Distributed Computing 12 - Sleeping Model

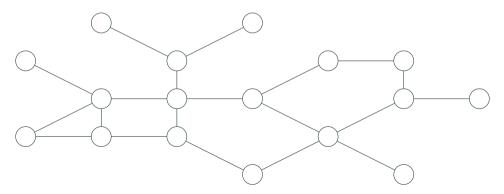
Mikaël Rabie Université Paris Cité, IRIF

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

The Awaken Complexity

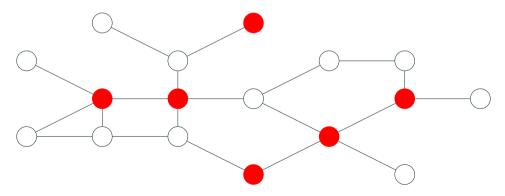
Distributed Sleeping Model

- LOCAL model
- At each round, a node decides if it is active or not
- A node communicates only with its active neighbors
- Complexity : maximal number of awaken rounds for a single node



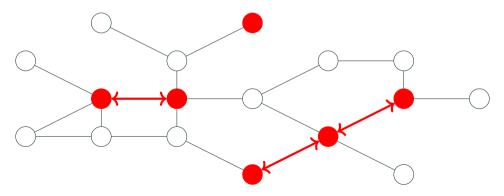
Distributed Sleeping Model

- LOCAL model
- At each round, a node decides if it is active or not
- A node communicates only with its active neighbors
- Complexity : maximal number of awaken rounds for a single node

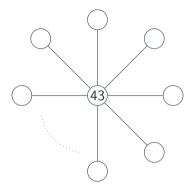


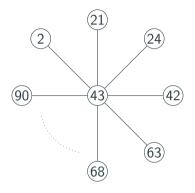
Distributed Sleeping Model

- LOCAL model
- At each round, a node decides if it is active or not
- A node communicates only with its active neighbors
- Complexity : maximal number of awaken rounds for a single node

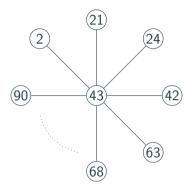


$\Delta+1\text{-}\textbf{Coloring}$ in $\mathit{O}(\Delta)$ awaken rounds

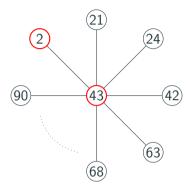




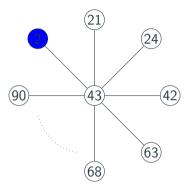
• Round 0 : Learn the identifiers of my neighbors



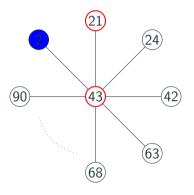
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up



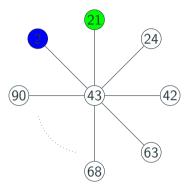
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 2 : Node 2 chooses its color



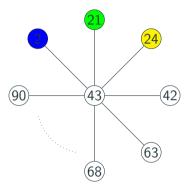
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 2 : Node 2 chooses its color



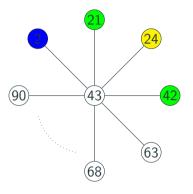
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 21 : Node 21 chooses its color



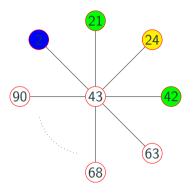
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 21 : Node 21 chooses its color



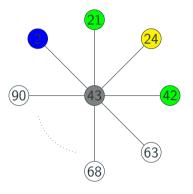
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 24 : Node 24 chooses its color



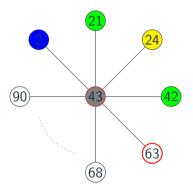
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 42 : Node 42 chooses its color



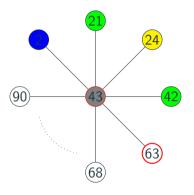
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 43 : u learns colors of nodes 2, 21, 24, 42 and chooses its color



- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 43 : u learns colors of nodes 2, 21, 24, 42 and chooses its color



- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 63 : Node 63 learns color of *u* and chooses its color

