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Volume Complexity



CentLOCAL Model

= |n parallel, each node v :
= Knows its own /d, and degree djq,
= At each step, they send a request (/d,, k), with k < djqg,
= They get (ldy, di4,, k") such that (u, v) € E are connected by port k from u and k" from w

= Complexity : maximal number of requests from a node

2/18



CentLOCAL Model

= |n parallel, each node v :
= Knows its own /d, and degree djq,
= At each step, they send a request (/d,, k), with k < djqg,
= They get (ldy, di4,, k") such that (u, v) € E are connected by port k from u and k" from w

= Complexity : maximal number of requests from a node

Request : (14,2)

D e

2/18



CentLOCAL Model

= |n parallel, each node v :
= Knows its own /d, and degree djq,
= At each step, they send a request (/d,, k), with k < djqg,
= They get (ldy, di4,, k") such that (u, v) € E are connected by port k from u and k" from w

= Complexity : maximal number of requests from a node

Request : (14,2)

D e

2/18



CentLOCAL Model

= |n parallel, each node v :
= Knows its own /d, and degree djq,
= At each step, they send a request (/d,, k), with k < djqg,
= They get (ldy, di4,, k") such that (u, v) € E are connected by port k from u and k" from w

= Complexity : maximal number of requests from a node

Request : (14,2) = (2,4,1)

2/18



CentLOCAL Model

= |n parallel, each node v :
= Knows its own /d, and degree djq,
= At each step, they send a request (/d,, k), with k < djqg,
= They get (ldy, di4,, k") such that (u, v) € E are connected by port k from u and k" from w

= Complexity : maximal number of requests from a node

Request : (14,3)

2/18



CentLOCAL Model

= |n parallel, each node v :
= Knows its own /d, and degree djq,
= At each step, they send a request (/d,, k), with k < djqg,
= They get (ldy, di4,, k") such that (u, v) € E are connected by port k from u and k" from w

= Complexity : maximal number of requests from a node

Request : (14,3) = (8,2,2)

2/18



CentLOCAL Model

= |n parallel, each node v :
= Knows its own /d, and degree djq,
= At each step, they send a request (/d,, k), with k < djqg,
= They get (ldy, di4,, k") such that (u, v) € E are connected by port k from u and k" from w

= Complexity : maximal number of requests from a node

Request : (2,3)

2/18



CentLOCAL Model

= |n parallel, each node v :
= Knows its own /d, and degree djq,
= At each step, they send a request (/d,, k), with k < djqg,
= They get (ldy, di4,, k") such that (u, v) € E are connected by port k from u and k" from w

= Complexity : maximal number of requests from a node

Request : (2,3) = (10,4,3)
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Greedy Problems

Problem A can be solved in time ©(f(n)) in the LOCAL model
= A can be solved in time in the CentLOCAL model

3/18



Greedy Problems

Problem A can be solved in time ©(f(n)) in the LOCAL model
= A can be solved in time Q(f(n)) and O (Af(")) in the CentLOCAL model

3/18



Greedy Problems

Problem A can be solved in time ©(f(n)) in the LOCAL model

= A can be solved in time Q(f(n)) and O (Af(")) in the CentLOCAL model
Even et. a/ (2018)
There is a CentLOCAL algorithm in time O(A x log*n+ A3%) for < A2-coloring a graph.
There is a CentLOCAL algorithm in time O(A x log*n + A3) for orienting a graph where the
longer oriented path is of length < A2
Any greedy problem can be solved in time O(f(A) x log*n).

3/18



Complexity Gap

Rosenbaum and Suomela (2020)
In the CentLOCAL model, if nis not given in advance and identifiers do not require to be

polynomial in n, there is no problem whose time complexity is in w(log*n) N o(n).
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Complexity Gap

Rosenbaum and Suomela (2020)
In the CentLOCAL model, if nis not given in advance and identifiers do not require to be

polynomial in n, there is no problem whose time complexity is in w(log*n) N o(n).

» Take N such that T(N) < N
= Do a distance N-coloring

= Simulate the algorithm with the new identifiers
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Mendability



Mendable Problems

:V — OU{Ll} is a Partial Solution if :

= O is the Output Set,
» Yue V:I*(u) # L = we can complete the labels of the neighbors of wu.

A problem is T-Mendable if, from any partial solution I'* and any v € V such that
™(v) = L, there exists [ :

W) £ L
s Vuv, Mu)=LeTM(u) =1
» Yue V, dist(u,v) > T = T"(u) =T*(v)
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4-coloring the Grid
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Mendable into LOCAL

Balliu et. al (2022)
Let Il be a T-mendable LCL problem. I1 can be solved in rounds in the
LOCAL model if we are given a distance-(2T + 1) coloring.
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Mendable into LOCAL

Balliu et. al (2022)
Let M be a T-mendable LCL problem. I can be solved in O (TAzT) rounds in the

LOCAL model if we are given a distance-(2T + 1) coloring.

