
Distributed Computing
12 - Sleeping Model

Mikaël Rabie
Université Paris Cité, IRIF



The Awaken Complexity



Distributed Sleeping Model

• LOCAL model
• At each round, a node decides if it is active or not
• A node communicates only with its active neighbors
• Complexity : maximal number of awaken rounds for a single node

2 / 15



Distributed Sleeping Model

• LOCAL model
• At each round, a node decides if it is active or not
• A node communicates only with its active neighbors
• Complexity : maximal number of awaken rounds for a single node

2 / 15



Distributed Sleeping Model

• LOCAL model
• At each round, a node decides if it is active or not
• A node communicates only with its active neighbors
• Complexity : maximal number of awaken rounds for a single node

2 / 15



∆ + 1-Coloring in O(∆) awaken rounds

43

• Round 0 : Learn the identifiers of my neighbors
• For each i ∈ N(u)≤1, round i : Wake up
• Round 2 : Node 2 chooses its color

Drawback : The round complexity is O(M), M being the maximal identifier.

3 / 15



∆ + 1-Coloring in O(∆) awaken rounds

4390

2

68

21

63

42

24

• Round 0 : Learn the identifiers of my neighbors

• For each i ∈ N(u)≤1, round i : Wake up
• Round 2 : Node 2 chooses its color

Drawback : The round complexity is O(M), M being the maximal identifier.

3 / 15



∆ + 1-Coloring in O(∆) awaken rounds

4390

2

68

21

63

42

24

• Round 0 : Learn the identifiers of my neighbors
• For each i ∈ N(u)≤1, round i : Wake up

• Round 2 : Node 2 chooses its color

Drawback : The round complexity is O(M), M being the maximal identifier.

3 / 15



∆ + 1-Coloring in O(∆) awaken rounds

4390

2

68

21

63

42

24

• Round 0 : Learn the identifiers of my neighbors
• For each i ∈ N(u)≤1, round i : Wake up
• Round 2 : Node 2 chooses its color

Drawback : The round complexity is O(M), M being the maximal identifier.

3 / 15



∆ + 1-Coloring in O(∆) awaken rounds

4390

2

68

21

63

42

24

• Round 0 : Learn the identifiers of my neighbors
• For each i ∈ N(u)≤1, round i : Wake up
• Round 2 : Node 2 chooses its color

Drawback : The round complexity is O(M), M being the maximal identifier.

3 / 15



∆ + 1-Coloring in O(∆) awaken rounds

4390

2

68

21

63

42

24

• Round 0 : Learn the identifiers of my neighbors
• For each i ∈ N(u)≤1, round i : Wake up
• Round 21 : Node 21 chooses its color

Drawback : The round complexity is O(M), M being the maximal identifier.

3 / 15



∆ + 1-Coloring in O(∆) awaken rounds

4390

2

68

21

63

42

24

• Round 0 : Learn the identifiers of my neighbors
• For each i ∈ N(u)≤1, round i : Wake up
• Round 21 : Node 21 chooses its color

Drawback : The round complexity is O(M), M being the maximal identifier.

3 / 15



∆ + 1-Coloring in O(∆) awaken rounds

4390

2

68

21

63

42

24

• Round 0 : Learn the identifiers of my neighbors
• For each i ∈ N(u)≤1, round i : Wake up
• Round 24 : Node 24 chooses its color

Drawback : The round complexity is O(M), M being the maximal identifier.

3 / 15



∆ + 1-Coloring in O(∆) awaken rounds

4390

2

68

21

63

42

24

• Round 0 : Learn the identifiers of my neighbors
• For each i ∈ N(u)≤1, round i : Wake up
• Round 42 : Node 42 chooses its color

Drawback : The round complexity is O(M), M being the maximal identifier.

3 / 15



∆ + 1-Coloring in O(∆) awaken rounds

4390

2

68

21

63

42

24

• Round 0 : Learn the identifiers of my neighbors
• For each i ∈ N(u)≤1, round i : Wake up
• Round 43 : u learns colors of nodes 2, 21, 24, 42 and chooses its color

Drawback : The round complexity is O(M), M being the maximal identifier.