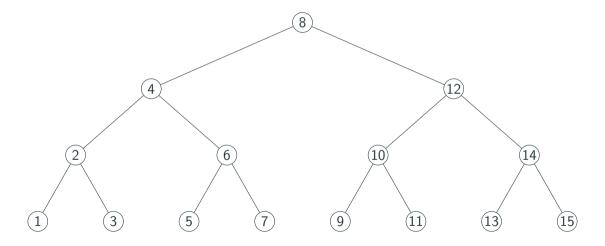


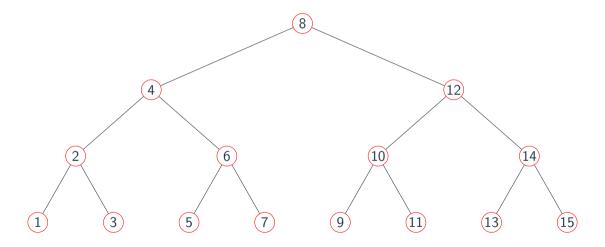
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 63 : Node 63 learns color of *u* and chooses its color

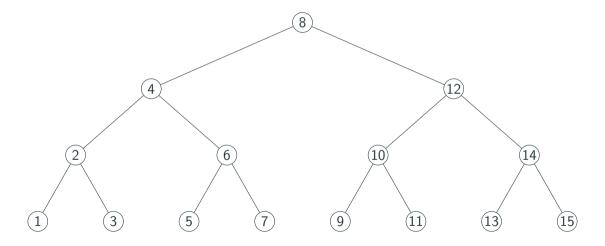
Drawback : The round complexity is O(M), M being the maximal identifier.

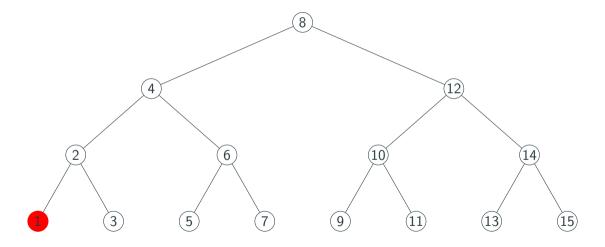
Barenboim and Maimon (2021)

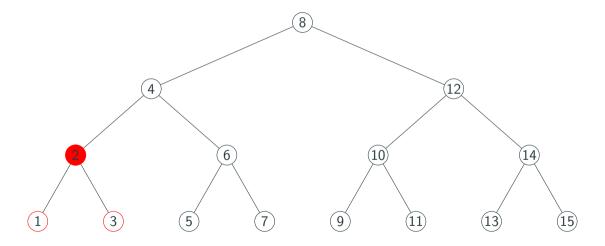
Given a *K*-coloring of the graph, we can compute a $(\Delta + 1)$ -coloring in $O(\log K)$ awaken rounds and O(K) rounds in the Sleeping LOCAL model.

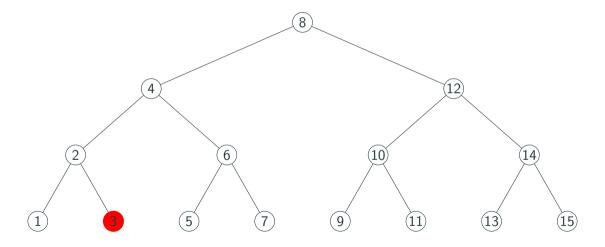


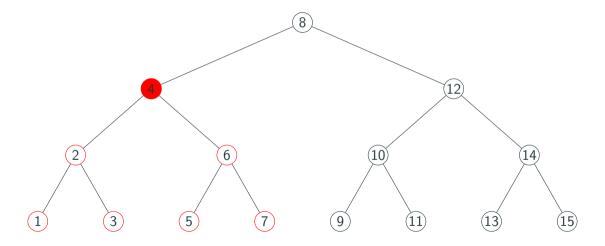












The log *n* Complexity

Barenboim and Maimon (2021)

Any graph problem can be solved in $O(\log n)$ awaken rounds in the Sleeping LOCAL model.

This algorithm takes O(poly M) rounds.

