Distributed Computing
8 - Speed Up Simulation

Mikaël Rabie
Université Paris-Cité, IRIF
Speed Up for 3-coloring a Path
(LOCAL Model)
From n colors to $\log n$ colors

\[n \text{ colors} \Rightarrow \log n \text{ colors} \Rightarrow 2^{\log n} \text{ new colors} \Rightarrow \log \log n + 1 \text{ bits} \]

After $\log^* n$ iterations, $O(1)$ bits.

After $O(1)$ greedy recoloring steps, 3-coloring.
From \(n \) colors to \(\log n \) colors

\[
\begin{align*}
\text{101010} & \quad \text{1100110} & \quad \text{100100} \\
\text{42} & \quad \text{102} & \quad \text{36}
\end{align*}
\]
From \(n \) colors to \(\log n \) colors

\[101010 \quad \rightarrow \quad 1100110 \quad \rightarrow \quad 100100 \]

\[\ldots \quad 42 \quad \rightarrow \quad 102 \quad \rightarrow \quad 36 \quad \ldots \]

After \(\log \ast n \) iterations, \(O(1) \) bits.

After \(O(1) \) greedy recoloring steps, 3-coloring.
From n colors to $\log n$ colors

After $\log^* n$ iterations, $O(1)$ bits.

After $O(1)$ greedy recoloring steps, 3-coloring.
From n colors to $\log n$ colors

After $\log^* n$ iterations, $O(1)$ bits.

After $O(1)$ greedy recoloring steps, 3-coloring.

n colors $\Rightarrow \log n$ bits $\Rightarrow 2 \log n$ new colors $\Rightarrow \log \log n + 1$ bits
From n colors to $\log n$ colors

\[n \text{ colors} \Rightarrow \log n \text{ bits} \Rightarrow 2^{\log n} \text{ new colors} \Rightarrow \log \log n + 1 \text{ bits} \]

After $\log^* n$ iterations, $O(1)$ bits.

After $O(1)$ greedy recoloring steps, 3-coloring.
From n colors to $\log n$ colors

After $\log^* n$ iterations, $O(1)$ bits.

After $O(1)$ greedy recoloring steps, 3-coloring.
From n colors to $\log n$ colors

After $\log^* n$ iterations, $O(1)$ bits.

After $O(1)$ greedy recoloring steps, 3-coloring.
From n colors to $\log n$ colors

n colors $\Rightarrow \log n$ bits $\Rightarrow 2 \log n$ new colors $\Rightarrow \log \log n + 1$ bits
From n colors to $\log n$ colors

n colors \Rightarrow log n bits \Rightarrow 2 log n new colors \Rightarrow log log $n + 1$ bits

After log* n iterations, $O(1)$ bits.
After $O(1)$ greedy recoloring steps, 3-coloring.
From n colors to $\log n$ colors

n colors $\Rightarrow \log n$ bits $\Rightarrow 2\log n$ new colors $\Rightarrow \log \log n + 1$ bits

After $\log^* n/2$ iterations, $O(1)$ bits.
After $O(1)$ greedy recoloring steps, 3-coloring.
An algorithm which colors the n-cycle with three colors requires at least $\frac{1}{2}(\log^* n - 3)$ communication rounds.

The same bound holds also for randomized algorithms.
Speed up 3-coloring

\(\mathcal{A}:\) algorithm that \(k\)-colors nodes in \(T\) rounds.

\(\mathcal{A}':\) algorithm that \(k'\)-colors nodes in \(T - 1\) rounds.
\(\mathcal{A} : \) algorithm that \(k \)-colors nodes in \(T \) rounds.
\(A \) : algorithm that \(k \)-colors nodes in \(T \) rounds.

\[S_L \setminus S_R = \emptyset \]
\(\mathcal{A} \) : algorithm that \(k \)-colors nodes in \(T \) rounds.
\mathcal{A} : algorithm that k-colors nodes in T rounds.

\[c \in [1, k] \]

\[\forall \text{id} \leq n \]

\[T - 1 \]

\[T - 1 \]
\mathcal{A} : algorithm that k-colors nodes in T rounds.

$\forall id \leq n$, $T - 1$, $S_L \in 2^k$, $T - 1$
\(A\) : algorithm that \(k\)-colors nodes in \(T\) rounds.

