-mendable LCL problem. Π can be solved in $O\left(T\Delta^{2T}\right)$ rounds in the LOCAL model if we are given a distance-(2T+1) coloring.

Balliu et. al (2022)

Let Π be a O(1)-mendable LCL problem. Π can be solved in $O(\log^* n)$ rounds in the LOCAL model on bounded degree graphs.

From $\log^* n$ to Mendability

On paths and cycles, are all $O(\log^* n)$ problems mendable?

From $\log^* n$ to Mendability

On paths and cycles, are all $O(\log^* n)$ problems mendable?

No : 3-color with $\{1,2,3\}$ or 2-color with $\{A,B\}$.

From $\log^* n$ to Mendability

On paths and cycles, are all $O(\log^* n)$ problems mendable?

No : 3-color with $\{1, 2, 3\}$ or 2-color with $\{A, B\}$.

Balliu et. al (2022)

Suppose Π is an LCL problem on directed cycles with no input. If Π is $O(\log^* n)$ -solvable, we can define a new LCL problem Π' with the same round complexity, such that a solution for Π' is also a solution for Π , and Π' is O(1)-mendable.

The Case of Trees

Balliu et. al (2022)

In trees, there are exactly three classes : O(1)-mendable, $\Theta(\log n)$ -mendable, and $\Theta(n)$ -mendable problems.

3-coloring the rooted tree is

The Case of Trees

Balliu et. al (2022)

In trees, there are exactly three classes : O(1)-mendable, $\Theta(\log n)$ -mendable, and $\Theta(n)$ -mendable problems.

3-coloring the rooted tree is O(n)-mendable.

There exists a O(1)-mendable problem Π' that projects its solutions to a 3-coloring :

- A node is **monochromatic** if both its children have the same color.
- Otherwise, the node is mixed.
- Π' only accept connected components of mixed nodes of height $\leq k$.

Landscape of LOCAL Variants

LOCAL Variants landscape

LOCAL Variants landscape

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius O(1)

Brandt et. al (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)
Sinkless Orientation has complexity in the deterministic LOCAL model.

Brandt et. al (2016), Mohsen Ghaffari, Hsin-Hao Su (2017) Sinkless Orientation has complexity $\Theta(\log n)$ in the deterministic LOCAL model.

Brandt et. al (2016), Mohsen Ghaffari, Hsin-Hao Su (2017) Sinkless Orientation has complexity $\Theta(\log n)$ in the **deterministic** LOCAL model.

Idea of the algorithm:

- At distance at most log n, we have :
 - 1. a node of degree ≤ 2
 - 2. a cycle of length $\leq 2 \log n$
- Case (1): orient your edge towards the closest one
- Case (2): pick the smallest one (in size, and then according to identifiers)
 Orient this cycle from smallest identifier to smaller neighbor
- Otherwise, orient your edge towards the closest cycle
- All nodes are now satisfied, orient other edges arbitrarily

Brandt et. al (2016), Mohsen Ghaffari, Hsin-Hao Su (2017) Sinkless Orientation has complexity $\Theta(\log n)$ in the deterministic LOCAL model.

Brandt et. al (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)

Sinkless Orientation has complexity $\Theta(\log n)$ in the **deterministic** LOCAL model.

Brandt et. al (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)

Sinkless Orientation has complexity $\Theta(\log_{\Delta} \log n)$ in the **randomized** LOCAL model.

Balliu et. al (2023)

Sinkless Orientation has complexity $O(\log \log n)$ in the **deterministic** SLOCAL model.

General idea:

- Compute a random solution
- Remove outputs that do not work
- Shattering of the graph (i.e. small connected components of unsatisfied nodes)
- Run deteministic algorithm on small components

We assume a Δ -regular graph with $\Delta > 500$

- 1. Each edge, with probability 1/4, decides to orient itself (or not)
- 2. Identify bad nodes:
 - Type I : More than $\Delta/2$ incident oriented edges
 - Type II : Not type I and neighbors of a Type I node
 - Type III : Not type I or II and no outgoing oriented edge
- 3. Unorient edges incident to Type I nodes

We assume a Δ -regular graph with $\Delta > 500$

- 1. Each edge, with probability 1/4, decides to orient itself (or not)
- 2. Identify bad nodes:
 - Type I : More than $\Delta/2$ incident oriented edges
 - Type II: Not type I and neighbors of a Type I node
 - Type III: Not type I or II and no outgoing oriented edge
- 3. Unorient edges incident to Type I nodes

Observations:

- Good nodes have an outgoing edge
- (Admitted) WHP, each connected component of bad nodes have diameter poly log n

We assume a Δ -regular graph with $\Delta > 500$

- 1. Each edge, with probability 1/4, decides to orient itself (or not)
- 2. Identify bad nodes:
 - Type I : More than ∆/2 incident oriented edges
 - Type II: Not type I and neighbors of a Type I node
 - Type III: Not type I or II and no outgoing oriented edge
- 3. Unorient edges incident to Type I nodes
- 4. Use the deterministic algorithm on the bad nodes in $O(\log \log n)$