Barenboim and Maimon (2021)

Any graph problem can be solved in $O(\log n)$ awaken rounds in the Sleeping LOCAL model.

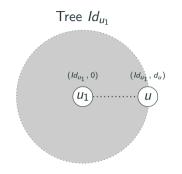
This algorithm takes O(poly M) rounds.

Distributed Layered Tree (DLT) - Oriented Spanning Tree such as :

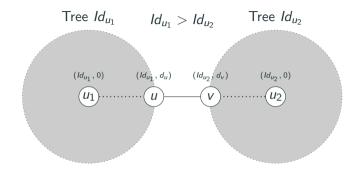
- Each vertex has a label
- The label of a vertex is bigger than its parent's
- Each vertex knows the label of its neighbours in the tree

Constant Coordination Broadcast and Convergecast can be done in O(1) rounds in a DLT.

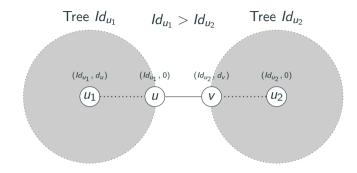
Barenboim and Maimon (2021) A DLT can be built in $O(\log n)$ awaken rounds in the Sleeping LOCAL model.



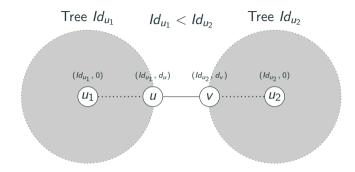
- Labels are of the form (a, b), ordered lexicographically.
- At the beginning, all nodes have label (Id(u), 0).
- At the beginning of each expand step, all nodes of a subtree T are of the form (L(T), b).



- Repeat log *n* times :
- 1. Select a neighbour Tree T' with smaller label $(Id_{u_1} > Id_{u_2})$.

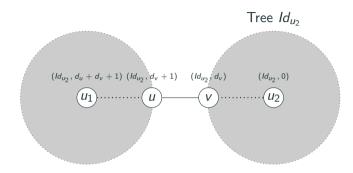


- Repeat log *n* times :
- 2. Merge T and T', using an edge (u, v).



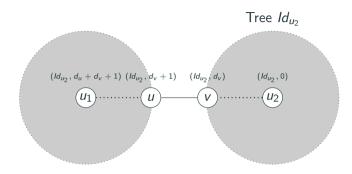
- Repeat log *n* times :
- 3. If T could not choose a neighbour and was not selected

T chooses a tree T' to join using an edge (u, v). This forms a star of trees around $T' \Rightarrow O(1)$ merge rounds.



- Repeat log *n* times :
- 3. If T could not choose a neighbour and was not selected

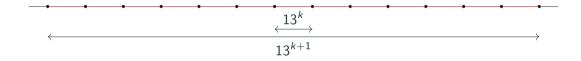
T chooses a tree T' to join using an edge (u, v). This forms a star of trees around $T' \Rightarrow O(1)$ merge rounds.



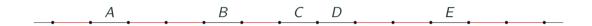
- Repeat log *n* times :
- 4. All nodes learn their new neighbours in the tree.
- 5. Convergecast to gather the new structure of the component C to the root r.
- 6. Broadcast a new labelling (L(r), dist(r)).

Augustine *et. al* (2022) Any algorithm to solve 2-coloring with probability exceeding 1/8 on a ring network requires $\Omega(\log n)$ awake time. Augustine *et. al* (2022) Any algorithm to solve 2-coloring with probability exceeding 1/8 on a ring network requires $\Omega(\log n)$ awake time.

- After k rounds, a node knows about some segment that includes itself
- No node v on the left of u in the path can know more than u on its right



By induction : For any k, for any segment I of 13^k nodes, there exists, with probability $\mathcal{P} > 1/2$, a node $u \in I$ who knows less than I after k rounds.



By induction : For any k, for any segment I of 13^k nodes, there exists, with probability $\mathcal{P} > 1/2$, a node $u \in I$ who knows less than I after k rounds.

