Distributed Computing
16 - LOCAL Variants

Mikaël Rabie
Université de Paris, IRIF
Sequential Complexity
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- Greedy problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own output
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- **Greedy** problems can be solved in radius $O(1)$
SLOCAL Model

- Each node is activated one after another, to compute its own output
- A node has access to the outputs already computed to produce its own
- Complexity: maximal radius needed among nodes
- Greedy problems can be solved in radius $O(1)$
Volume Complexity
CentLOCAL Model

- In parallel, each node v:
 - Knows its own ld_v and degree d_{ld_v}
 - At each step, they send a request (ld_u, k), with $k \leq d_{ld_u}$
 - They get (ld_w, d_{ld_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity: maximal number of requests from a node
In parallel, each node v:

- Knows its own ld_v and degree d_{ld_v}
- At each step, they send a request (ld_u, k), with $k \leq d_{ld_u}$
- They get (ld_w, d_{ld_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w

Complexity: maximal number of requests from a node

Request: $(14, 2)$
CentLOCAL Model

- In parallel, each node v:
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k), with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w

- Complexity: maximal number of requests from a node

Request: $(14, 2)$
CentLOCAL Model

- In parallel, each node v:
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k), with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w

- Complexity: maximal number of requests from a node

Request: $(14,2) \Rightarrow (2,4,1)$
In parallel, each node v:
- Knows its own ld_v and degree d_{ld_v}
- At each step, they send a request (ld_u, k), with $k \leq d_{ld_u}$
- They get (ld_w, d_{ld_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w

Complexity: maximal number of requests from a node

Request: (14,3)
CentLOCAL Model

- In parallel, each node v:
 - Knows its own ld_v and degree d_{ld_v}
 - At each step, they send a request (ld_u, k), with $k \leq d_{ld_u}$
 - They get (ld_w, d_{ld_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity: maximal number of requests from a node

Request: $(14, 3) \Rightarrow (8, 2, 2)$
CentLOCAL Model

- In parallel, each node v:
 - Knows its own Id_v and degree d_{Id_v}
 - At each step, they send a request (Id_u, k), with $k \leq d_{Id_u}$
 - They get (Id_w, d_{Id_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w
- Complexity: maximal number of requests from a node

Request: $(2,3)$
CentLOCAL Model

- In parallel, each node v:
 - Knows its own ld_v and degree d_{ld_v}
 - At each step, they send a request (ld_u, k), with $k \leq d_{ld_u}$
 - They get (ld_w, d_{ld_w}, k') such that $(u, v) \in E$ are connected by port k from u and k' from w

- Complexity: maximal number of requests from a node

Request: $(2,3) \Rightarrow (10,4,3)$
Problem A can be solved in time $\Theta(f(n))$ in the LOCAL model.

\Rightarrow A can be solved in time $\Omega(f(n))$ and $O(\Delta f(n))$ in the CentLOCAL model.

Even et al. (2018) showed that there is a CentLOCAL algorithm in time $O(\Delta \log^* n + \Delta^3)$ for $\leq \Delta^2$-coloring a graph.

There is a CentLOCAL algorithm in time $O(\Delta \log^* n + \Delta^3)$ for orienting a graph where the longer oriented path is of length $\leq \Delta^2$. Any greedy problem can be solved in time $O(f(\Delta) \log^* n)$.

Greedy Problems
Problem A can be solved in time $\Theta(f(n))$ in the LOCAL model

\Rightarrow A can be solved in time $\Omega(f(n))$ and $O\left(\Delta^{f(n)}\right)$ in the CentLOCAL model
Problem A can be solved in time $\Theta(f(n))$ in the LOCAL model

\Rightarrow A can be solved in time $\Omega(f(n))$ and $O\left(\Delta^{f(n)}\right)$ in the CentLOCAL model

Even et. al (2018)

There is a CentLOCAL algorithm in time $O(\Delta \times \log^* n + \Delta^3)$ for $\leq \Delta^2$-coloring a graph.

There is a CentLOCAL algorithm in time $O(\Delta \times \log^* n + \Delta^3)$ for orienting a graph where the longer oriented path is of length $\leq \Delta^2$.

Any greedy problem can be solved in time $O(f(\Delta) \times \log^* n)$.
Rosenbaum and Suomela (2020)
In the CentLOCAL model, if n is not given in advance and identifiers do not require to be polynomial in n, there is no problem whose time complexity is in $\omega(\log^* n) \cap o(n)$.