Observations:

- Good nodes have an outgoing edge
- (Admitted) WHP, each connected component of bad nodes have diameter poly log n

Composition in the SLOCAL model

Balliu et. al (2023)

Let \mathcal{A} and \mathcal{B} be SLOCAL algorithms with respective localities $T_{\mathcal{A}}$ and $T_{\mathcal{B}}$, and let \mathcal{B} depends on the output of \mathcal{A} . Then there exists an algorithm \mathcal{C} with locality $T_{\mathcal{A}} + 2T_{\mathcal{B}}$ that solves the same problem as $T_{\mathcal{B}}$ without dependency on the output of $T_{\mathcal{A}}$.

Composition in the SLOCAL model

Balliu et. al (2023)

Let \mathcal{A} and \mathcal{B} be SLOCAL algorithms with respective localities $T_{\mathcal{A}}$ and $T_{\mathcal{B}}$, and let \mathcal{B} depends on the output of \mathcal{A} . Then there exists an algorithm \mathcal{C} with locality $T_{\mathcal{A}} + 2T_{\mathcal{B}}$ that solves the same problem as $T_{\mathcal{B}}$ without dependency on the output of $T_{\mathcal{A}}$.

Proof:

- To compute $\mathcal{B}(v)$, we need output of \mathcal{A} on $N_{\mathcal{T}_{\mathcal{A}}}(v)$
- ${\mathcal C}$ stores the outputs of ${\mathcal A}$ pre-computed by each u for their neighborhood on u
- \mathcal{C} needs to look at distance $T_{\mathcal{B}}$ of $N_{T_{\mathcal{B}}}(v)$ to check for pre-computed outputs

Algorithm that processes edges sequentially :

- 1. u is satisfied if it has an outgoing edge or has degree $\leq \log n + 1$
- 2. For $uv \in E$:
 - If u or v is satisfied, orient edge to the satisfied node
 - Otherwise, orient towards the node with the fewest processed edges
 This edge gets marked
- 3. At the end, all nodes are satisfied

Algorithm that processes edges sequentially :

- 1. u is satisfied if it has an outgoing edge or has degree $\leq \log n + 1$
- 2. For $uv \in E$:
 - If u or v is satisfied, orient edge to the satisfied node
 - Otherwise, orient towards the node with the fewest processed edges
 This edge gets marked
- 3. At the end, all nodes are satisfied

Observations:

- At each step, we consider the connected components using marked edges
- An unsatisfied node with b marked edges towards itself is in a component of size $\geq 2^b$

- 2. For $uv \in E$:
 - Orient towards the node with the fewest processed edges
 This edge gets marked
- 3. At the end, all nodes are satisfied

Observations:

- At each step, we consider the connected components using marked edges
- An unsatisfied node with b marked edges towards itself is in a component of size $\geq 2^b$

Proof: By induction on b. For b = 0, it is true.

When edge v o u is added, indegree of u is b+1 and indegree of v is $\geq b$

- 2. For $uv \in E$:
 - Orient towards the node with the fewest processed edges
 This edge gets marked
- 3. At the end, all nodes are satisfied

Observations:

- At each step, we consider the connected components using marked edges
- An unsatisfied node with b marked edges towards itself is in a component of size $\geq 2^b$

Proof: By induction on b. For b = 0, it is true.

When edge $v \to u$ is added, indegree of u is b+1 and indegree of v is $\geq b$ If u and v where in the same component, there is a cycle of marked edges

- 2. For $uv \in E$:
 - Orient towards the node with the fewest processed edges
 This edge gets marked
- 3. At the end, all nodes are satisfied

Observations:

- At each step, we consider the connected components using marked edges
- An unsatisfied node with b marked edges towards itself is in a component of size $\geq 2^b$

Proof: By induction on b. For b = 0, it is true.

When edge $v \to u$ is added, indegree of u is b+1 and indegree of v is $\geq b$ If u and v where in the same component, there is a cycle of marked edges

In that cycle, u has two ingoing edges

- \Rightarrow The cycle has a node with two ongoing edges
- \Rightarrow One of the edges of the cycle could not have been marked

- 1. Compute a MIS I of G^{2T+1} with $T = \log(\log n + 1)$
 - Partition into clusters : each node u selects closest element $v \in I$ and join C_v
 - *uv* inter-cluster edge if *u* and *v* in different clusters
 - uv intra-cluster edge if u and v in same cluster
 - G_C cluster graph, with $C_uC_v \in E_C$ if inter-cluster edge between C_u and C_v
 - One round in G_C is O(T) rounds in G