\(\forall \text{id} \leq n\)
\[A \] : algorithm that \(k \)-colors nodes in \(T \) rounds.

\[T \quad c \in [1, k] \quad T \]

\[T - 1 \quad S_L \quad S_R \quad T - 1 \quad \forall id \leq n \]
\(\mathcal{A}\) : algorithm that \(k\)-colors nodes in \(T\) rounds.

\[c \in [1, k]\]

\[S_L \# S_R \in 2^k \times 2^k\]
A : algorithm that k-colors nodes in T rounds.

$c \in [1, k]$

$S_L \# S_R \in 2^k \times 2^k$

$S_L \cap S_R = \emptyset$
Algorithm \(\mathcal{A} \) that \(k \)-colors nodes in \(T \) rounds.

\[T - 1 \]

\(S_L \# S_R \)

\[T - 1 \]
\[A : \text{algorithm that } k \text{-colors nodes in } T \text{ rounds.} \]
\(\mathcal{A} \) : algorithm that \(k \)-colors nodes in \(T \) rounds.

\[
S_L \cap S_R = \emptyset \quad \& \quad S'_L \cap S'_R = \emptyset
\]
\mathcal{A} : algorithm that k-colors nodes in T rounds.

$S_L \# S_R = \emptyset \land S'_L \# S'_R = \emptyset$

$S_L \cap S_R = \emptyset \land S'_L \cap S'_R = \emptyset$

$S'_L \cap S_R \neq \emptyset$
\[A : \text{algorithm that } k \text{-colors nodes in } T \text{ rounds.} \]

\[S_L \# S_R = \emptyset \text{ and } S'_L \# S'_R = \emptyset \]

\[S_L \cap S_R = \emptyset \text{ and } S'_L \cap S'_R = \emptyset \]

\[S'_L \cap S_R \neq \emptyset \]

\[S_L \# S_R \neq S'_L \# S'_R \]
\(A\) : algorithm that \(k\)-colors nodes in \(T\) rounds.

\(A_1\) : algorithm that \(4^k\)-colors edges in \(T - 1\) rounds.

\[c \in [1, 4^k]\]
\(\mathcal{A} \) : algorithm that \(k \)-colors nodes in \(T \) rounds.

\(\mathcal{A}_1 \) : algorithm that \(4^k \)-colors edges in \(T - 1 \) rounds.
A: algorithm that k-colors nodes in T rounds.

A_1: algorithm that 4^k-colors edges in $T - 1$ rounds.
Speed up 3-coloring

\(\mathcal{A} \) : algorithm that \(k \)-colors nodes in \(T \) rounds.

\(\mathcal{A}_1 \) : algorithm that \(4^k \)-colors edges in \(T - 1 \) rounds.

\[c \in [1, 4^k] \]

\[\forall id \leq n \]

\[S_L \in 2^{4^k} \]
\(A\) : algorithm that \(k\)-colors nodes in \(T\) rounds.

\(A_1\) : algorithm that \(4^k\)-colors edges in \(T - 1\) rounds.
\(\mathcal{A} \) : algorithm that \(k \)-colors nodes in \(T \) rounds.

\(\mathcal{A}_1 \) : algorithm that \(4^k \)-colors edges in \(T - 1 \) rounds.

\[c \in [1, 4^k] \]

\(S_L \# S_R \)
Speed up 3-coloring

A: algorithm that k-colors nodes in T rounds.

A_1: algorithm that 4^k-colors edges in $T - 1$ rounds.

A_2: algorithm that 4^{4^k}-colors nodes in $T - 1$ rounds.

$c \in [1, 4^{4^k}]$
Speed up 3-coloring

\[\mathcal{A} : \text{algorithm that } k\text{-colors nodes in } T \text{ rounds.} \]
\[\mathcal{A}_1 : \text{algorithm that } 4^k\text{-colors edges in } T - 1 \text{ rounds.} \]
\[\mathcal{A}_2 : \text{algorithm that } 4^{4^k} \text{-colors nodes in } T - 1 \text{ rounds.} \]
\[\cdots \]
\[\mathcal{A}_{2l} : \text{algorithm that } 4^{4^{4^{\cdots^{4^k}}}} \text{-colors nodes in } T - l \text{ rounds.} \]
Speed up 3-coloring

A: algorithm that k-colors nodes in T rounds.

A_1: algorithm that 4^k-colors edges in $T - 1$ rounds.

A_2: algorithm that 4^{4^k}-colors nodes in $T - 1$ rounds.

\[\vdots \]

A_{2^l}: algorithm that $4^{4^{4^{\cdots^k}}}$-colors nodes in $T - l$ rounds.