3 / 15



∆ + 1-Coloring in O(∆) awaken rounds

4390

2

68

21

63

42

24

• Round 0 : Learn the identifiers of my neighbors
• For each i ∈ N(u)≤1, round i : Wake up
• Round 43 : u learns colors of nodes 2, 21, 24, 42 and chooses its color

Drawback : The round complexity is O(M), M being the maximal identifier.

3 / 15



∆ + 1-Coloring in O(∆) awaken rounds

4390

2

68

21

63

42

24

• Round 0 : Learn the identifiers of my neighbors
• For each i ∈ N(u)≤1, round i : Wake up
• Round 63 : Node 63 learns color of u and chooses its color

Drawback : The round complexity is O(M), M being the maximal identifier.

3 / 15



∆ + 1-Coloring in O(∆) awaken rounds

4390

2

68

21

63

42

24

• Round 0 : Learn the identifiers of my neighbors
• For each i ∈ N(u)≤1, round i : Wake up
• Round 63 : Node 63 learns color of u and chooses its color

Drawback : The round complexity is O(M), M being the maximal identifier. 3 / 15



Reduce K colors in log K awake rounds

Barenboim and Maimon (2021)
Given a K -coloring of the graph, we can compute a (∆ + 1)-coloring in O(log K ) awaken
rounds and O(K ) rounds in the Sleeping LOCAL model.

4 / 15



Reduce K colors in log K awake rounds

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

4 / 15



Reduce K colors in log K awake rounds

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

4 / 15



Reduce K colors in log K awake rounds

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

4 / 15



Reduce K colors in log K awake rounds

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

4 / 15



Reduce K colors in log K awake rounds

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

4 / 15



Reduce K colors in log K awake rounds

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

4 / 15



Reduce K colors in log K awake rounds

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

4 / 15



The log n Complexity



Full Knowledge of the Graph

Barenboim and Maimon (2021)
Any graph problem can be solved in O(log n) awaken rounds in the Sleeping LOCAL model.

This algorithm takes O(poly M) rounds.

Distributed Layered Tree (DLT) - Oriented Spanning Tree such as :

• Each vertex has a label
• The label of a vertex is bigger than its parent’s
• Each vertex knows the label of its neighbours in the tree

Constant Coordination
Broadcast and Convergecast can be done in O(1) rounds in a DLT.

5 / 15



Full Knowledge of the Graph

Barenboim and Maimon (2021)
Any graph problem can be solved in O(log n) awaken rounds in the Sleeping LOCAL model.

This algorithm takes O(poly M) rounds.

Distributed Layered Tree (DLT) - Oriented Spanning Tree such as :

• Each vertex has a label
• The label of a vertex is bigger than its parent’s
• Each vertex knows the label of its neighbours in the tree

Constant Coordination
Broadcast and Convergecast can be done in O(1) rounds in a DLT.

5 / 15



Building a DLT

Barenboim and Maimon (2021)
A DLT can be built in O(log n) awaken rounds in the Sleeping LOCAL model.

6 / 15



Building a DLT

Tree Idu1

u1

(Idu1 , 0)

u
(Idu1 , du)

• Labels are of the form (a, b), ordered lexicographically.
• At the beginning, all nodes have label (Id(u), 0).
• At the beginning of each expand step, all nodes of a subtree T are of the form (L(T ), b).