Balliu et. a/ (2022)
Let I be a O(1)-mendable LCL problem. I can be solved in O (log™ n) rounds in the

LOCAL model on bounded degree graphs.
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From log™ n to Mendability

On paths and cycles, are all O(log™ n) problems mendable ?
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From log™ n to Mendability

On paths and cycles, are all O(log™ n) problems mendable ?

No : 3-color with {1,2,3} or 2-color with {A, B}.

Balliu et. al (2022)
Suppose I is an LCL problem on directed cycles with no input. If [T is O(log™ n)-solvable, we

can define a new LCL problem MM’ with the same round complexity, such that a solution for
N’ is also a solution for I, and M is O(1)-mendable.
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The Case of Trees

Balliu et. al (2022)
In trees, there are exactly three classes : O(1)-mendable, ©(log n)-mendable, and

©(n)-mendable problems.

3-coloring the rooted tree is
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The Case of Trees

Balliu et. al (2022)
In trees, there are exactly three classes : O(1)-mendable, ©(log n)-mendable, and

©(n)-mendable problems.

3-coloring the rooted tree is O(n)-mendable.
There exists a O(1)-mendable problem N’ that projects its solutions to a 3-coloring :

= A node is monochromatic if both its children have the same color.
= Otherwise, the node is mixed.

» 1" only accept connected components of mixed nodes of height < k.
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Landscape of LOCAL Variants
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LOCAL Variants landscape
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SLOCAL Model

= Each node is activated one after another, to compute its own output
= A node has access to the outputs already computed to produce its own
= Complexity : maximal radius needed among nodes

e
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The Complexities of Sinkless Orientation

Brandt et. a/ (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)
Sinkless Orientation has complexity in the deterministic LOCAL model.
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The Complexities of Sinkless Orientation

Brandt et. a/ (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)
Sinkless Orientation has complexity ©(log n) in the deterministic LOCAL model.

Idea of the algorithm :

= At distance at most log n, we have :
1. a node of degree < 2
2. a cycle of length < 2logn

= Case (1) : orient your edge towards the closest one

= Case (2) : pick the smallest one (in size, and then according to identifiers)
Orient this cycle from smallest identifier to smaller neighbor

= Otherwise, orient your edge towards the closest cycle

= All nodes are now satisfied, orient other edges arbitrarily
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The Complexities of Sinkless Orientation

Brandt et. a/ (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)
Sinkless Orientation has complexity ©(log n) in the deterministic LOCAL model.

Brandt et. a/ (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)
Sinkless Orientation has complexity ©(loga log n) in the randomized LOCAL model.

Balliu et. al (2023)
Sinkless Orientation has complexity O(loglog n) in the deterministic SLOCAL model.
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Randomized Sinkless Orientation

General idea :

= Compute a random solution

= Remove outputs that do not work

= Shattering of the graph (i.e. small connected components of unsatisfied nodes)
= Run deteministic algorithm on small components

13/18



Randomized Sinkless Orientation

We assume a A-regular graph with A > 500

1. Each edge, with probability 1/4, decides to orient itself (or not)
2. ldentify bad nodes :

= Type | : More than A/2 incident oriented edges
= Type Il : Not type | and neighbors of a Type | node
= Type Ill : Not type | or Il and no outgoing oriented edge

3. Unorient edges incident to Type | nodes
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Randomized Sinkless Orientation

We assume a A-regular graph with A > 500

1. Each edge, with probability 1/4, decides to orient itself (or not)
2. ldentify bad nodes :

= Type | : More than A/2 incident oriented edges
= Type Il : Not type | and neighbors of a Type | node
= Type Ill : Not type | or Il and no outgoing oriented edge

3. Unorient edges incident to Type | nodes
4. Use the deterministic algorithm on the bad nodes in O(log log n)

Observations :

= Good nodes have an outgoing edge
= (Admitted) WHP, each connected component of bad nodes have diameter poly log n
13/18



Composition in the SLOCAL model

Balliu et. al (2023)
Let A and B be SLOCAL algorithms with respective localities T4 and Tg, and let 5 depends

on the output of A. Then there exists an algorithm C with locality T4 + 2Tp that solves the
same problem as Tp without dependency on the output of T 4.
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Composition in the SLOCAL model

Balliu et. al (2023)
Let A and B be SLOCAL algorithms with respective localities T4 and Tg, and let 5 depends

on the output of A. Then there exists an algorithm C with locality T4 + 2Tp that solves the
same problem as Tp without dependency on the output of T 4.

