
Distributed Computing
13 - LOCAL Variants

Mikaël Rabie
Université Paris Cité, IRIF



Volume Complexity



CentLOCAL Model

• In parallel, each node v :
• Knows its own Idv and degree dIdv

• At each step, they send a request (Idu, k), with k ≤ dIdu

• They get (Idw , dIdw , k ′) such that (u, v) ∈ E are connected by port k from u and k ′ from w
• Complexity : maximal number of requests from a node

Request : (14,2)

142
3

1

2 / 18



CentLOCAL Model

• In parallel, each node v :
• Knows its own Idv and degree dIdv

• At each step, they send a request (Idu, k), with k ≤ dIdu

• They get (Idw , dIdw , k ′) such that (u, v) ∈ E are connected by port k from u and k ′ from w
• Complexity : maximal number of requests from a node

Request : (14,2)

142
3

1

2 / 18



CentLOCAL Model

• In parallel, each node v :
• Knows its own Idv and degree dIdv

• At each step, they send a request (Idu, k), with k ≤ dIdu

• They get (Idw , dIdw , k ′) such that (u, v) ∈ E are connected by port k from u and k ′ from w
• Complexity : maximal number of requests from a node

Request : (14,2)

142
3

1

2 / 18



CentLOCAL Model

• In parallel, each node v :
• Knows its own Idv and degree dIdv

• At each step, they send a request (Idu, k), with k ≤ dIdu

• They get (Idw , dIdw , k ′) such that (u, v) ∈ E are connected by port k from u and k ′ from w
• Complexity : maximal number of requests from a node

Request : (14,2) ⇒ (2,4,1)

2 143
2

4

1 2
3

1

2 / 18



CentLOCAL Model

• In parallel, each node v :
• Knows its own Idv and degree dIdv

• At each step, they send a request (Idu, k), with k ≤ dIdu

• They get (Idw , dIdw , k ′) such that (u, v) ∈ E are connected by port k from u and k ′ from w
• Complexity : maximal number of requests from a node

Request : (14,3)

2 143
2

4

1 2
3

1

2 / 18



CentLOCAL Model

• In parallel, each node v :
• Knows its own Idv and degree dIdv

• At each step, they send a request (Idu, k), with k ≤ dIdu

• They get (Idw , dIdw , k ′) such that (u, v) ∈ E are connected by port k from u and k ′ from w
• Complexity : maximal number of requests from a node

Request : (14,3) ⇒ (8,2,2)

2 14

8

3
2

4

1 2

2

3

1

1

2 / 18



CentLOCAL Model

• In parallel, each node v :
• Knows its own Idv and degree dIdv

• At each step, they send a request (Idu, k), with k ≤ dIdu

• They get (Idw , dIdw , k ′) such that (u, v) ∈ E are connected by port k from u and k ′ from w
• Complexity : maximal number of requests from a node

Request : (2,3)

2 14

8

3
2

4

1 2

2

3

1

1

2 / 18



CentLOCAL Model

• In parallel, each node v :
• Knows its own Idv and degree dIdv

• At each step, they send a request (Idu, k), with k ≤ dIdu

• They get (Idw , dIdw , k ′) such that (u, v) ∈ E are connected by port k from u and k ′ from w
• Complexity : maximal number of requests from a node

Request : (2,3) ⇒ (10,4,3)

10 2 14

8

3 3

1

2

4

2

4

1 2

2

3

1

1

2 / 18



Greedy Problems

Problem A can be solved in time Θ(f (n)) in the LOCAL model
⇒ A can be solved in time

Ω(f (n)) and O
(
∆f (n)

)

in the CentLOCAL model

Even et. al (2018)
There is a CentLOCAL algorithm in time O(∆ × log∗n + ∆3) for ≤ ∆2-coloring a graph.
There is a CentLOCAL algorithm in time O(∆ × log∗n + ∆3) for orienting a graph where the
longer oriented path is of length ≤ ∆2.
Any greedy problem can be solved in time O(f (∆) × log∗n).