6 / 15



Building a DLT

Tree Idu1

u1

(Idu1 , 0)

u
(Idu1 , du)

Tree Idu2

u2

(Idu2 , 0)

v
(Idu2 , dv )

Idu1 > Idu2

• Repeat log n times :

1. Select a neighbour Tree T ′ with smaller label (Idu1 > Idu2).

6 / 15



Building a DLT

Tree Idu1

u1

(Idu1 , du)

u
(Idu1 , 0)

Tree Idu2

u2

(Idu2 , 0)

v
(Idu2 , dv )

Idu1 > Idu2

• Repeat log n times :

2. Merge T and T ′, using an edge (u, v).

6 / 15



Building a DLT

Tree Idu1

u1

(Idu1 , 0)

u
(Idu1 , du)

Tree Idu2

u2

(Idu2 , 0)

v
(Idu2 , dv )

Idu1 < Idu2

• Repeat log n times :

3. If T could not choose a neighbour and was not selected
T chooses a tree T ′ to join using an edge (u, v).
This forms a star of trees around T ′ ⇒ O(1) merge rounds.

6 / 15



Building a DLT

u1

(Idu2 , du + dv + 1)

u
(Idu2 , dv + 1)

Tree Idu2

u2

(Idu2 , 0)

v
(Idu2 , dv )

• Repeat log n times :

3. If T could not choose a neighbour and was not selected
T chooses a tree T ′ to join using an edge (u, v).
This forms a star of trees around T ′ ⇒ O(1) merge rounds.

6 / 15



Building a DLT

u1

(Idu2 , du + dv + 1)

u
(Idu2 , dv + 1)

Tree Idu2

u2

(Idu2 , 0)

v
(Idu2 , dv )

• Repeat log n times :

4. All nodes learn their new neighbours in the tree.
5. Convergecast to gather the new structure of the component C to the root r .
6. Broadcast a new labelling (L(r), dist(r)).

6 / 15



Sleeping Lower Bound

Augustine et. al (2022)
Any algorithm to solve 2-coloring with probability exceeding 1/8 on a ring network requires
Ω(log n) awake time.

v u

• After k rounds, a node knows about some segment that includes itself
• No node v on the left of u in the path can know more than u on its right

7 / 15



Sleeping Lower Bound

Augustine et. al (2022)
Any algorithm to solve 2-coloring with probability exceeding 1/8 on a ring network requires
Ω(log n) awake time.

v u

• After k rounds, a node knows about some segment that includes itself
• No node v on the left of u in the path can know more than u on its right

7 / 15



Sleeping Lower Bound

13k

13k+1

By induction : For any k, for any segment I of 13k nodes, there exists, with probability
P > 1/2, a node u ∈ I who knows less than I after k rounds.

• Probability that it is true on 5 of the 13 subsegments is at least 5/6
• Probability that B, C or D wakes up before A and E is at least 1/2

7 / 15



Sleeping Lower Bound

A B C D E

By induction : For any k, for any segment I of 13k nodes, there exists, with probability
P > 1/2, a node u ∈ I who knows less than I after k rounds.

• Probability that it is true on 5 of the 13 subsegments is at least 5/6
• Probability that B, C or D wakes up before A and E is at least 1/2

7 / 15



(∆ + 1)-Coloring



Trade-Off

Find the possible trade-off between awaken and usual rounds to resolve a problem.

(∆ + 1)-coloring of paths :

Awaken rounds Rounds

3 O(M)
O(log∗ n) O(log∗ n)

3 + k O(log(2k) M)

Linial (1992)
There exists an algorithm that solves O(∆2)-coloring with round-complexity O(log∗ n).

Balliu, Fraigniaud, Olivetti, R.
There exists an algorithm that solves (∆ + 1)-coloring with O(

√
log n · log∗ n)

awake-complexity and round-complexity poly(M).

8 / 15



Trade-Off

Find the possible trade-off between awaken and usual rounds to resolve a problem.

(∆ + 1)-coloring of paths :

Awaken rounds Rounds
3 O(M)

O(log∗ n) O(log∗ n)
3 + k O(log(2k) M)

Linial (1992)
There exists an algorithm that solves O(∆2)-coloring with round-complexity O(log∗ n).

Balliu, Fraigniaud, Olivetti, R.
There exists an algorithm that solves (∆ + 1)-coloring with O(

√
log n · log∗ n)

awake-complexity and round-complexity poly(M).

