Distributed Computing

3 - Port Numbering Model

Mikaël Rabie (mikael.rabie@irif.fr)
Université de Paris, IRIF
Model Definition
From LOCAL to Port-Numbering

\[37 \quad 52 \quad 8 \quad 32 \quad 46 \quad 47 \quad 73 \]

\[\ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \]

Diagram shows nodes numbered 37, 52, 8, 32, 46, 47, and 73, connected with arrows.
From LOCAL to Port-Numbering
From LOCAL to Port-Numbering
From LOCAL to Port-Numbering

......

37 52 8 32 46 47 73

......

2 1 1 1 2 2 1 2 1 2 1 1
Communication

0 communication round

![Diagram of a communication round with a central node u connected to six other nodes, labeled with indices 1 to 6, and distances indicated by d_u^i.](attachment:image.png)
0 communication round

\[d_u^0\]

\[u \quad v \quad d \quad v \quad 1 \quad v \quad 2 \quad v \quad 3 \quad v \quad 4 \quad v \quad 5 \quad v \quad 6 \quad v \quad v_d \quad v_1 \quad v_2 \quad v_3 \quad v_4 \quad v_5 \quad v_6\]
1 communication round
Communication

1 communication round
A **Port-Numbered Network** is a triple \((V, P, p)\):

- \(V\) is the set of nodes
- \(P\) is the set of ports. \(P \subseteq V \times \mathbb{N}\)
- \(p : P \rightarrow P\) is the function that connects ports.

 \(p(u, i)\) gives the node \(v\) to which \(u\) is connected, and to which port of \(v\) \(u\) is connected.
 We have \(p(p(u, i)) = (u, i)\).

Edges can be deduced from \(p\).
Formal Definition - Algorithm

- **States**: \(S \) (not necessarily finite)
- **Input**: \(I \) (\(I \) might be a singleton if we do not provide inputs)
- **Output**: \(O \subseteq S \)
 - Can be directly vertex output.
 - Can be edge output (gives a mapping of outputs to each port of the vertex).
- **Messages**: \(M \)
- **Execution Functions** (depending on degree \(d \) of the node):
 - \(\text{init}_d : I \rightarrow S \)
 - \(\text{send}_d : S \rightarrow M^d \) (sends message \(i \) through port \(i \))
 - \(\text{receive}_d : S \times M^d \rightarrow S \) (receives the \(d \) messages from the ports and updates the state)
 \(\forall o \in O, \text{ we have } \text{receive}_d(o, m) = o. \)
- **Algorithm**: \((I, S, O, M, (\text{init}_d)_{d \in \mathbb{N}}, (\text{send}_d)_{d \in \mathbb{N}}, (\text{receive}_d)_{d \in \mathbb{N}}) \)
Formal Definition - Distributed Graph Problems

From our network triple \((V, P, p)\):

- **Initialization** : \(f : V \rightarrow I\) (pre-labelling of the nodes)
- **Configuration** : \(x : V \rightarrow S\)
- **Transition** : \(x_k \rightarrow x_{k+1}\)
 For each \(v \in V\) of degree \(d\), if \(p(v, i) = (u, j)\),
 \(m_i\) corresponds to the \(j^{th}\) element of \(send_{d'}(x_k(u))\),
 we have \(x_{k+1}(v) = receive_d(x_k(v), m_1, \ldots, m_d)\).
- **Execution** : \(x_0, x_1, \ldots\) such that \(x_0(v) = init_d(f(v))\) and for each \(k\), \(x_k \rightarrow x_{k+1}\)
- **End** of execution : first \(k\) such that \(\forall v \in V, x_k(v) \in O\)
Formal Definition - Problem Solving

- **Distributed Graph Problems**: Π such as, for a PN Network $N = (V, P, p)$, $\Pi(N)$ is the set of accepted labellings.

- **Solution**: $f : V \rightarrow O$ such as $f \in \Pi(N)$

- Algorithm A **Solves** Π from input Π' on N in time k if

 For any $f_{init} \in \Pi'$, we have a sequence x_0, \ldots, x'_k
 starting from f_{init} with $k' \leq k$ and $x'_k \in \Pi$.

- Algorithm A **Solves** Π from input Π' on family \mathcal{F} of graphs in time $T : \mathbb{N} \rightarrow \mathbb{N}$ if

 For any PN Network $N = (V, P, p)$ representing a graph $G \in \mathcal{F}$,
 A solves Π from input Π' on N in time $T(|V|)$
3 Algorithms
3-coloring a path

- \mathcal{F}: Paths.
- Π: 3-colored paths.
- Π': proper coloring of the path.

Idea: Local maximums choose the smallest possible color.
3-coloring a path

- \mathcal{F}: Paths.
- Π: 3-colored paths.
- Π': proper coloring of the path.

Idea: Local maximums choose the smallest possible color.
3-coloring a path

- \mathcal{F}: Paths.
- Π: 3-colored paths.
- Π': proper coloring of the path.

Idea: Local maximums choose the smallest possible color.
3-coloring a path

- \mathcal{F}: Paths.
- Π: 3-colored paths.
- Π': proper coloring of the path.

Idea: Local maximums choose the smallest possible color.
3-coloring a path

- \mathcal{F}: Paths.
- Π: 3-colored paths.
- Π': proper coloring of the path.

Idea: Local maximums choose the smallest possible color.
3-coloring a path

- \mathcal{F}: Paths.
- Π: 3-colored paths.
- Π': proper coloring of the path.

Idea: Local maximums choose the smallest possible color.
3-coloring a path

- \mathcal{F}: Paths.
- Π: 3-colored paths.
- Π': proper coloring of the path.

Idea: Local maximums choose the smallest possible color.
3-coloring a path

- $\tilde{\mathcal{F}}$: Paths.
- Π: 3-colored paths.
- Π': proper coloring of the path.