If we have $k = 3$ and $T < \frac{\log^* n}{2}$,

\Rightarrow We create a c-coloring algorithm in 0 rounds, with $c = 4^{4^{4^3}} < n$.

Contradiction
The (d, δ) Bipartite Algorithm
Port-Numbering Model

- No identifiers
- Symmetry breaking among neighbours using port numbers
(\(d, \delta\)) Biregular Trees

- Black-White Bipartite Tree
- Black nodes of degree \(d\) or 1, White nodes of degree \(\delta\) or 1.
Bipartite locally verifiable problem on a (d, δ) Biregular Trees is a 3-tuple $\Pi = (\Sigma, A, P)$:

- Σ : output alphabet
- $A \subseteq \Sigma^d$: outputs on Black nodes of degree d
- $P \subseteq \Sigma^\delta$: outputs on White nodes of degree δ

- Black nodes are **Active** : they produce an output of A on their edges.
- White nodes are **Passive** : they check that the output on their edges is in P.
Examples

- 5-edge coloring, $\Sigma = \{1, 2, 3, 4, 5\}$
- $A = \{[c_1, c_2, c_3, c_4] \text{ with } c_1 < c_2 < c_3 < c_4\}$, $P = \{[c_1, c_2, c_3] \text{ with } c_1 < c_2 < c_3\}$
Examples

- Weak 3-labeling, $\Sigma = \{1, 2, 3\}$
- $A = \{[c_1, c_2, c_3, c_4] \text{ with } c_1 \neq c_4\}, \quad P = \{[c_1, c_2, c_3] \text{ with } c_1 \neq c_3\}$
Examples

- Sinkless Orientation
Examples

- Sinkless Orientation, \(\Sigma = \{ I, O \} \)
- \(A = \{ [O, _, _, _] \}, \ P = \{ [I, _, _] \} \)
Examples

- Maximal Matching
Examples

- Maximal Matching, $\Sigma = \{M, O, P\}$
Round Elimination
Principle of Round Elimination

- Problem Π_0 solved in T rounds on (d, δ)-biregular trees
- \Rightarrow Construct $\Pi_1 = re(\Pi_0)$ solvable in $T - 1$ rounds on (δ, d)-biregular trees
- $\Pi_0 \rightarrow \Pi_1 \rightarrow \ldots \rightarrow \Pi_T = re^T(\Pi_0)$ solvable in 0 round
- Π_T not solvable with no communication $\Rightarrow \Pi_0$ not solvable in T rounds

$\Pi_0 = (\Sigma_0, A_0, P_0)$, $\Pi_1 = (\Sigma_1, A_1, P_1)$

- $\Sigma_1 \subseteq (\mathcal{P}(\Sigma_0) \setminus \emptyset)$
- $[X_1, \ldots, X_\delta] \in A_1 \iff \forall x_1 \in X_1 \ldots \forall x_\delta \in X_\delta$, $[x_1, \ldots, x_\delta] \in P_0$
- $[X_1, \ldots, X_d] \in P_1 \iff \exists x_1 \in X_1 \ldots \exists x_d \in X_d$, $[x_1, \ldots, x_d] \in A_0$
Weak 3-labeling

\(\Pi_0 \) on \((3, 2)\)-biregular trees:

- \(\Sigma_0 = \{1, 2, 3\} \)
- \(A_0 = \{[1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 3], [1, 3, 3], [2, 2, 3], [2, 3, 3]\} \)
- \(P_0 = \{[1, 1], [2, 2], [3, 3]\} \)

\(\Pi_1 \) on \((2, 3)\)-biregular trees
Weak 3-labeling

Π_0 on $(3, 2)$-biregular trees:

- $\Sigma_0 = \{1, 2, 3\}$
- $A_0 = \{[1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 3], [1, 3, 3], [2, 2, 3], [2, 3, 3]\}$
- $P_0 = \{[1, 1], [2, 2], [3, 3]\}$

Π_1 on $(2, 3)$-biregular trees:

- $\Sigma_1 = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
Weak 3-labeling

\(\Pi_0\) on \((3, 2)\)-biregular trees:

- \(\Sigma_0 = \{1, 2, 3\}\)
- \(A_0 = \{[1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 3], [1, 3, 3], [2, 2, 3], [2, 3, 3]\}\)
- \(P_0 = \{[1, 1], [2, 2], [3, 3]\}\)

