Distributed Computing

2 - Port Numbering Model

Mikaël Rabie (mikael.rabie@irif.fr - he/him) Université Paris-Cité, IRIF

Model Definition

Formal Definition - PN

A **Port-Numbered Network** is a triple (V, P, p):

- V is the set of nodes
- P is the set of ports. $P \subseteq V \times \mathbb{N}$
- p: P → P is the function that connects ports.
 p(u,i) gives the node v to which u is connected, and to which port of v u is connected.
 We have p(p(u,i)) = (u,i).

Edges can be deduced from p.

Formal Definition - Algorithm

- **States** : *S* (not necessarily finite)
- **Input** : *I* (*I* might be a singleton if we do not provide inputs)
- Output : $O \subseteq S$
 - Can be directly vertex output.
 - Can be edge output (gives a mapping of outputs to each port of the vertex).
- Messages : M
- **Execution Functions** (depending on degree *d* of the node) :
 - $init_d: I \rightarrow S$
 - $send_d: S \rightarrow M^d$ (sends message i through port i)
 - $receive_d: S \times M^d \to S$ (receives the d messages from the ports and updates the state) $\forall o \in O$, we have $receive_d(o, m) = o$.
- Algorithm : $(I, S, O, M, (init_d)_{d \in \mathbb{N}}, (send_d)_{d \in \mathbb{N}}, (receive_d)_{d \in \mathbb{N}})$

Formal Definition - Distributed Graph Problems

From our network triple (V, P, p):

- **Initialization** : $f: V \rightarrow I$ (pre-labelling of the nodes)
- Configuration : $x : V \rightarrow S$
- Transition : $x_k \rightarrow x_{k+1}$

For each $v \in V$ of degree d, if p(v, i) = (u, j),

 m_i corresponds to the jth element of $send_{d'}(x_k(u))$,

we have $x_{k+1}(v) = receive_d(x_k(v), m_1, \dots, m_d)$.

- **Execution**: x_0, x_1, \ldots such that $x_0(v) = init_d(f(v))$ and for each $k, x_k \to x_{k+1}$
- End of execution : first k such that $\forall v \in V$, $x_k(v) \in O$

Formal Definition - Problem Solving

- **Distributed Graph Problems** : Π such as, for a PN Network N = (V, P, p), $\Pi(N)$ is the set of accepted labellings.
- Solution : $f: V \to O$ such as $f \in \Pi(N)$
- Algorithm \mathcal{A} **Solves** Π from input Π' on N in time k if For any $f_{init} \in \Pi'$, we have a sequence x_0, \ldots, x_k' starting from f_{init} with $k' \leq k$ and $x_k' \in \Pi$.
- Algorithm $\mathcal A$ Solves Π from input Π' on family $\mathfrak F$ of graphs in time $T:\mathbb N\to\mathbb N$ if For any PN Network N=(V,P,p) representing a graph $G\in\mathfrak F$, $\mathcal A$ solves Π from input Π' on N in time T(|V|)

3 Algorithms

■ **𝑸** : Paths.

■ Π : 3-colored paths.

• Π' : proper coloring of the path.

■ **𝑸** : Paths.

■ Π : 3-colored paths.

• Π' : proper coloring of the path.

- **𝑸** : Paths.
- Π : 3-colored paths.
- Π' : proper coloring of the path.

- **𝑸** : Paths.
- Π : 3-colored paths.
- Π' : proper coloring of the path.

- **𝑸** : Paths.
- Π: 3-colored paths.
- Π' : proper coloring of the path.

- **𝑸** : Paths.
- Π: 3-colored paths.
- Π' : proper coloring of the path.

- **𝑸** : Paths.
- Π : 3-colored paths.
- Π' : proper coloring of the path.

- \mathfrak{F} : Paths.
- Π: 3-colored paths.
- Π' : proper coloring of the path.

- \mathfrak{F} : Paths.
- Π: 3-colored paths.
- Π' : proper coloring of the path.

- **𝑸** : Paths.
- Π : 3-colored paths.
- Π' : proper coloring of the path.

- \mathfrak{F} : Paths.
- Π : 3-colored paths.
- Π' : proper coloring of the path.