- 1. Compute a MIS I of G^{2T+1} with $T = \log(\log n + 1)$
 - Partition into clusters : each node u selects closest element $v \in I$ and join C_v
 - uv inter-cluster edge if u and v in different clusters
 - uv intra-cluster edge if u and v in same cluster
 - G_C cluster graph, with $C_uC_v \in E_C$ if inter-cluster edge between C_u and C_v
 - One round in G_C is O(T) rounds in G
- 2. Compute SLOCAL Sinkless Orientation of High Degree Nodes on G_C

- 1. Compute a MIS I of G^{2T+1} with $T = \log(\log n + 1)$
 - Partition into clusters : each node u selects closest element $v \in I$ and join C_v
 - uv inter-cluster edge if u and v in different clusters
 - uv intra-cluster edge if u and v in same cluster
 - G_C cluster graph, with $C_uC_v \in E_C$ if inter-cluster edge between C_u and C_v
 - One round in G_C is O(T) rounds in G
- 2. Compute SLOCAL Sinkless Orientation of High Degree Nodes on G_C
 - High degree clusters (at least $\log n + 1$ neighbors) has an outgoing edge
 - Low degree clusters have a node of degree ≤ 2 or a cycle

- 1. Compute a MIS I of G^{2T+1} with $T = \log(\log n + 1)$
 - Partition into clusters : each node u selects closest element $v \in I$ and join C_v
 - *uv* inter-cluster edge if *u* and *v* in different clusters
 - uv intra-cluster edge if u and v in same cluster
 - G_C cluster graph, with $C_uC_v \in E_C$ if inter-cluster edge between C_u and C_v
 - One round in G_C is O(T) rounds in G
- 2. Compute SLOCAL Sinkless Orientation of High Degree Nodes on G_C
 - High degree clusters (at least $\log n + 1$ neighbors) has an outgoing edge
 - Low degree clusters have a node of degree ≤ 2 or a cycle
- 3. Depending on the cluster :
 - High degree clusters compute a spanning tree toward a non-sink node of the cluster.
 - Low degree clusters orient toward low degree node or cycle

Carrying input problem :

- Nodes form an oriented grid of size $\sqrt{n} \times \sqrt{n}$
- Nodes on the right have input 0 or 1
- Each node must copy the output on its right
- At least one of the right nodes must have input=output

- Deterministic :
- Randomized :
- Shared Randomness :

Carrying input problem :

- Nodes form an oriented grid of size $\sqrt{n} \times \sqrt{n}$
- Nodes on the right have input 0 or 1
- Each node must copy the output on its right
- At least one of the right nodes must have input=output

- Deterministic :
- Randomized :
- Shared Randomness :

Carrying input problem :

- Nodes form an oriented grid of size $\sqrt{n} \times \sqrt{n}$
- Nodes on the right have input 0 or 1
- Each node must copy the output on its right
- At least one of the right nodes must have input=output

- Deterministic : $\Theta(\sqrt{n})$
- Randomized : $\Theta(\sqrt{n})$
- Shared Randomness : $\Theta(\sqrt{n})$

Carrying input problem :

- Nodes form an oriented grid of size $\sqrt{n} \times \sqrt{n}$
- Nodes on the right have input 0 or 1
- Each node must copy the output on its right
- At least one of the right nodes must have input=output
- Binary tree on each column

- Deterministic : $\Theta(\sqrt{n})$
- Randomized : $\Theta(\sqrt{n})$
- Shared Randomness : $\Theta(\sqrt{n})$

Carrying input problem :

- Nodes form an oriented grid of size $\sqrt{n} \times \sqrt{n}$
- Nodes on the right have input 0 or 1
- Each node must copy the output on its right
- At least one of the right nodes must have input=output
- Binary tree on each column

- Deterministic : $\Theta(\sqrt{n})$
- Randomized : $\Theta(\sqrt{n})$
- Shared Randomness : $\Theta(\log n)$

Bibliography

- Balliu, Hirvonen, Melnyk, Olivetti, Rybicki, Suomela. Local Mending. In SIROCCO 22.
- Balliu, Ghaffari, Kuhn, Modanese, Olivetti, Rabie, Suomela, Uitto. Shared
 Randomness Helps with Local Distributed Problems. On arXiv.
- Balliu, Korhonen, Kuhn, Lievonen, Olivetti, Pai, Paz, Rybicki, Schmid, Studený, Suomela, Uitto. Sinkless Orientation Made Simple. In SOSA 23.
- Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto. A lower bound for the distributed Lovász local lemma. In STOC 16.
- Guy Even, Moti Medina, Dana Ron. Best of two local models: Centralized local and distributed local algorithms In Inf. Comput. 262, 2018.
- Ghaffari, Kuhn, Maus. On the complexity of local distributed graph problems. In STOC 17.
- Ghaffari, Su. Distributed Degree Splitting, Edge Coloring, and Orientations. In SODA 17.
- Rosenbaum, Suomela. **Seeing far vs. seeing wide** In PODC 20.