8 / 15



Trade-Off

Find the possible trade-off between awaken and usual rounds to resolve a problem.

(∆ + 1)-coloring of paths :

Awaken rounds Rounds
3 O(M)

O(log∗ n) O(log∗ n)

3 + k O(log(2k) M)

Linial (1992)
There exists an algorithm that solves O(∆2)-coloring with round-complexity O(log∗ n).

Balliu, Fraigniaud, Olivetti, R.
There exists an algorithm that solves (∆ + 1)-coloring with O(

√
log n · log∗ n)

awake-complexity and round-complexity poly(M).

8 / 15



Trade-Off

Find the possible trade-off between awaken and usual rounds to resolve a problem.

(∆ + 1)-coloring of paths :

Awaken rounds Rounds
3 O(M)

O(log∗ n) O(log∗ n)
3 + k O(log(2k) M)

Linial (1992)
There exists an algorithm that solves O(∆2)-coloring with round-complexity O(log∗ n).

Balliu, Fraigniaud, Olivetti, R.
There exists an algorithm that solves (∆ + 1)-coloring with O(

√
log n · log∗ n)

awake-complexity and round-complexity poly(M).

8 / 15



Trade-Off

Find the possible trade-off between awaken and usual rounds to resolve a problem.

(∆ + 1)-coloring :

Awaken rounds Rounds
O(∆) O(M)

O(log M) O(M)
O(log∗ n + log ∆) O(log∗ n + poly ∆)

Linial (1992)
There exists an algorithm that solves O(∆2)-coloring with round-complexity O(log∗ n).

Balliu, Fraigniaud, Olivetti, R.
There exists an algorithm that solves (∆ + 1)-coloring with O(

√
log n · log∗ n)

awake-complexity and round-complexity poly(M).

8 / 15



Trade-Off

Find the possible trade-off between awaken and usual rounds to resolve a problem.

(∆ + 1)-coloring :

Awaken rounds Rounds
O(∆) O(M)

O(log M) O(M)
O(log∗ n + log ∆) O(log∗ n + poly ∆)

Linial (1992)
There exists an algorithm that solves O(∆2)-coloring with round-complexity O(log∗ n).

Balliu, Fraigniaud, Olivetti, R.
There exists an algorithm that solves (∆ + 1)-coloring with O(

√
log n · log∗ n)

awake-complexity and round-complexity poly(M).

8 / 15



Trade-Off

Find the possible trade-off between awaken and usual rounds to resolve a problem.

(∆ + 1)-coloring :

Awaken rounds Rounds
O(∆) O(M)

O(log M) O(M)
O(log∗ n + log ∆) O(log∗ n + poly ∆)

Balliu, Fraigniaud, Olivetti, R.
There exists an algorithm that solves (∆ + 1)-coloring with O(

√
log n · log∗ n)

awake-complexity and round-complexity poly(M).

8 / 15



Label Clustering

Uniquely-labeled BFS-clustering :

• Two functions (ℓ, δ) assigning a pair (ℓ(v), δ(v)) ∈ N × N to each node v ∈ V
• ∀i > 0, Vi = {v ∈ V | ℓ(v) = i} and Gi = GVi . If Gi is non-empty :

• Gi is connected
• There is a unique node u of Gi with δ(u) = 0
• ∀v ∈ Vi , δ(v) is the distance from u to v in Gi .

• Each Gi is a cluster.

Virtual Graph H = (VH , EH) :

• VH = {clusters C induced by labels}
• CC ′ ∈ EH ⇔ ∃u ∈ C and v ∈ C ′ such that uv ∈ E .

9 / 15



Label Clustering

Colored BFS-clustering :

• Two functions (γ, δ) assigning a pair (γ(v), δ(v)) ∈ N × N to each node v ∈ V
• ∀i > 0, Vi = {v ∈ V | γ(v) = i} and Gi = GVi . If Gi is non-empty :

• For any connected component Ci of Gi

• There is a unique node u of Ci with δ(u) = 0
• ∀v ∈ Ci , δ(v) is the distance from u to v in Ci .