3-coloring Algorithm

- $S = \mathbb{N}^+$
- $I = \mathbb{N}^+$
- $O = \{1, 2, 3\}$
- $M = \mathbb{N}^+$
- $init_d(x) = x, \forall d < 2$
- $send_d(x) = x^d, \forall d \leq 2$
- $receive_d(x, Y) = min(\mathbb{N} \setminus (Y \cup \{x\}))$ if $x \ge 4$ and x > Y, $receive_d(x, Y) = x$ otherwise.
- Complexity?

3-coloring Algorithm

- $S = \mathbb{N}^+$
- $I = \mathbb{N}^+$
- $O = \{1, 2, 3\}$
- $M = \mathbb{N}^+$
- $init_d(x) = x, \forall d < 2$
- $send_d(x) = x^d, \forall d \leq 2$
- $receive_d(x, Y) = min(\mathbb{N} \setminus (Y \cup \{x\}))$ if $x \ge 4$ and x > Y, $receive_d(x, Y) = x$ otherwise.
- Complexity : O(n)

Maximal Matching on Bipartite Graphs

- \mathfrak{F} : Bipartite Graphs.
- Π : Maximal Matching.
- Π' : Black/White-coloring.

Maximal Matching Algorithm

Maximal Matching Algorithm

Maximal Matching Algorithm

Vertex Cover 3-approximation

Vertex Cover : $C \subseteq V$ such that each edge $e = \{u, v\} \in V^2$ has at least one endpoint in C.

- \mathfrak{F} : Any graphs.
- Π : 3-approximation of Vertex-Cover.
- Π' : Nothing.

Graph

 $\mathsf{Graph} \Rightarrow \mathsf{Duplicate}\ \mathsf{Nodes}$

 $\mathsf{Graph} \Rightarrow \mathsf{Duplicate} \ \mathsf{Nodes} \Rightarrow \mathsf{Find} \ \mathsf{a} \ \mathsf{Maximal} \ \mathsf{Matching}$

 $\mathsf{Graph} \Rightarrow \mathsf{Duplicate} \ \mathsf{Nodes} \Rightarrow \mathsf{Find} \ \mathsf{a} \ \mathsf{Maximal} \ \mathsf{Matching} \Rightarrow \mathsf{Take} \ \mathsf{Matched} \ \mathsf{Nodes}$

Analysis

- C is a Vertex Cover :
 - In the virtual graph, each edge touches an edge of the Maximal Matching
 - In the virtual graph, each edge touches a node in C
 - In the graph, each edge touches a node in C
- It is a 3-approximation of any Vertex Cover C*:
 - The Maximal Matching in the virtual graph forms cycles and paths in the graph
 - C* is a Vertex Cover of those cycles and paths
 - Any Vertex Cover of a cycle uses at least half of the nodes
 - Any Vertex Cover of a path uses at least a third of the nodes

Impossibility

k-Coloring a path

- \mathfrak{F} : Paths.
- Π : k-colored paths.
- Π' : Nothing.

k-Coloring a path

- \mathfrak{F} : Paths.
- Π : k-colored paths.
- Π' : Nothing.

Maximal Matching a cycle

ullet \mathfrak{F} : Cycles.

■ Π : Maximal Matching.

• Π' : Nothing.

Maximal Matching a cycle

ullet ${\mathfrak F}$: Cycles.

■ Π : Maximal Matching.

• Π' : Nothing.

Break Symmetry

Tools to break symmetry:

- Identifiers (LOCAL Model)
- Randomness (Simulation of LOCAL model)
- Inputs
- . . .

Exercise

Design an algorithm for the Maximal Matching in a k-colored graph.

Bibliography

- Jukka Suomela's courses (https://jukkasuomela.fi/da2020/da2020-03.pdf)
- Dana Angluin. Local and global properties in networks of processors. In Proc. 12th Annual ACM Symposium on Theory of Computing (STOC 1980), 1980.
- Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. On the distributed complexity of computing maximal matchings. In Proc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1998), 1998.
- Valentin Polishchuk and Jukka Suomela. A simple local 3-approximation algorithm for vertex cover. Information Processing Letters, 109(12):642–645, 2009.