Proof :

= To compute B(v), we need output of A on N1 ,(v)

= ( stores the outputs of A pre-computed by each u for their neighborhood on u

= C needs to look at distance T of N7,(v) to check for pre-computed outputs

14/18



SLOCAL Sinkless Orientation of High Degree Nodes

Algorithm that processes edges sequentially :

1. u is satisfied if it has an outgoing edge or has degree < logn—+1
2. For uv € E:
= |f u or v is satisfied, orient edge to the satisfied node
= Otherwise, orient towards the node with the fewest processed edges
This edge gets marked

3. At the end, all nodes are satisfied
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SLOCAL Sinkless Orientation of High Degree Nodes

2. Foruv e E:
= Orient towards the node with the fewest processed edges
This edge gets marked

3. At the end, all nodes are satisfied
Observations :

= At each step, we consider the connected components using marked edges
= An unsatisfied node with b marked edges towards itself is in a component of size > 2°

Proof : By induction on b. For b =0, it is true.
When edge v — u is added, indegree of v is b+ 1 and indegree of v is > b

15/18



SLOCAL Sinkless Orientation of High Degree Nodes

2. Foruv e E:
= Orient towards the node with the fewest processed edges
This edge gets marked

3. At the end, all nodes are satisfied
Observations :

= At each step, we consider the connected components using marked edges
= An unsatisfied node with b marked edges towards itself is in a component of size > 2°

Proof : By induction on b. For b =0, it is true.
When edge v — u is added, indegree of v is b+ 1 and indegree of v is > b

If uand v where in the same component, there is a cycle of marked edges

15/18



SLOCAL Sinkless Orientation of High Degree Nodes

2. Foruv e E:
= Orient towards the node with the fewest processed edges
This edge gets marked

3. At the end, all nodes are satisfied
Observations :

= At each step, we consider the connected components using marked edges
= An unsatisfied node with b marked edges towards itself is in a component of size > 2°

Proof : By induction on b. For b =0, it is true.

When edge v — u is added, indegree of v is b+ 1 and indegree of v is > b

If uand v where in the same component, there is a cycle of marked edges

In that cycle, u has two ingoing edges

= The cycle has a node with two ongoing edges

= One of the edges of the cycle could not have been marked 15/18



SLOCAL Sinkless Orientation

Three steps algorithm

1. Compute a MIS / of G271 with T = log(logn + 1)

= Partition into clusters : each node u selects closest element v € | and join C,
= uv inter-cluster edge if u and v in different clusters

= uv intra-cluster edge if v and v in same cluster

= Gc cluster graph, with C,C, € E¢ if inter-cluster edge between C, and C,

= One round in G¢ is O(T) rounds in G
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SLOCAL Sinkless Orientation

Three steps algorithm

1. Compute a MIS / of G271 with T = log(logn + 1)
= Partition into clusters : each node u selects closest element v € | and join C,
= uv inter-cluster edge if u and v in different clusters
= uv intra-cluster edge if v and v in same cluster
= Gc cluster graph, with C,C, € E¢ if inter-cluster edge between C, and C,
= One round in G¢ is O(T) rounds in G
2. Compute SLOCAL Sinkless Orientation of High Degree Nodes on G¢
= High degree clusters (at least log n + 1 neighbors) has an outgoing edge
= Low degree clusters have a node of degree < 2 or a cycle

3. Depending on the cluster :

= High degree clusters compute a spanning tree toward a non-sink node of the cluster.
= Low degree clusters orient toward low degree node or cycle

16 /18



Shared Randomness Separation

Carrying input problem :
= Nodes form an oriented grid of size v/n x v/n
= Nodes on the right have input 0 or 1
= Each node must copy the output on its right

= At least one of the right nodes must have
input=output

The complexities :
= Deterministic :
= Randomized :

= Shared Randomness :
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Shared Randomness Separation

Carrying input problem :
= Nodes form an oriented grid of size v/n x v/n
= Nodes on the right have input 0 or 1
= Each node must copy the output on its right
= At least one of the right nodes must have
input=output
= Binary tree on each column
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Shared Randomness Separation

Carrying input problem :
= Nodes form an oriented grid of size v/n x v/n
= Nodes on the right have input 0 or 1
= Each node must copy the output on its right
= At least one of the right nodes must have
input=output
= Binary tree on each column
The complexities :
» Deterministic : ©(v/n)
» Randomized : ©(y/n)
= Shared Randomness : ©(log n)
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