• Each Ci is a cluster.

Virtual Graph H = (VH , EH) :

• VH = {clusters C induced by labels}
• CC ′ ∈ EH ⇔ ∃u ∈ C and v ∈ C ′ such that uv ∈ E .

9 / 15



From Clusters to (∆ + 1)-coloring

(∆ + 1)-coloring

• (γ, δ) : a colored BFS-clustering of G
• Assume each node v of G knows γ(v) and δ(v)
• c = max

v∈V
γ(v)

(∆ + 1)-coloring can be solved by a distributed algorithm with awake complexity O(log c),
and round complexity O(c · n).

Idea :

• For each i ≤ c :
• If cluster has color in the Binary subtree of i :

• Wake up, gather colors from awaken neighboring clusters
• If cluster color is i , compute and broadcast your output colors
• Gather output colors from neighbor clusters of color i

10 / 15



From Clusters to (∆ + 1)-coloring

(∆ + 1)-coloring

• (γ, δ) : a colored BFS-clustering of G
• Assume each node v of G knows γ(v) and δ(v)
• c = max

v∈V
γ(v)

(∆ + 1)-coloring can be solved by a distributed algorithm with awake complexity O(log c),
and round complexity O(c · n).

Idea :

• For each i ≤ c :
• If cluster has color in the Binary subtree of i :

• Wake up, gather colors from awaken neighboring clusters
• If cluster color is i , compute and broadcast your output colors
• Gather output colors from neighbor clusters of color i

10 / 15



Clustering a Graph

One-round Cluster Reduction
∃a > 0 : ∀b > 0, ∃ algorithm A, with awake complexity O(log∗ n) and round complexity
O(n4) which computes a colored BFS-clustering (γ, δ) such that :

• (γ, δ) restricted to {v ∈ V | γ(v) ∈ {1, . . . , a · b2}} is a colored BFS-clustering
• ∀v ∈ V with γ(v) ∈ {1, . . . , a · b2}, δ(v) = 0 (i.e., v is alone in its cluster) ;
• (γ, δ) restricted to {v ∈ V | γ(v) > a · b2} is a uniquely-labeled BFS-clustering with at

most n/b clusters.

11 / 15



Clustering a Graph

13 18

45

65

2019 13

1621

5

2

42

13

1

21

35

45

2633 57 28

1. Compute a distance-2 k-coloring in O(log∗ n) rounds (k ∈ O(n4))

11 / 15



Clustering a Graph

13 18

145

165

120119 113

16121

105

102

142

113

101

121

135

145

126133 157 128

1. Compute a distance-2 k-coloring in O(log∗ n) rounds (k ∈ O(n4))
2. Add k to the colors of nodes of degree ≤ b

11 / 15



Clustering a Graph

13 18

145

165

120119 113

16121

105

102

142

113

101

121

135

145

126133 157 128

1. Compute a distance-2 k-coloring in O(log∗ n) rounds (k ∈ O(n4))
2. Add k to the colors of nodes of degree ≤ b
3. Choose as parent :

• yourself if your color is the smallest at distance 2
• your smaller neighbor if one of them has smaller color than yours
• your distance-2 smaller neighbor otherwise 11 / 15



Clustering a Graph

13 18

145

165

120119 113

16121

105

102

142

113

101

121

135

145

126133 157 128

3. Choose as parent :
• yourself if your color is the smallest at distance 2
• your smaller neighbor if one of them has smaller color than yours
• your distance-2 smaller neighbor otherwise

4. In the third case, choose a neighbor with same parent (blue case)
11 / 15



Clustering a Graph

13 18

145

165

120119 113

16121

105

102

142

113

101

121

204

242

126133 157 128

5. Compute a new color :
• 2 times the color of your parent if you are not your parent
• Add 1 if you are in the blue case
• 0 if you are your own parent