3 / 18



Greedy Problems

Problem A can be solved in time Θ(f (n)) in the LOCAL model
⇒ A can be solved in time Ω(f (n)) and O

(
∆f (n)

)
in the CentLOCAL model

Even et. al (2018)
There is a CentLOCAL algorithm in time O(∆ × log∗n + ∆3) for ≤ ∆2-coloring a graph.
There is a CentLOCAL algorithm in time O(∆ × log∗n + ∆3) for orienting a graph where the
longer oriented path is of length ≤ ∆2.
Any greedy problem can be solved in time O(f (∆) × log∗n).

3 / 18



Greedy Problems

Problem A can be solved in time Θ(f (n)) in the LOCAL model
⇒ A can be solved in time Ω(f (n)) and O

(
∆f (n)

)
in the CentLOCAL model

Even et. al (2018)
There is a CentLOCAL algorithm in time O(∆ × log∗n + ∆3) for ≤ ∆2-coloring a graph.
There is a CentLOCAL algorithm in time O(∆ × log∗n + ∆3) for orienting a graph where the
longer oriented path is of length ≤ ∆2.
Any greedy problem can be solved in time O(f (∆) × log∗n).

3 / 18



Complexity Gap

Rosenbaum and Suomela (2020)
In the CentLOCAL model, if n is not given in advance and identifiers do not require to be
polynomial in n, there is no problem whose time complexity is in ω(log∗n) ∩ o(n).

• Take N such that T (N) ≪ N
• Do a distance N-coloring
• Simulate the algorithm with the new identifiers

4 / 18



Complexity Gap

Rosenbaum and Suomela (2020)
In the CentLOCAL model, if n is not given in advance and identifiers do not require to be
polynomial in n, there is no problem whose time complexity is in ω(log∗n) ∩ o(n).

• Take N such that T (N) ≪ N
• Do a distance N-coloring
• Simulate the algorithm with the new identifiers

4 / 18



Mendability



Mendable Problems

Γ∗ : V → O ∪ {⊥} is a Partial Solution if :

• O is the Output Set,
• ∀u ∈ V : Γ∗(u) ̸= ⊥ ⇒ we can complete the labels of the neighbors of u.

A problem is T -Mendable if, from any partial solution Γ∗ and any v ∈ V such that
Γ∗(v) = ⊥, there exists Γ′ :

• Γ′(v) ̸= ⊥
• ∀u ̸= v , Γ′(u) = ⊥ ⇔ Γ∗(u) = ⊥
• ∀u ∈ V , dist(u, v) > T ⇒ Γ′(u) = Γ∗(u)

5 / 18



4-coloring the Grid

3

2

1

2

1

2

3

4

3

4

2

4

2

3

1

1

2

3

4

1

4

4

1

2

3

2

1

3

2

4

1

4

3

2

1

2

3

2

1

1

4

3

1

4

2

6 / 18



4-coloring the Grid

3

2

1

2

1

2

3

4

3

4

2

4

2

3

1

1

2

3

4

1

4

4

1

2

3

2

1

3

2

4

1

4

3

2

1

2

3

2

1

1

4

3

1

4

2

6 / 18



4-coloring the Grid

3

2

1

2

1

2

3

4

3

4

2

4

2

3

1

1

2

3

4

4

1

2

2

1

3

2

4

1

4

3

2

1

2

3

2

1

1

4

3

1

4

2

6 / 18



4-coloring the Grid

3

2

1

2

1

2

3

4

3

4

2

4

2

3

1

1

2

3

1

2

4

4

1

2

3

1

2

1

3

2

4

1

4

3

2

1

2

3

2

1

1

4

3

1

4

2

6 / 18



Mendable into LOCAL

Balliu et. al (2022)
Let Π be a T -mendable LCL problem. Π can be solved in

O
(
T∆2T

)

rounds in the
LOCAL model if we are given a distance-(2T + 1) coloring.

Balliu et. al (2022)
Let Π be a O(1)-mendable LCL problem. Π can be solved in O (log∗ n) rounds in the
LOCAL model on bounded degree graphs.

7 / 18



Mendable into LOCAL

Balliu et. al (2022)
Let Π be a T -mendable LCL problem. Π can be solved in O

(
T∆2T

)
rounds in the

LOCAL model if we are given a distance-(2T + 1) coloring.

Balliu et. al (2022)
Let Π be a O(1)-mendable LCL problem. Π can be solved in O (log∗ n) rounds in the
LOCAL model on bounded degree graphs.