- Probability that it is true on 5 of the 13 subsegments is at least 5/6
- Probability that B, C or D wakes up before A and E is at least 1/2

$(\Delta + 1)$ -Coloring

Find the possible trade-off between awaken and usual rounds to resolve a problem. $(\Delta+1)\text{-coloring of paths}:$

Awaken rounds	Rounds

Find the possible trade-off between awaken and usual rounds to resolve a problem. $(\Delta + 1)$ -coloring of paths :

Awaken rounds	Rounds
3	<i>O</i> (<i>M</i>)

Find the possible trade-off between awaken and usual rounds to resolve a problem. $(\Delta + 1)$ -coloring of paths :

Awaken rounds	Rounds
3	O(M)
$O(\log^* n)$	$O(\log^* n)$

Find the possible trade-off between awaken and usual rounds to resolve a problem. $(\Delta + 1)$ -coloring of paths :

Awaken rounds	Rounds
3	<i>O</i> (<i>M</i>)
$O(\log^* n)$	$O(\log^* n)$
3+k	$O(\log^{(2k)} M)$

Find the possible trade-off between awaken and usual rounds to resolve a problem. $(\Delta+1)\text{-coloring}:$

Awaken rounds	Rounds
$O(\Delta)$	<i>O</i> (<i>M</i>)
$O(\log M)$	<i>O</i> (<i>M</i>)
$O(\log^* n + \log \Delta)$	$O(\log^* n + \operatorname{poly} \Delta)$

Find the possible trade-off between awaken and usual rounds to resolve a problem. $(\Delta + 1)$ -coloring :

Awaken rounds	Rounds
$O(\Delta)$	<i>O</i> (<i>M</i>)
$O(\log M)$	<i>O</i> (<i>M</i>)
$O(\log^* n + \log \Delta)$	$O(\log^* n + \operatorname{poly} \Delta)$

Linial (1992)

There exists an algorithm that solves $O(\Delta^2)$ -coloring with round-complexity $O(\log^* n)$.

Find the possible trade-off between awaken and usual rounds to resolve a problem. $(\Delta + 1)$ -coloring :

Awaken rounds	Rounds
$O(\Delta)$	O(M)
$O(\log M)$	<i>O</i> (<i>M</i>)
$O(\log^* n + \log \Delta)$	$O(\log^* n + \operatorname{poly} \Delta)$

Balliu, Fraigniaud, Olivetti, R.

There exists an algorithm that solves $(\Delta + 1)$ -coloring with $O(\sqrt{\log n} \cdot \log^* n)$ awake-complexity and round-complexity poly(M).

Uniquely-labeled BFS-clustering :

- Two functions (ℓ, δ) assigning a pair $(\ell(v), \delta(v)) \in \mathbb{N} imes \mathbb{N}$ to each node $v \in V$
- $\forall i > 0$, $V_i = \{v \in V \mid \ell(v) = i\}$ and $G_i = G_{V_i}$. If G_i is non-empty :
 - *G_i* is connected
 - There is a unique node u of G_i with $\delta(u) = 0$
 - $\forall v \in V_i$, $\delta(v)$ is the distance from u to v in G_i .
- Each G_i is a cluster.

Virtual Graph $H = (V_H, E_H)$:

- $V_H = \{$ clusters C induced by labels $\}$
- $CC' \in E_H \Leftrightarrow \exists u \in C \text{ and } v \in C' \text{ such that } uv \in E.$

Colored BFS-clustering :

- Two functions (γ, δ) assigning a pair $(\gamma(v), \delta(v)) \in \mathbb{N} imes \mathbb{N}$ to each node $v \in V$
- $\forall i > 0, V_i = \{v \in V \mid \gamma(v) = i\}$ and $G_i = G_{V_i}$. If G_i is non-empty :
 - For any connected component C_i of G_i
 - There is a unique node u of C_i with $\delta(u) = 0$
 - $\forall v \in C_i$, $\delta(v)$ is the distance from u to v in C_i .
- Each C_i is a cluster.