11 / 15



Clustering a Graph

13 26

26

26

3637 37

2726

36

37

202

33

101

203

204

242

126252 32 32

5. Compute a new color :
• 2 times the color of your parent if you are not your parent
• Add 1 if you are in the blue case
• 0 if you are your own parent

11 / 15



Clustering a Graph

0 26

26

26

3637 37

2726

36

37

202

33

0

203

204

242

027 32 32

5. Compute a new color :
• 2 times the color of your parent if you are not your parent
• Add 1 if you are in the blue case
• 0 if you are your own parent

11 / 15



Clustering a Graph

0 26

26

26

3637 37

2726

36

37

202

33

0

203

204

242

027 32 32

5. Compute a new color :
• 2 times the color of your parent if you are not your parent
• Add 1 if you are in the blue case
• 0 if you are your own parent

You have built DLTs
11 / 15



Clustering a Graph

0 26

26

26

3637 37

2726

36

37

202

33

0

203

204

242

027 32 32

5. You have built DLTs
6. Perform a convergecast and broadcast

Nodes compute their distance to their root
7. Keep only DLTs with roots of degree > b

11 / 15



Clustering a Graph

0 26

26

26

3637 37

2726

36

37

202

33

0

203

204

242

027 32 32

7. Keep only DLTs with roots of degree > b
8. U is the set of nodes not in a DLT :

• They compute a O(b2)-coloring of GU in O(log∗ n) rounds
• They have colors from 1 to a · b2 (a is the constant of Linial’s algorithm)
• Nodes of U form clusters of size 1 with this new color

11 / 15



Clustering a Graph

0 26

26

26

3637 37

2726

36

37

202

33

0

203

204

242

027 32 32

8. U is the set of nodes not in a DLT :
• They compute a O(b2)-coloring of GU in O(log∗ n) rounds
• They have colors from 1 to a · b2 (a is the constant of Linial’s algorithm)
• Nodes of U form clusters of size 1 with this new color

9. Other nodes set γ(u) = ℓ(v) + a · b2 and δ(u) = dist(u, v), v being the root of u
11 / 15



Clustering a Graph

0 26

26

26

3637 37

2726

36

37

202

33

0

203

204

242

027 32 32

Observations : Subgraph induced by {v ∈ V | γ(v) > a · b2} has at most n/b clusters

• Each root has more than b neighbors, all in its cluster (roots are distance-2 minimas)
• For each root, we can charge b nodes to itself
• Each node is charged at most once
• ⇒ We have at most n/b roots of degree > b

11 / 15



Cluster Graph Simulation

LOCAL Simulation on Clusters

• H : the virtual graph induced by some uniquely-labeled BFS-clustering (ℓ, δ) of G .
• A : a distributed algorithm running on H with α awake rounds and round complexity ϱ.
• ∀u ∈ VH , input(u) is the input of u in H, and output(u) the output of A at vertex u.
• Assume each node v of G knows input(ℓ(v))

It is possible to run A on G such that every node v of G computes output(ℓ(v)) with awake
complexity at most 7 · α and round complexity O(ϱ · n).

Idea :

• The root of each cluster (i.e. with δ = 0) simulates A
• Each time a node awakes in H, the cluster performs some broadcasts and convergecasts
• In each round, 7 awaken activations are needed, and ∀u ∈ V , δ(u) ≤ n

12 / 15



Cluster Graph Simulation

LOCAL Simulation on Clusters

• H : the virtual graph induced by some uniquely-labeled BFS-clustering (ℓ, δ) of G .
• A : a distributed algorithm running on H with α awake rounds and round complexity ϱ.
• ∀u ∈ VH , input(u) is the input of u in H, and output(u) the output of A at vertex u.
• Assume each node v of G knows input(ℓ(v))

It is possible to run A on G such that every node v of G computes output(ℓ(v)) with awake
complexity at most 7 · α and round complexity O(ϱ · n).