• Take N such that $T(N) \ll N$
• Do a distance N-coloring
• Simulate the algorithm with the new identifiers
Rosenbaum and Suomela (2020)

In the CentLOCAL model, if \(n \) is not given in advance and identifiers do not require to be polynomial in \(n \), there is no problem whose time complexity is in \(\omega(\log^* n) \cap o(n) \).

- Take \(N \) such that \(T(N) \ll N \)
- Do a distance \(N \)-coloring
- Simulate the algorithm with the new identifiers
Waking Up Complexity
Sleeping LOCAL Model

- At each round, a node decides if it is active or not
- A communicates only with its active neighbors
- Complexity: maximal number of active rounds for a single node
Sleeping LOCAL Model

- At each round, a node decides if it is active or not
- A communicates only with its active neighbors
- Complexity: maximal number of active rounds for a single node
Sleeping LOCAL Model

- At each round, a node decides if it is active or not
- A communicates only with its active neighbors
- Complexity: maximal number of active rounds for a single node
Δ + 1-coloring can be solved in $O(\Delta)$ rounds
Δ + 1-coloring can be solved in $O(\Delta)$ rounds:

- Round 1: all nodes are activated. Know their identifiers and their neighbours’.
- Node of Identifier Id wakes up at round $Id + 1$ to know their neighbours’ colors.
- Neighbours of node of identifier Id also wakes up at that round.
Δ + 1-coloring can be solved in $O(\Delta)$ rounds:

- Round 1: all nodes are activated. Know their identifiers and their neighbours’.
- Node of Identifier Id wakes up at round $Id + 1$ to know their neighbours’ colors.
- Neighbours of node of identifier Id also wakes up at that round.

Problem A can be solved in time $f(n)$ in the SLOCAL model.

$
\Rightarrow A$ can be solved in time $f(n)$ in the Sleeping LOCAL model.
A Link with SLOCAL

$\Delta + 1$-coloring can be solved in $O(\Delta)$ rounds:

- Round 1: all nodes are activated. Know their identifiers and their neighbours’.
- Node of Identifier Id wakes up at round $Id + 1$ to know their neighbours’ colors.
- Neighbours of node of identifier Id also wakes up at that round.

Problem A can be solved in time $f(n)$ in the SLOCAL model

$\Rightarrow A$ can be solved in time $O(f(n)\Delta^{f(n)})$ in the Sleeping LOCAL model.
Any graph problem can be solved in $O(\log n)$ rounds in the Sleeping LOCAL model.
Barenboim and Maimon (2021)

Any graph problem can be solved in $O(\log n)$ rounds in the Sleeping LOCAL model.

Distributed Layered Tree (DLT) - Oriented Spanning Tree such as:

- Each vertex has a label
- The label of a vertex is smaller than its parent’s
- Each vertex knows the label of its neighbours in the tree
Full Knowledge of the Graph

Barenboim and Maimon (2021)
Any graph problem can be solved in $O(\log n)$ rounds in the Sleeping LOCAL model.

Distributed Layered Tree (DLT) - Oriented Spanning Tree such as:

- Each vertex has a label
- The label of a vertex is smaller than its parent’s
- Each vertex knows the label of its neighbours in the tree

Constant Coordination
Broadcast and Convergecast can be done in $O(1)$ rounds in a DLT.
Building a DLT

Barenboim and Maimon (2021)
A DLT can be built in $O(\log n)$ rounds in the Sleeping LOCAL model.

- Labels are of the form (a, b), ordered lexicographically.
- At the beginning, all nodes have label $(ld(u), 0)$.
- At the beginning of each expand step, all nodes of a subtree T are of the form $(L(T), b)$.
- Repeat $\log n$ times:
 1. Select a neighbour Tree T' with smaller label $(L(T) > L(T'))$.
 2. Merge T and T', using an edge (u, v).
 3. If T could not choose a neighbour and was not selected
 T chooses a tree T' to join using an edge (u, v).
 4. All nodes learn their new neighbours in the tree.
 5. Change the labels in T such as the second part is the distance to v.
 6. Convergecast to gather the new structure of the component C to the root r.
 7. Broadcast a new labelling $(L(r), \text{dist}(r))$.
• Alkida Balliu, Juho Hirvonen, Darya Melnyk, Dennis Olivetti, Joel Rybicki, Jukka Suomela. **Local Mending**. arXiv 2021.
• Leonid Barenboim, Tzalik Maimon. **Deterministic Logarithmic Completeness in the Distributed Sleeping Model**. In DISC 2021.
• Mohsen Ghaffari, Fabian Kuhn, Yannic Maus. **On the complexity of local distributed graph problems**. In STOC 2017.
• Rosenbaum, Suomela. **Seeing far vs. seeing wide** In PODC 2020.