7 / 18



Mendable into LOCAL

Balliu et. al (2022)
Let Π be a T -mendable LCL problem. Π can be solved in O

(
T∆2T

)
rounds in the

LOCAL model if we are given a distance-(2T + 1) coloring.

Balliu et. al (2022)
Let Π be a O(1)-mendable LCL problem. Π can be solved in O (log∗ n) rounds in the
LOCAL model on bounded degree graphs.

7 / 18



From log∗ n to Mendability

On paths and cycles, are all O(log∗ n) problems mendable ?

No : 3-color with {1, 2, 3} or 2-color with {A, B}.

Balliu et. al (2022)
Suppose Π is an LCL problem on directed cycles with no input. If Π is O(log∗ n)-solvable, we
can define a new LCL problem Π′ with the same round complexity, such that a solution for
Π′ is also a solution for Π, and Π′ is O(1)-mendable.

8 / 18



From log∗ n to Mendability

On paths and cycles, are all O(log∗ n) problems mendable ?

No : 3-color with {1, 2, 3} or 2-color with {A, B}.

Balliu et. al (2022)
Suppose Π is an LCL problem on directed cycles with no input. If Π is O(log∗ n)-solvable, we
can define a new LCL problem Π′ with the same round complexity, such that a solution for
Π′ is also a solution for Π, and Π′ is O(1)-mendable.

8 / 18



From log∗ n to Mendability

On paths and cycles, are all O(log∗ n) problems mendable ?

No : 3-color with {1, 2, 3} or 2-color with {A, B}.

Balliu et. al (2022)
Suppose Π is an LCL problem on directed cycles with no input. If Π is O(log∗ n)-solvable, we
can define a new LCL problem Π′ with the same round complexity, such that a solution for
Π′ is also a solution for Π, and Π′ is O(1)-mendable.

8 / 18



The Case of Trees

Balliu et. al (2022)
In trees, there are exactly three classes : O(1)-mendable, Θ(log n)-mendable, and
Θ(n)-mendable problems.

3-coloring the rooted tree is

O(n)-mendable.
There exists a O(1)-mendable problem Π′ that projects its solutions to a 3-coloring :

• A node is monochromatic if both its children have the same color.
• Otherwise, the node is mixed.
• Π′ only accept connected components of mixed nodes of height ≤ k.

9 / 18



The Case of Trees

Balliu et. al (2022)
In trees, there are exactly three classes : O(1)-mendable, Θ(log n)-mendable, and
Θ(n)-mendable problems.

3-coloring the rooted tree is O(n)-mendable.
There exists a O(1)-mendable problem Π′ that projects its solutions to a 3-coloring :

• A node is monochromatic if both its children have the same color.
• Otherwise, the node is mixed.
• Π′ only accept connected components of mixed nodes of height ≤ k.

9 / 18



Landscape of LOCAL Variants



LOCAL Variants landscape

deterministic
LOCAL

randomized
LOCAL

quantum-
LOCAL

bounded-
dependence

randomized
LOCAL
(shared)

quantum-
LOCAL
(shared)

non-
signaling

deterministic
SLOCAL

randomized
SLOCAL

deterministic
dynamic-

LOCAL

deterministic
online-
LOCAL

randomized
online-
LOCAL

Figure from https ://jukkasuomela.fi/doc/meascomb-2024-06-27.pdf 10 / 18



LOCAL Variants landscape

Figure from https ://jukkasuomela.fi/landscape-of-locality/ 10 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes

• Greedy problems can be solved in radius O(1)

11 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

11 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

11 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

11 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

11 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

11 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

11 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

11 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

11 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

11 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

11 / 18



SLOCAL Model

• Each node is activated one after another, to compute its own output
• A node has access to the outputs already computed to produce its own
• Complexity : maximal radius needed among nodes
• Greedy problems can be solved in radius O(1)

11 / 18



The Complexities of Sinkless Orientation

Brandt et. al (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)
Sinkless Orientation has complexity

Θ(log n)

in the deterministic LOCAL model.

Idea of the algorithm :

• At distance at most log n, we have :
1. a node of degree ≤ 2
2. a cycle of length ≤ 2 log n

• Case (1) : orient your edge towards the closest one
• Case (2) : pick the smallest one (in size, and then according to identifiers)

Orient this cycle from smallest identifier to smaller neighbor
• Otherwise, orient your edge towards the closest cycle
• All nodes are now satisfied, orient other edges arbitrarily

Brandt et. al (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)
Sinkless Orientation has complexity Θ(log∆ log n) in the randomized LOCAL model.