Idea :

• The root of each cluster (i.e. with δ = 0) simulates A
• Each time a node awakes in H, the cluster performs some broadcasts and convergecasts
• In each round, 7 awaken activations are needed, and ∀u ∈ V , δ(u) ≤ n

12 / 15



Building Incrementally the Colored Clustering

Input : G = (V , E )
1. H0 : ℓ0(v) = ID(v) and δ0(v) = 0
2. While Hi−1 ̸= ∅

Use clustering algorithm on Hi−1

to compute Hi

After each iteration, we go from N to
(up to) N/b vertices
⇒ k such that bk > n is enough
⇒ Clusters use kab2 colors

13 / 15



Building Incrementally the Colored Clustering

Input : G = (V , E )
1. H0 : ℓ0(v) = ID(v) and δ0(v) = 0
2. While Hi−1 ̸= ∅

Use clustering algorithm on Hi−1

to compute Hi

After each iteration, we go from N to
(up to) N/b vertices
⇒ k such that bk > n is enough
⇒ Clusters use kab2 colors

13 / 15



Building Incrementally the Colored Clustering

Input : G = (V , E )
1. H0 : ℓ0(v) = ID(v) and δ0(v) = 0
2. While Hi−1 ̸= ∅

Use clustering algorithm on Hi−1

to compute Hi

After each iteration, we go from N to
(up to) N/b vertices
⇒ k such that bk > n is enough
⇒ Clusters use kab2 colors

13 / 15



Putting Things Together

We have :

• Two parameters b and k with bk ≥ n
• We compute a (γ, δ) colored BFS-clustering in O(k log∗ n) rounds
• γ has maximal value kab2 (a is a constant)
• From the BFS-clustering, we get a (∆ + 1)-coloring in O(log(kb2))

Question : What is the optimal choice for k and b ?

• bk ≥ n ⇒ k ≥ log n
log b

• We need k ≈ log(kab2) ≈ log b
• Conclusion : k = 2

√
log n and b = 2

√
log n work

We get a (Delta + 1)-coloring algorithm with O(
√

log n log∗ n) awake complexity

14 / 15



Putting Things Together

We have :

• Two parameters b and k with bk ≥ n
• We compute a (γ, δ) colored BFS-clustering in O(k log∗ n) rounds
• γ has maximal value kab2 (a is a constant)
• From the BFS-clustering, we get a (∆ + 1)-coloring in O(log(kb2))

Question : What is the optimal choice for k and b ?

• bk ≥ n ⇒ k ≥ log n
log b

• We need k ≈ log(kab2) ≈ log b

• Conclusion : k = 2
√

log n and b = 2
√

log n work

We get a (Delta + 1)-coloring algorithm with O(
√

log n log∗ n) awake complexity

14 / 15



Putting Things Together

We have :

• Two parameters b and k with bk ≥ n
• We compute a (γ, δ) colored BFS-clustering in O(k log∗ n) rounds
• γ has maximal value kab2 (a is a constant)
• From the BFS-clustering, we get a (∆ + 1)-coloring in O(log(kb2))

Question : What is the optimal choice for k and b ?

• bk ≥ n ⇒ k ≥ log n
log b

• We need k ≈ log(kab2) ≈ log b
• Conclusion : k = 2

√
log n and b = 2

√
log n work

We get a (Delta + 1)-coloring algorithm with O(
√

log n log∗ n) awake complexity
14 / 15



Bibliography

• John Augustine, William K. Moses Jr., Gopal Pandurangan. Awake complexity of
distributed minimum spanning tree. In SIROCCO 2024.

• Alkida Balliu, Pierre Fraigniaud, Dennis Olivetti, Mikaël Rabie. Solving Sequential
Greedy Problems Distributedly with Sub-Logarithmic Energy Cost. In arXiv, 2024.

• Leonid Barenboim, Tzalik Maimon. Deterministic Logarithmic Completeness in the
Distributed Sleeping Model. In DISC 2021.

• Nathan Linial. Locality in distributed graph algorithms. In SIAM J. Comput., 1992.

15 / 15


	The Awaken Complexity
	The n Complexity
	(+1)-Coloring