\(\Pi_1\) on \((2, 3)\)-biregular trees:

- \(\Sigma_1 = \{\{1\}, \{2\}, \{3\}\}\)
- \(A_1 = \{[\{1\}, \{1\}], [\{2\}, \{2\}], [\{3\}, \{3\}]\}\)
- \(P_1 = \{[\{1\}, \{1\}, \{2\}], [\{1\}, \{1\}, \{3\}], [\{1\}, \{2\}, \{2\}], [\{1\}, \{2\}, \{3\}], [\{1\}, \{3\}, \{3\}], [\{2\}, \{2\}, \{3\}], [\{2\}, \{3\}, \{3\}]\}\)
Neighbourhood Simulation
Neighbourhood Simulation

$ball(u, 3)$
Neighbourhood Simulation

\[\text{ball}(u, 3) \]
Neighbourhood Simulation

ball(u, 3)
Neighbourhood Simulation

$ball(u, 3)$
Neighbourhood Simulation

`ball(u, 3)`
Algorithm of Π_1

A_0 solves Π_0 in T rounds. A_1 does in $T - 1$ rounds:

- For each White node u, u gets its ball of radius $T - 1$.
- For each $v \in N(u)$, u simulates all possible balls of radius T of v.
- $X_{u,v} = \{\text{outputs of the possible balls of radius } T \text{ of } v\}$.

Correction:

- $\forall x_{v_1} \in X_{u,v_1} \ldots x_{v_\delta} \in X_{u,\delta}$, their exists ball$(u, T)$ where A_0 produces $[x_{v_1}, \ldots, x_{v_\delta}]$
 $\Rightarrow [x_{v_1}, \ldots, x_{v_\delta}] \in P_0 \Rightarrow [X_{u,v_1}, \ldots, X_{u,v_\delta}] \in A_1$.

- For any Black node v, for any ball(v, T) and $u \in N(v)$, $X_{u,v}$ contains $A_0(u, v)$
 $\Rightarrow [X_{u_1,v}, \ldots, X_{v_d,v}] \in P_1$.

Back to weak 3-labeling

- \(\Pi_1 \) on \((2, 3)\)-biregular trees:
 - \(\Sigma_1 = \{\{1\}, \{2\}, \{3\}\} \)
 - \(A_1 = \{[\{1\}, \{1\}], [\{2\}, \{2\}], [\{3\}, \{3\}]\} \)
 - \(P_1 = \{[\{1\}, \{1\}, \{2\}], [\{1\}, \{1\}, \{3\}], [\{1\}, \{2\}, \{2\}], [\{1\}, \{2\}, \{3\}], [\{1\}, \{3\}, \{3\}], [\{2\}, \{2\}, \{3\}], [\{2\}, \{3\}, \{3\}]\} \)
Back to weak 3-labeling

- Π_1 on $(2, 3)$-biregular trees:
 - $\Sigma_1 = \{1, 2, 3\}$
 - $A_1 = \{[1, 1], [2, 2], [3, 3]\}$
 - $P_1 = \{[1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 3], [1, 3, 3], [2, 2, 3], [2, 3, 3]\}$
Back to weak 3-labeling

- Π_1 on $(2, 3)$-biregular trees:
 - $\Sigma_1 = \{1, 2, 3\}$
 - $A_1 = \{[1, 1], [2, 2], [3, 3]\}$
 - $P_1 = \{[1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 3], [1, 3, 3], [2, 2, 3], [2, 3, 3]\}$
- Π_1 cannot be solved in 0 rounds
Back to weak 3-labeling

- Π_1 on $(2, 3)$-biregular trees:
 - $\Sigma_1 = \{1, 2, 3\}$
 - $A_1 = \{[1, 1], [2, 2], [3, 3]\}$
 - $P_1 = \{[1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 3], [1, 3, 3], [2, 2, 3], [2, 3, 3]\}$
 - Π_1 cannot be solved in 0 rounds $\Rightarrow \Pi_0$ needs at least 2 rounds.
- Π_2 on $(3, 2)$-biregular trees
Back to weak 3-labeling

- Π_1 on $(2, 3)$-biregular trees:
 - $\Sigma_1 = \{1, 2, 3\}$
 - $A_1 = \{[1, 1], [2, 2], [3, 3]\}$
 - $P_1 = \{[1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 3], [1, 3, 3], [2, 2, 3], [2, 3, 3]\}$
 - Π_1 cannot be solved in 0 rounds $\Rightarrow \Pi_0$ needs at least 2 rounds.