Balliu et. al (2023)
Sinkless Orientation has complexity O(log log n) in the deterministic SLOCAL model.

12 / 18



The Complexities of Sinkless Orientation

Brandt et. al (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)
Sinkless Orientation has complexity Θ(log n) in the deterministic LOCAL model.

Idea of the algorithm :

• At distance at most log n, we have :
1. a node of degree ≤ 2
2. a cycle of length ≤ 2 log n

• Case (1) : orient your edge towards the closest one
• Case (2) : pick the smallest one (in size, and then according to identifiers)

Orient this cycle from smallest identifier to smaller neighbor
• Otherwise, orient your edge towards the closest cycle
• All nodes are now satisfied, orient other edges arbitrarily

Brandt et. al (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)
Sinkless Orientation has complexity Θ(log∆ log n) in the randomized LOCAL model.

Balliu et. al (2023)
Sinkless Orientation has complexity O(log log n) in the deterministic SLOCAL model.

12 / 18



The Complexities of Sinkless Orientation

Brandt et. al (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)
Sinkless Orientation has complexity Θ(log n) in the deterministic LOCAL model.

Idea of the algorithm :

• At distance at most log n, we have :
1. a node of degree ≤ 2
2. a cycle of length ≤ 2 log n

• Case (1) : orient your edge towards the closest one
• Case (2) : pick the smallest one (in size, and then according to identifiers)

Orient this cycle from smallest identifier to smaller neighbor
• Otherwise, orient your edge towards the closest cycle
• All nodes are now satisfied, orient other edges arbitrarily

Brandt et. al (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)
Sinkless Orientation has complexity Θ(log∆ log n) in the randomized LOCAL model.

Balliu et. al (2023)
Sinkless Orientation has complexity O(log log n) in the deterministic SLOCAL model.

12 / 18



The Complexities of Sinkless Orientation

Brandt et. al (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)
Sinkless Orientation has complexity Θ(log n) in the deterministic LOCAL model.

Brandt et. al (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)
Sinkless Orientation has complexity Θ(log∆ log n) in the randomized LOCAL model.

Balliu et. al (2023)
Sinkless Orientation has complexity O(log log n) in the deterministic SLOCAL model.

12 / 18



The Complexities of Sinkless Orientation

Brandt et. al (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)
Sinkless Orientation has complexity Θ(log n) in the deterministic LOCAL model.

Brandt et. al (2016), Mohsen Ghaffari, Hsin-Hao Su (2017)
Sinkless Orientation has complexity Θ(log∆ log n) in the randomized LOCAL model.

Balliu et. al (2023)
Sinkless Orientation has complexity O(log log n) in the deterministic SLOCAL model.

12 / 18



Randomized Sinkless Orientation

General idea :

• Compute a random solution
• Remove outputs that do not work
• Shattering of the graph (i.e. small connected components of unsatisfied nodes)
• Run deteministic algorithm on small components

We assume a ∆-regular graph with ∆ > 500

1. Each edge, with probability 1/4, decides to orient itself (or not)
2. Identify bad nodes :

• Type I : More than ∆/2 incident oriented edges
• Type II : Not type I and neighbors of a Type I node
• Type III : Not type I or II and no outgoing oriented edge

3. Unorient edges incident to Type I nodes

4. Use the deterministic algorithm on the bad nodes in O(log log n)

Observations :

• Good nodes have an outgoing edge
• (Admitted) WHP, each connected component of bad nodes have diameter poly log n

13 / 18



Randomized Sinkless Orientation

We assume a ∆-regular graph with ∆ > 500

1. Each edge, with probability 1/4, decides to orient itself (or not)
2. Identify bad nodes :

• Type I : More than ∆/2 incident oriented edges
• Type II : Not type I and neighbors of a Type I node
• Type III : Not type I or II and no outgoing oriented edge

3. Unorient edges incident to Type I nodes

4. Use the deterministic algorithm on the bad nodes in O(log log n)

Observations :

• Good nodes have an outgoing edge
• (Admitted) WHP, each connected component of bad nodes have diameter poly log n