Idea: Local maximums choose the smallest possible color.
3-coloring a path

- \mathbb{F}: Paths.
- Π: 3-colored paths.
- Π': proper coloring of the path.

Idea: Local maximums choose the smallest possible color.
3-coloring a path

- \mathcal{F}: Paths.
- Π: 3-colored paths.
- Π': proper coloring of the path.

Idea: Local maximums choose the smallest possible color.
3-coloring a path

- $\tilde{\mathcal{F}}$: Paths.
- Π: 3-colored paths.
- Π': proper coloring of the path.

Idea: Local maximums choose the smallest possible color.
3-coloring Algorithm

- $S = \mathbb{N}^+$
- $I = \mathbb{N}^+$
- $O = \{1, 2, 3\}$
- $M = \mathbb{N}^+$
- $init_d(x) = x, \forall d \leq 2$
- $send_d(x) = x^d, \forall d \leq 2$
- $receive_d(x, Y) = \min(\mathbb{N} \setminus (Y \cup \{x\}))$ if $x \geq 4$ and $x > Y$, $receive_d(x, Y) = x$ otherwise.

- Complexity?
3-coloring Algorithm

- $S = \mathbb{N}^+$
- $I = \mathbb{N}^+$
- $O = \{1, 2, 3\}$
- $M = \mathbb{N}^+$
- $\text{init}_d(x) = x$, $\forall d \leq 2$
- $\text{send}_d(x) = x^d$, $\forall d \leq 2$
- $\text{receive}_d(x, Y) = \min(\mathbb{N} \setminus (Y \cup \{x\}))$ if $x \geq 4$ and $x > Y$, $\text{receive}_d(x, Y) = x$ otherwise.

- Complexity : $O(n)$
Maximal Matching on Bipartite Graphs

- \mathcal{F}: Bipartite Graphs.
- Π: Maximal Matching.
- Π': Black/White-coloring.
Maximal Matching Algorithm

Very simple algorithm

unmatched white nodes:
send proposal to port 1
Maximal Matching Algorithm

Very simple algorithm

unmatched white nodes: send proposal to port 1

black nodes: accept the first proposal you get, reject everything else (break ties with port numbers)
Maximal Matching Algorithm

Very simple algorithm

unmatched white nodes:
send *proposal* to port 1

black nodes:
accept the first proposal you get, *reject* everything else
(break ties with port numbers)
Maximal Matching Algorithm

Very simple algorithm

unmatched white nodes: send proposal to port 2
Maximal Matching Algorithm

Very simple algorithm

unmatched white nodes:
send *proposal* to port 2

black nodes:
accept the first proposal you get, *reject* everything else
(break ties with port numbers)
Maximal Matching Algorithm

Very simple algorithm

unmatched white nodes:
send *proposal* to port 2

black nodes:
accept the first proposal you get, reject everything else (break ties with port numbers)
Maximal Matching Algorithm

Very simple algorithm

unmatched white nodes:
send proposal to port 3
Maximal Matching Algorithm

Very simple algorithm

unmatched white nodes: send *proposal* to port 3

black nodes: accept the first proposal you get, reject everything else (break ties with port numbers)
Maximal Matching Algorithm

Very simple algorithm

unmatched white nodes:
send proposal to port 3

black nodes:
accept the first proposal you get, reject everything else
(break ties with port numbers)
Maximal Matching Algorithm

Very simple algorithm

Finds a *maximal matching* in $O(\Delta)$ communication rounds.

Note: running time does not depend on n.
Vertex Cover 3-approximation

Vertex Cover: $C \subseteq V$ such that each edge $e = \{u, v\} \in V^2$ has at least one endpoint in C.

- \mathcal{F}: Any graphs.
- Π: 3-approximation of Vertex-Cover.
- Π': Nothing.
Virtual Bipartite Black/White Graph

Graph
Virtual Bipartite Black/White Graph

Graph \Rightarrow Duplicate Nodes
Virtual Bipartite Black/White Graph

Graph \Rightarrow Duplicate Nodes \Rightarrow Find a Maximal Matching
Virtual Bipartite Black/White Graph

Graph \rightarrow \text{Duplicate Nodes} \rightarrow \text{Find a Maximal Matching} \rightarrow \text{Take Matched Nodes}
Analysis

- **C is a Vertex Cover:**
 - In the virtual graph, each edge touches an edge of the Maximal Matching
 - In the virtual graph, each edge touches a node in \(C \)
 - In the graph, each edge touches a node in \(C \)

- **It is a 3-approximation of any Vertex Cover \(C^* \):**
 - The Maximal Matching in the virtual graph forms cycles and paths in the graph
 - \(C^* \) is a Vertex Cover of those cycles and paths
 - Any Vertex Cover of a cycle uses at least half of the nodes
 - Any Vertex Cover of a path uses at least a third of the nodes
Impossibility
k-Coloring a path

- \mathcal{F}: Paths.
- Π: k-colored paths.
- Π': Nothing.
k-Coloring a path

- \mathcal{F}: Paths.
- Π: k-colored paths.
- Π': Nothing.
Maximal Matching a cycle

- \mathcal{F} : Cycles.
- Π : Maximal Matching.
- Π' : Nothing.
Maximal Matching a cycle

- \mathfrak{F}: Cycles.
- Π: Maximal Matching.
- Π': Nothing.
Break Symmetry

Tools to break symmetry:

- Identifiers (LOCAL Model)
- Randomness (Simulation of LOCAL model)
- Inputs
- ...
Exercise

Design an algorithm for the Maximal Matching in a k-colored graph.
Bibliography

- Jukka Suomela’s courses (https://jukkasuomela.fi/da2020/da2020-03.pdf)