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Formal Definition - PN

A Port-Numbered Network is a triple (V, P, p) :

=V is the set of nodes
= P is the set of ports. P C V x N

= p: P — Pis the function that connects ports.
p(u, i) gives the node v to which u is connected, and to which port of v u is connected.

We have p(p(u,i)) = (u,i).
Edges can be deduced from p.
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Formal Definition - Algorithm

= States : S (not necessarily finite)

= Input : / (/ might be a singleton if we do not provide inputs)
= Qutput: OCS
= Can be directly vertex output.
= Can be edge output (gives a mapping of outputs to each port of the vertex).
= Messages : M
= Execution Functions (depending on degree d of the node) :
= jnity: 1 — S
= sendy : S — M9 (sends message i through port i)

= receiveg: Sx M4 — S (receives the d messages from the ports and updates the state)
Vo € O, we have receivey(o, m) = o.

= Algorithm : (/, S, 0, M, (initd)deNy (sendd)deN, (received)deN)
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Formal Definition - Distributed Graph Problems

From our network triple (V, P, p) :

= Initialization : f : V — | (pre-labelling of the nodes)
= Configuration : x : V — S

= Transition : xx — X1
For each v € V of degree d, if p(v,i) = (u,j),
mj corresponds to the j™ element of sendg (x(u)),
we have xx11(v) = receiveq(xk(v), mi,..., mg).

= Execution : xg, x1, ... such that xo(v) = inity(f(v)) and for each k, xx — Xxkt1

» End of execution : first k such that Vv € V, x(v) € O
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Formal Definition - Problem Solving

Distributed Graph Problems : I1 such as, for a PN Network N = (V, P, p),
M(N) is the set of accepted labellings.

= Solution : f : V — O such as f € [1(N)
= Algorithm A Solves I from input " on N in time k if

For any fi,i: € ", we have a sequence xg, ..., X
starting from fi,;r with k' < k and x;, € I,
= Algorithm A Solves 1 from input " on family § of graphs in time 7 : N — N if
For any PN Network N = (V/, P, p) representing a graph G € §,
A solves I from input M’ on N in time T(|V|)
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3 Algorithms
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= [1: 3-colored paths.
= 1" : proper coloring of the path.
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3-coloring Algorithm

= S=N*

« /=N*t

« 0={1,2,3}
« M=NTt

= initg(x) = x, Vd < 2
= sendy(x) = x?, Vd < 2

= receiveq(x,Y) =min(N\ (Y U{x})) if x >4 and x > Y, receivey(x, Y) = x otherwise.

= Complexity ?
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3-coloring Algorithm

= S=N*

« /=N*t

« 0={1,2,3}
« M=NTt

= initg(x) = x, Vd < 2
= sendy(x) = x?, Vd < 2

= receiveq(x,Y) =min(N\ (Y U{x})) if x >4 and x > Y, receivey(x, Y) = x otherwise.
= Complexity : O(n)
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Maximal Matching on Bipartite Graphs

= § : Bipartite Graphs.
= [1: Maximal Matching.
= [’ : Black/White-coloring.

2 1 1 1 2 2 1 2 1 2 1 1
..... Q . O . O . O
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Vertex Cover 3-approximation

Vertex Cover : C C V such that each edge e = {u, v} € V? has at least one endpoint in C.

= §: Any graphs.
= [1: 3-approximation of Vertex-Cover.
= 1 : Nothing.
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Virtual Bipartite Black/White Graph

Graph
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Virtual Bipartite Black/White Graph
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Virtual Bipartite Black/White Graph

9} @ 2
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Graph = Duplicate Nodes = Find a Maximal Matching = Take Matched Nodes
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Analysis

= Cis a Vertex Cover :
= In the virtual graph, each edge touches an edge of the Maximal Matching
= In the virtual graph, each edge touches a node in C
= In the graph, each edge touches a node in C
= |t is a 3-approximation of any Vertex Cover C* :
= The Maximal Matching in the virtual graph forms cycles and paths in the graph
= (" is a Vertex Cover of those cycles and paths
= Any Vertex Cover of a cycle uses at least half of the nodes
= Any Vertex Cover of a path uses at least a third of the nodes

O O O

O O O O O
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Impossibility




k-Coloring a path

= § : Paths.
= [1: k-colored paths.
= 1" : Nothing.
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k-Coloring a path

= § : Paths.
= [1: k-colored paths.
= 1" : Nothing.
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Maximal Matching a cycle

= § : Cycles.
= [1: Maximal Matching.
= 1 : Nothing.
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Maximal Matching a cycle

= § : Cycles.
= [1: Maximal Matching.
= 1 : Nothing.
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Break Symmetry

Tools to break symmetry :

= |dentifiers (LOCAL Model)
= Randomness (Simulation of LOCAL model)
= Inputs
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Exercise

Design an algorithm for the Maximal Matching in a k-colored graph.

18/19



Bibliography

= Jukka Suomela’s courses (https ://jukkasuomela.fi/da2020/da2020-03.pdf)

= Dana Angluin. Local and global properties in networks of processors. In Proc. 12th
Annual ACM Symposium on Theory of Computing (STOC 1980), 1980.

= Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. On the distributed
complexity of computing maximal matchings. In Proc. 9th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 1998), 1998.

= Valentin Polishchuk and Jukka Suomela. A simple local 3-approximation algorithm
for vertex cover. Information Processing Letters, 109(12) :642—645, 2009.

19/19



	Model Definition
	3 Algorithms
	Impossibility