13 / 18



Randomized Sinkless Orientation

We assume a ∆-regular graph with ∆ > 500

1. Each edge, with probability 1/4, decides to orient itself (or not)
2. Identify bad nodes :

• Type I : More than ∆/2 incident oriented edges
• Type II : Not type I and neighbors of a Type I node
• Type III : Not type I or II and no outgoing oriented edge

3. Unorient edges incident to Type I nodes

4. Use the deterministic algorithm on the bad nodes in O(log log n)

Observations :

• Good nodes have an outgoing edge
• (Admitted) WHP, each connected component of bad nodes have diameter poly log n

13 / 18



Randomized Sinkless Orientation

We assume a ∆-regular graph with ∆ > 500

1. Each edge, with probability 1/4, decides to orient itself (or not)
2. Identify bad nodes :

• Type I : More than ∆/2 incident oriented edges
• Type II : Not type I and neighbors of a Type I node
• Type III : Not type I or II and no outgoing oriented edge

3. Unorient edges incident to Type I nodes
4. Use the deterministic algorithm on the bad nodes in O(log log n)

Observations :

• Good nodes have an outgoing edge
• (Admitted) WHP, each connected component of bad nodes have diameter poly log n

13 / 18



Composition in the SLOCAL model

Balliu et. al (2023)
Let A and B be SLOCAL algorithms with respective localities TA and TB, and let B depends
on the output of A. Then there exists an algorithm C with locality TA + 2TB that solves the
same problem as TB without dependency on the output of TA.

Proof :

• To compute B(v), we need output of A on NTA(v)
• C stores the outputs of A pre-computed by each u for their neighborhood on u
• C needs to look at distance TB of NTB(v) to check for pre-computed outputs

14 / 18



Composition in the SLOCAL model

Balliu et. al (2023)
Let A and B be SLOCAL algorithms with respective localities TA and TB, and let B depends
on the output of A. Then there exists an algorithm C with locality TA + 2TB that solves the
same problem as TB without dependency on the output of TA.

Proof :

• To compute B(v), we need output of A on NTA(v)
• C stores the outputs of A pre-computed by each u for their neighborhood on u
• C needs to look at distance TB of NTB(v) to check for pre-computed outputs

14 / 18



SLOCAL Sinkless Orientation of High Degree Nodes

Algorithm that processes edges sequentially :

1. u is satisfied if it has an outgoing edge or has degree ≤ log n + 1
2. For uv ∈ E :

• If u or v is satisfied, orient edge to the satisfied node
• Otherwise, orient towards the node with the fewest processed edges

This edge gets marked
3. At the end, all nodes are satisfied

Observations :

• At each step, we consider the connected components using marked edges
• An unsatisfied node with b marked edges towards itself is in a component of size ≥ 2b

Proof : By induction on b. For b = 0, it is true.
When edge v → u is added, indegree of u is b + 1 and indegree of v is ≥ b
If u and v where in the same component, there is a cycle of marked edges
In that cycle, u has two ingoing edges
⇒ The cycle has a node with two ongoing edges
⇒ One of the edges of the cycle could not have been marked

15 / 18



SLOCAL Sinkless Orientation of High Degree Nodes

Algorithm that processes edges sequentially :

1. u is satisfied if it has an outgoing edge or has degree ≤ log n + 1
2. For uv ∈ E :

• If u or v is satisfied, orient edge to the satisfied node
• Otherwise, orient towards the node with the fewest processed edges

This edge gets marked
3. At the end, all nodes are satisfied

Observations :

• At each step, we consider the connected components using marked edges
• An unsatisfied node with b marked edges towards itself is in a component of size ≥ 2b

Proof : By induction on b. For b = 0, it is true.
When edge v → u is added, indegree of u is b + 1 and indegree of v is ≥ b
If u and v where in the same component, there is a cycle of marked edges
In that cycle, u has two ingoing edges
⇒ The cycle has a node with two ongoing edges
⇒ One of the edges of the cycle could not have been marked

15 / 18



SLOCAL Sinkless Orientation of High Degree Nodes

2. For uv ∈ E :
• Orient towards the node with the fewest processed edges

This edge gets marked
3. At the end, all nodes are satisfied

Observations :