- Π_2 on $(3, 2)$-biregular trees:
 - $\Sigma_2 = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
 - $A_2 = \{[\{1, 2, 3\}, \{1, 2\}, \{3\}], [\{1, 2, 3\}, \{1, 3\}, \{2\}], [\{1, 2, 3\}, \{2, 3\}, \{1\}], [\{1, 2\}, \{1, 3\}, \{2, 3\}\}]\}$
 - $P_2 = \{[X, Y]|X \cap Y \neq \emptyset\}$
 - Π_2 can be solved in 0 round.
Sinkless Orientation
Sinkless Orientation on Paths

- $\Sigma = \{I, O\}$
- $A = \{[I, O], [O, O]\}$
- $P = \{[I, O], [I, I]\}$

Brandt et. al (2016)
Sinkless Orientation cannot be solved in $o(n)$ on paths.
Sinkless Orientation on Paths

- $\Sigma = \{I, O\}$
- $A = \{[I, O], [O, O]\}$
- $P = \{[I, O], [I, I]\}$

Brandt et. al (2016)
Sinkless Orientation cannot be solved in $o(n)$ on paths.

Suppose their exists an algorithm in time $T(n) \leq (n - 5)/4$:
Sinkless Orientation on Paths

- $\Sigma = \{I, O\}$
- $A = \{[I, O], [O, O]\}$
- $P = \{[I, O], [I, I]\}$

Brandt et. al (2016)
Sinkless Orientation cannot be solved in $o(n)$ on paths.

Suppose there exists an algorithm in time $T(n) \leq (n - 5)/4$:
Sinkless Orientation on Paths

- $\Sigma = \{I, O\}$
- $A = \{[I, O], [O, O]\}$
- $P = \{[I, O], [I, I]\}$

Brandt et. al (2016)
Sinkless Orientation cannot be solved in $o(n)$ on paths.

Suppose there exists an algorithm in time $T(n) \leq (n - 5)/4$:
Sinkless Orientation on Paths

- $\Sigma = \{I, O\}$
- $A = \{[I, O], [O, O]\}$
- $P = \{[I, O], [I, I]\}$

Brandt et al. (2016)
Sinkless Orientation cannot be solved in $o(n)$ on paths.

Suppose there exists an algorithm in time $T(n) \leq (n - 5)/4$:

![Diagram showing sinkless orientation on a path](image)
Sinkless Orientation on Paths

- $\Sigma = \{I, O\}$
- $A = \{[I, O], [O, O]\}$
- $P = \{[I, O], [I, I]\}$

Brandt et. al (2016)
Sinkless Orientation cannot be solved in $o(n)$ on paths.

Suppose there exists an algorithm in time $T(n) \leq (n - 5)/4$:
Sinkless Orientation on Paths

- \(\Sigma = \{I, O\} \)
- \(A = \{[I, O], [O, O]\} \)
- \(P = \{[I, O], [I, I]\} \)

Brandt et al (2016)

Sinkless Orientation cannot be solved in \(o(n) \) on paths.

Suppose there exists an algorithm in time \(T(n) \leq (n - 5)/4 \):

1. 2 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1 2 2 2 1 1
Sinkless Orientation on Paths

- $\Sigma = \{I, O\}$
- $A = \{[I, O], [O, O]\}$
- $P = \{[I, O], [I, I]\}$

Brandt et. al (2016)
Sinkless Orientation cannot be solved in $o(n)$ on paths.

Suppose there exists an algorithm in time $T(n) \leq (n - 5)/4$:
Sinkless Orientation on Paths

- $\Sigma = \{I, O\}$
- $A = \{[I, O], [O, O]\}$
- $P = \{[I, O], [I, I]\}$

Brandt et. al (2016)
Sinkless Orientation cannot be solved in $o(n)$ on paths.