Virtual Graph $H = (V_H, E_H)$:

- $V_H = \{$ clusters C induced by labels $\}$
- $CC' \in E_H \Leftrightarrow \exists u \in C \text{ and } v \in C' \text{ such that } uv \in E.$

From Clusters to $(\Delta + 1)$ -coloring

$(\Delta + 1)$ -coloring

- (γ, δ) : a colored BFS-clustering of G
- Assume each node v of G knows $\gamma(v)$ and $\delta(v)$
- $c = \max_{v \in V} \gamma(v)$

 $(\Delta + 1)$ -coloring can be solved by a distributed algorithm with awake complexity $O(\log c)$, and round complexity $O(c \cdot n)$.

From Clusters to $(\Delta + 1)$ -coloring

$(\Delta + 1)$ -coloring

- (γ, δ) : a colored BFS-clustering of G
- Assume each node v of G knows $\gamma(v)$ and $\delta(v)$
- $c = \max_{v \in V} \gamma(v)$

 $(\Delta + 1)$ -coloring can be solved by a distributed algorithm with awake complexity $O(\log c)$, and round complexity $O(c \cdot n)$.

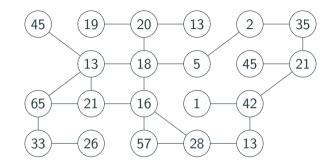
Idea :

- For each $i \leq c$:
 - If cluster has color in the Binary subtree of *i* :
 - Wake up, gather colors from awaken neighboring clusters
 - If cluster color is *i*, compute and broadcast your output colors
 - Gather output colors from neighbor clusters of color *i*

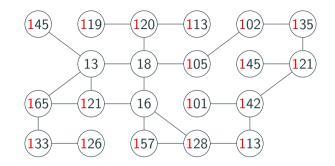
One-round Cluster Reduction

 $\exists a > 0 : \forall b > 0, \exists$ algorithm \mathcal{A} , with awake complexity $O(\log^* n)$ and round complexity $O(n^4)$ which computes a colored BFS-clustering (γ, δ) such that :

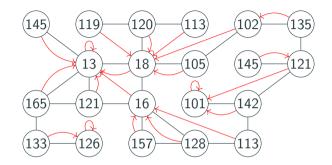
- (γ, δ) restricted to $\{v \in V \mid \gamma(v) \in \{1, \dots, a \cdot b^2\}\}$ is a colored BFS-clustering
- $\forall v \in V$ with $\gamma(v) \in \{1, \dots, a \cdot b^2\}$, $\delta(v) = 0$ (i.e., v is alone in its cluster);
- (γ,δ) restricted to {v ∈ V | γ(v) > a ⋅ b²} is a uniquely-labeled BFS-clustering with at most n/b clusters.



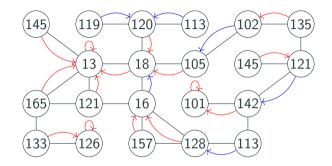
1. Compute a distance-2 k-coloring in $O(\log^* n)$ rounds $(k \in O(n^4))$



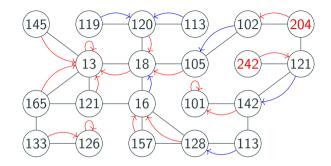
- 1. Compute a distance-2 k-coloring in $O(\log^* n)$ rounds $(k \in O(n^4))$
- 2. Add k to the colors of nodes of degree $\leq b$



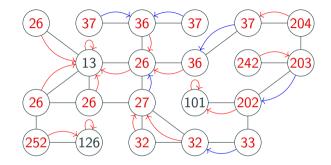
- 1. Compute a distance-2 k-coloring in $O(\log^* n)$ rounds $(k \in O(n^4))$
- 2. Add k to the colors of nodes of degree $\leq b$
- 3. Choose as parent :
 - yourself if your color is the smallest at distance 2
 - your smaller neighbor if one of them has smaller color than yours
 - your distance-2 smaller neighbor otherwise



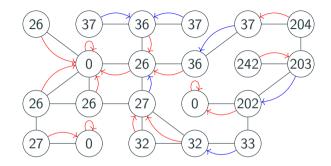
- 3. Choose as parent :
 - yourself if your color is the smallest at distance 2
 - your smaller neighbor if one of them has smaller color than yours
 - your distance-2 smaller neighbor otherwise
- 4. In the third case, choose a neighbor with same parent (blue case)