• At each step, we consider the connected components using marked edges
• An unsatisfied node with b marked edges towards itself is in a component of size ≥ 2b

Proof : By induction on b. For b = 0, it is true.
When edge v → u is added, indegree of u is b + 1 and indegree of v is ≥ b

If u and v where in the same component, there is a cycle of marked edges
In that cycle, u has two ingoing edges
⇒ The cycle has a node with two ongoing edges
⇒ One of the edges of the cycle could not have been marked

15 / 18



SLOCAL Sinkless Orientation of High Degree Nodes

2. For uv ∈ E :
• Orient towards the node with the fewest processed edges

This edge gets marked
3. At the end, all nodes are satisfied

Observations :

• At each step, we consider the connected components using marked edges
• An unsatisfied node with b marked edges towards itself is in a component of size ≥ 2b

Proof : By induction on b. For b = 0, it is true.
When edge v → u is added, indegree of u is b + 1 and indegree of v is ≥ b
If u and v where in the same component, there is a cycle of marked edges

In that cycle, u has two ingoing edges
⇒ The cycle has a node with two ongoing edges
⇒ One of the edges of the cycle could not have been marked

15 / 18



SLOCAL Sinkless Orientation of High Degree Nodes

2. For uv ∈ E :
• Orient towards the node with the fewest processed edges

This edge gets marked
3. At the end, all nodes are satisfied

Observations :

• At each step, we consider the connected components using marked edges
• An unsatisfied node with b marked edges towards itself is in a component of size ≥ 2b

Proof : By induction on b. For b = 0, it is true.
When edge v → u is added, indegree of u is b + 1 and indegree of v is ≥ b
If u and v where in the same component, there is a cycle of marked edges
In that cycle, u has two ingoing edges
⇒ The cycle has a node with two ongoing edges
⇒ One of the edges of the cycle could not have been marked 15 / 18



SLOCAL Sinkless Orientation

Three steps algorithm :

1. Compute a MIS I of G2T+1 with T = log(log n + 1)
• Partition into clusters : each node u selects closest element v ∈ I and join Cv

• uv inter-cluster edge if u and v in different clusters
• uv intra-cluster edge if u and v in same cluster
• GC cluster graph, with CuCv ∈ EC if inter-cluster edge between Cu and Cv

• One round in GC is O(T ) rounds in G

2. Compute SLOCAL Sinkless Orientation of High Degree Nodes on GC

• High degree clusters (at least log n + 1 neighbors) has an outgoing edge
• Low degree clusters have a node of degree ≤ 2 or a cycle

3. Depending on the cluster :
• High degree clusters compute a spanning tree toward a non-sink node of the cluster.
• Low degree clusters orient toward low degree node or cycle

16 / 18



SLOCAL Sinkless Orientation

Three steps algorithm :

1. Compute a MIS I of G2T+1 with T = log(log n + 1)
• Partition into clusters : each node u selects closest element v ∈ I and join Cv

• uv inter-cluster edge if u and v in different clusters
• uv intra-cluster edge if u and v in same cluster
• GC cluster graph, with CuCv ∈ EC if inter-cluster edge between Cu and Cv

• One round in GC is O(T ) rounds in G
2. Compute SLOCAL Sinkless Orientation of High Degree Nodes on GC

• High degree clusters (at least log n + 1 neighbors) has an outgoing edge
• Low degree clusters have a node of degree ≤ 2 or a cycle

3. Depending on the cluster :
• High degree clusters compute a spanning tree toward a non-sink node of the cluster.
• Low degree clusters orient toward low degree node or cycle

16 / 18



SLOCAL Sinkless Orientation

Three steps algorithm :

1. Compute a MIS I of G2T+1 with T = log(log n + 1)
• Partition into clusters : each node u selects closest element v ∈ I and join Cv

• uv inter-cluster edge if u and v in different clusters
• uv intra-cluster edge if u and v in same cluster
• GC cluster graph, with CuCv ∈ EC if inter-cluster edge between Cu and Cv

• One round in GC is O(T ) rounds in G
2. Compute SLOCAL Sinkless Orientation of High Degree Nodes on GC

• High degree clusters (at least log n + 1 neighbors) has an outgoing edge
• Low degree clusters have a node of degree ≤ 2 or a cycle