Suppose there exists an algorithm in time $T(n) \leq (n - 5)/4$:
Sinkless Orientation on Trees

\[\Pi : \]

- Nodes of degree \(d \geq 3 \) need an outgoing edge
- Nodes of degree \(\leq 2 \) have no restriction

There exists a \(O(\log n) \) algorithm:

- Nodes of degree \(\leq 2 \) orient edges toward them (in case of conflict, toward the Black node)
- If at the previous round, one of your edge got oriented, it must be outgoing
 - Orient the remaining of your edges toward you
- In a tree, there is always at distance \(\log n \) from you a node of degree \(\leq 2 \)
Sinkless Orientation Speed Up

\[\Pi_0 : \]

- \(\Sigma_0 = \{ I, O \} \)
- \(A_0 = \{ [O, O, O], [O, O, I], [O, I, I] \} \)
- \(P_0 = \{ [I, I, I], [I, I, O], [I, O, O] \} \)

\[\Pi_1 \]
Sinkless Orientation Speed Up

Π_0:

- $\Sigma_0 = \{I, O\}$
- $A_0 = \{[O, O, O], [O, O, I], [O, I, I]\}$
- $P_0 = \{[I, I, I], [I, I, O], [I, O, O]\}$

Π_1:

- $\Sigma_1 = \{\{I\}, \{O, I\}\}$
- $A_1 = \{[\{I\}, \{O, I\}, \{O, I\}]\}$
- $P_1 = \{[\{I\}, \{I\}, \{O, I\}], [\{I\}, \{O, I\}, \{O, I\}], [\{O, I\}, \{O, I\}, \{O, I\}]\}$
Sinkless Orientation Speed Up

\[\Pi_0 : \]
- \(\Sigma_0 = \{ I, O \} \)
- \(A_0 = \{ [O, O, O], [O, O, I], [O, I, I] \} \)
- \(P_0 = \{ [I, I, I], [I, I, O], [I, O, O] \} \)

\[\Pi_1 : \]
- \(\Sigma_1 = \{ \{ I \}, \{ O, I \} \} = \{ A, B \} \)
- \(A_1 = \{ [\{ I \}, \{ O, I \}, \{ O, I \}] \} = \{ [A, B, B] \} \)
- \(P_1 = \{ [\{ I \}, \{ I \}, \{ O, I \}], [\{ I \}, \{ O, I \}, \{ O, I \}], [\{ O, I \}, \{ O, I \}, \{ O, I \}] \} = \{ [A, A, B], [A, B, B], [B, B, B] \} \)
Sinkless Orientation Speed Up

\[\Pi_1 : \]

- \[\Sigma_1 = \{ A, B \} \]
- \[A_1 = \{ [A, B, B] \} \]
- \[P_1 = \{ [A, A, B], [A, B, B], [B, B, B] \} \]

\[\Pi_2 \]
Sinkless Orientation Speed Up

Π_1:
- $\Sigma_1 = \{A, B\}$
- $A_1 = \{[A, B, B]\}$
- $P_1 = \{[A, A, B], [A, B, B], [B, B, B]\}$

Π_2:
- $\Sigma_2 = \{\{B\}, \{A, B\}\}$
- $A_2 = \{\{\{B\}, \{A, B\}, \{A, B\}\}\}$
- $P_2 = \{\{\{B\}, \{B\}, \{A, B\}\}, [\{B\}, \{A, B\}, \{A, B\}], [\{A, B\}, \{A, B\}, \{A, B\}]\}$
Sinkless Orientation Lower Bound

- $\forall i \geq 1, \Pi_i = \Pi_1$
- A solves Π_0 in T rounds $\Rightarrow \Pi_1$ can be solved in 0 round

Sinkless Orientation cannot be solved?!
Sinkless Orientation Lower Bound

- $\forall i \geq 1, \Pi_i = \Pi_1$
- A solves Π_0 in T rounds \Rightarrow Π_1 can be solved in 0 round

Sinkless Orientation cannot be solved?!

- A T round algorithm with no leafs $\Rightarrow 3 \times 2^T$ nodes
- With $T(n) = \Omega(\log n)$, we cannot do the speed up

Chang et. al (2016)
Sinkless Orientation cannot be solved in $o(\log n)$ rounds.
Maximal Matching
Maximal Matching in Δ-regular graphs

- Maximal Matching, $\Sigma = \{M, O, P\}$
- $A_0 = (M^{\Delta-1} \mid P^\Delta)$, $P_0 = (M[PO]^{\Delta-1} \mid O^\Delta)$
Maximal Matching in Δ-regular graphs

- Maximal Matching, $\Sigma = \{M, O, P\}$
- $A_0 = (M O^{\Delta - 1} \mid P^\Delta)$, $P_0 = (M [PO]^{\Delta - 1} \mid O^\Delta)$

Balliu et. al (2019)
Maximal Matching needs $\Omega(\min\{\Delta, \log n / \log \log n\})$ rounds in the LOCAL Model.
Bibliography