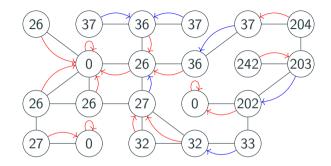
- 5. Compute a new color :
 - 2 times the color of your parent if you are not your parent
 - Add 1 if you are in the blue case
 - 0 if you are your own parent



- 5. Compute a new color :
 - 2 times the color of your parent if you are not your parent
 - Add 1 if you are in the blue case
 - 0 if you are your own parent

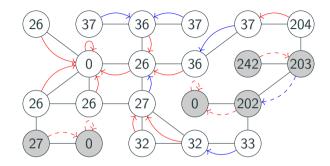


- 5. Compute a new color :
 - 2 times the color of your parent if you are not your parent
 - Add 1 if you are in the blue case
 - 0 if you are your own parent

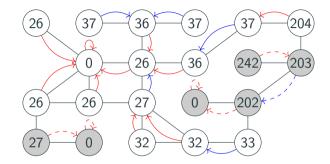


- 5. Compute a new color :
 - 2 times the color of your parent if you are not your parent
 - Add 1 if you are in the blue case
 - 0 if you are your own parent

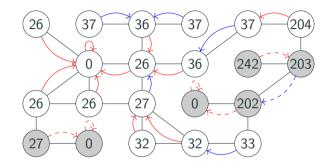
You have built DLTs



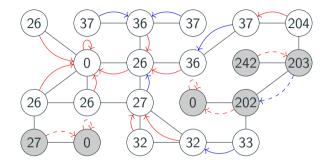
- 5. You have built DLTs
- 6. Perform a convergecast and broadcast Nodes compute their distance to their root
- 7. Keep only DLTs with roots of degree > b



- 7. Keep only DLTs with roots of degree > b
- 8. U is the set of nodes not in a DLT :
 - They compute a $O(b^2)$ -coloring of G_U in $O(\log^* n)$ rounds
 - They have colors from 1 to $a \cdot b^2$ (a is the constant of Linial's algorithm)
 - Nodes of *U* form clusters of size 1 with this new color



- 8. U is the set of nodes not in a DLT :
 - They compute a O(b²)-coloring of G_U in O(log^{*} n) rounds
 - They have colors from 1 to $a \cdot b^2$ (a is the constant of Linial's algorithm)
 - Nodes of U form clusters of size 1 with this new color
- 9. Other nodes set $\gamma(u) = \ell(v) + a \cdot b^2$ and $\delta(u) = dist(u, v)$, v being the root of u



Observations : Subgraph induced by $\{v \in V \mid \gamma(v) > a \cdot b^2\}$ has at most n/b clusters

- Each root has more than b neighbors, all in its cluster (roots are distance-2 minimas)
- For each root, we can charge b nodes to itself
- Each node is charged at most once
- \Rightarrow We have at most n/b roots of degree > b

Cluster Graph Simulation

LOCAL Simulation on Clusters

- *H* : the virtual graph induced by some uniquely-labeled BFS-clustering (ℓ, δ) of *G*.
- A : a distributed algorithm running on H with α awake rounds and round complexity ρ .
- $\forall u \in V_H$, input(u) is the input of u in H, and output(u) the output of A at vertex u.
- Assume each node v of G knows input($\ell(v)$)

It is possible to run \mathcal{A} on G such that every node v of G computes $\operatorname{output}(\ell(v))$ with awake complexity at most $7 \cdot \alpha$ and round complexity $O(\rho \cdot n)$.

LOCAL Simulation on Clusters

- *H* : the virtual graph induced by some uniquely-labeled BFS-clustering (ℓ, δ) of *G*.
- A : a distributed algorithm running on H with α awake rounds and round complexity ρ .
- $\forall u \in V_H$, input(u) is the input of u in H, and output(u) the output of A at vertex u.
- Assume each node v of G knows input $(\ell(v))$

It is possible to run \mathcal{A} on G such that every node v of G computes $\operatorname{output}(\ell(v))$ with awake complexity at most $7 \cdot \alpha$ and round complexity $O(\rho \cdot n)$.