3. Depending on the cluster :
• High degree clusters compute a spanning tree toward a non-sink node of the cluster.
• Low degree clusters orient toward low degree node or cycle

16 / 18



SLOCAL Sinkless Orientation

Three steps algorithm :

1. Compute a MIS I of G2T+1 with T = log(log n + 1)
• Partition into clusters : each node u selects closest element v ∈ I and join Cv

• uv inter-cluster edge if u and v in different clusters
• uv intra-cluster edge if u and v in same cluster
• GC cluster graph, with CuCv ∈ EC if inter-cluster edge between Cu and Cv

• One round in GC is O(T ) rounds in G
2. Compute SLOCAL Sinkless Orientation of High Degree Nodes on GC

• High degree clusters (at least log n + 1 neighbors) has an outgoing edge
• Low degree clusters have a node of degree ≤ 2 or a cycle

3. Depending on the cluster :
• High degree clusters compute a spanning tree toward a non-sink node of the cluster.
• Low degree clusters orient toward low degree node or cycle

16 / 18



Shared Randomness Separation

Carrying input problem :
• Nodes form an oriented grid of size

√
n ×

√
n

• Nodes on the right have input 0 or 1
• Each node must copy the output on its right
• At least one of the right nodes must have

input=output

• Binary tree on each column

The complexities :
• Deterministic :

Θ(
√

n)

• Randomized :

Θ(
√

n)

• Shared Randomness :

Θ(log n)

17 / 18



Shared Randomness Separation

Carrying input problem :
• Nodes form an oriented grid of size

√
n ×

√
n

• Nodes on the right have input 0 or 1
• Each node must copy the output on its right
• At least one of the right nodes must have

input=output

• Binary tree on each column

The complexities :
• Deterministic :

Θ(
√

n)

• Randomized :

Θ(
√

n)

• Shared Randomness :

Θ(log n)

17 / 18



Shared Randomness Separation

Carrying input problem :
• Nodes form an oriented grid of size

√
n ×

√
n

• Nodes on the right have input 0 or 1
• Each node must copy the output on its right
• At least one of the right nodes must have

input=output

• Binary tree on each column

The complexities :
• Deterministic : Θ(

√
n)

• Randomized : Θ(
√

n)
• Shared Randomness : Θ(

√
n)

Θ(log n)

17 / 18



Shared Randomness Separation

Carrying input problem :
• Nodes form an oriented grid of size

√
n ×

√
n

• Nodes on the right have input 0 or 1
• Each node must copy the output on its right
• At least one of the right nodes must have

input=output
• Binary tree on each column

The complexities :
• Deterministic : Θ(

√
n)

• Randomized : Θ(
√

n)
• Shared Randomness : Θ(

√
n)

Θ(log n)

17 / 18



Shared Randomness Separation

Carrying input problem :
• Nodes form an oriented grid of size

√
n ×

√
n

• Nodes on the right have input 0 or 1
• Each node must copy the output on its right
• At least one of the right nodes must have

input=output
• Binary tree on each column

The complexities :
• Deterministic : Θ(

√
n)

• Randomized : Θ(
√

n)
• Shared Randomness : Θ(log n)

17 / 18



Bibliography

• Balliu, Hirvonen, Melnyk, Olivetti, Rybicki, Suomela. Local Mending. In SIROCCO 22.
• Balliu, Ghaffari, Kuhn, Modanese, Olivetti, Rabie, Suomela, Uitto. Shared

Randomness Helps with Local Distributed Problems. On arXiv.
• Balliu, Korhonen, Kuhn, Lievonen, Olivetti, Pai, Paz, Rybicki, Schmid, Studený,

Suomela, Uitto. Sinkless Orientation Made Simple. In SOSA 23.
• Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto. A lower bound

for the distributed Lovász local lemma. In STOC 16.
• Guy Even, Moti Medina, Dana Ron. Best of two local models : Centralized local

and distributed local algorithms In Inf. Comput. 262, 2018.
• Ghaffari, Kuhn, Maus. On the complexity of local distributed graph problems. In

STOC 17.
• Ghaffari, Su. Distributed Degree Splitting, Edge Coloring, and Orientations. In

SODA 17.
• Rosenbaum, Suomela. Seeing far vs. seeing wide In PODC 20. 18 / 18


	Volume Complexity
	Mendability
	Landscape of LOCAL Variants