Idea :

- The root of each cluster (i.e. with $\delta = 0$) simulates ${\cal A}$
- Each time a node awakes in H, the cluster performs some broadcasts and convergecasts
- In each round, 7 awaken activations are needed, and $orall u \in V, \delta(u) \leq n$

Input : G = (V, E)

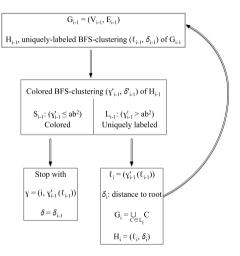
1. H_0 : $\ell_0(v) = \mathsf{ID}(v)$ and $\delta_0(v) = 0$

2. While $H_{i-1} \neq \emptyset$

Use clustering algorithm on H_{i-1}

to compute H_i

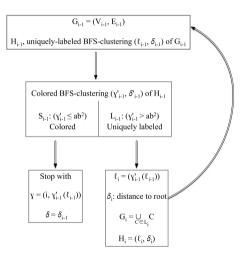
Input : G = (V, E)1. $H_0 : \ell_0(v) = ID(v)$ and $\delta_0(v) = 0$ 2. While $H_{i-1} \neq \emptyset$ Use clustering algorithm on H_{i-1} to compute H_i



Input : G = (V, E)1. $H_0: \ell_0(v) = ID(v)$ and $\delta_0(v) = 0$ 2. While $H_{i-1} \neq \emptyset$ Use clustering algorithm on H_{i-1} to compute H_i After each iteration, we go from N to (up to) N/b vertices

 \Rightarrow k such that $b^k > n$ is enough

 \Rightarrow Clusters use kab^2 colors



We have :

- Two parameters b and k with $b^k \ge n$
- We compute a (γ, δ) colored BFS-clustering in $O(k \log^* n)$ rounds
- γ has maximal value kab^2 (a is a constant)
- From the BFS-clustering, we get a $(\Delta + 1)$ -coloring in $O(\log(kb^2))$

Question : What is the optimal choice for *k* and *b*?

We have :

- Two parameters b and k with $b^k \ge n$
- We compute a (γ, δ) colored BFS-clustering in $O(k \log^* n)$ rounds
- γ has maximal value kab^2 (a is a constant)
- From the BFS-clustering, we get a $(\Delta + 1)$ -coloring in $O(\log(kb^2))$

Question : What is the optimal choice for k and b?

- $b^k \ge n \Rightarrow k \ge \frac{\log n}{\log b}$
- We need $k \approx \log(kab^2) \approx \log b$

We have :

- Two parameters b and k with $b^k \ge n$
- We compute a (γ, δ) colored BFS-clustering in $O(k \log^* n)$ rounds
- γ has maximal value kab^2 (a is a constant)
- From the BFS-clustering, we get a $(\Delta + 1)$ -coloring in $O(\log(kb^2))$

Question : What is the optimal choice for k and b?

- $b^k \ge n \Rightarrow k \ge \frac{\log n}{\log b}$
- We need $k \approx \log(kab^2) \approx \log b$
- Conclusion : $k = 2\sqrt{\log n}$ and $b = 2^{\sqrt{\log n}}$ work

We get a (Delta + 1)-coloring algorithm with $O(\sqrt{\log n} \log^* n)$ awake complexity

- John Augustine, William K. Moses Jr., Gopal Pandurangan. Awake complexity of distributed minimum spanning tree. In SIROCCO 2024.
- Alkida Balliu, Pierre Fraigniaud, Dennis Olivetti, Mikaël Rabie. Solving Sequential Greedy Problems Distributedly with Sub-Logarithmic Energy Cost. In arXiv, 2024.
- Leonid Barenboim, Tzalik Maimon. Deterministic Logarithmic Completeness in the Distributed Sleeping Model. In DISC 2021.
- Nathan Linial. Locality in distributed graph algorithms. In SIAM J. Comput., 1992.