Distributed Computing

10 - Speed Up Simulation

Mikaël Rabie
Université de Paris, IRIF
Speed Up for 3-coloring a Path
(LOCAL Model)
From n colors to $\log n$ colors

\[
42 \rightarrow \log n \rightarrow 2\log n \rightarrow \log \log n + 1 \text{ bits}
\]

After $\log^* n$ iterations, $O(1)$ bits.

After $O(1)$ greedy recoloring steps, 3-coloring.
From n colors to $\log n$ colors

After $\log^* n$ iterations, $O(1)$ bits.

After $O(1)$ greedy recoloring steps, 3-coloring.
From n colors to $\log n$ colors

After $\log^* n$ iterations, $O(1)$ bits.

After $O(1)$ greedy recoloring steps, 3-coloring.
From \(n \) colors to \(\log n \) colors

\[
\begin{align*}
&101010 \quad 1100110 \quad 100100 \\
&\quad 42 \quad 102 \quad 36
\end{align*}
\]

\(\#0 \)

After \(\log^* n \) iterations, \(O(1) \) bits.

After \(O(1) \) greedy recoloring steps, 3-coloring.
From n colors to $\log n$ colors

\[n \text{ colors} \Rightarrow \log n \text{ colors} \Rightarrow 2^{\log n} \text{ new colors} \Rightarrow \log \log n + 1 \text{ bits} \]

After $\log^* n$ iterations, $O(1)$ bits.

After $O(1)$ greedy recoloring steps, 3-coloring.
From n colors to $\log n$ colors

After $\log^* n$ iterations, $O(1)$ bits.

After $O(1)$ greedy recoloring steps, 3-coloring.
From n colors to $\log n$ colors

\[
110 \Rightarrow \log n \text{ bits} \Rightarrow 2^{\log n} \text{ new colors} \Rightarrow \log \log n + 1 \text{ bits}
\]

After $\log \ast n$ iterations, $O(1)$ bits.

After $O(1)$ greedy recoloring steps, 3-coloring.
From n colors to $\log n$ colors

$\ldots \quad 110 \quad \ldots$

$6 \quad \ldots$

3#0

$\ldots \quad 101 \quad \ldots$

5

2#1

$\ldots \quad 100 \quad \ldots$

4

2#0

After $\log* n$ iterations, $O(1)$ bits.

After $O(1)$ greedy recoloring steps, 3-coloring.
From \(n \) colors to \(\log n \) colors

\[n \text{ colors} \Rightarrow \log n \text{ bits} \Rightarrow 2 \log n \text{ new colors} \Rightarrow \log \log n + 1 \text{ bits} \]
From \(n \) colors to \(\log n \) colors

\[
n \text{colors} \Rightarrow \log n \text{ bits} \Rightarrow 2 \log n \text{ new colors} \Rightarrow \log \log n + 1 \text{ bits}
\]

After \(\log^* n \) iterations, \(O(1) \) bits.

After \(O(1) \) greedy recoloring steps, 3-coloring.
An algorithm which colors the n-cycle with three colors requires at least $\frac{1}{2}(\log^* n - 3)$ communication rounds.

The same bound holds also for randomized algorithms.
Speed up 3-coloring

\mathcal{A} : algorithm that k-colors nodes in T rounds.

\mathcal{A}' : algorithm that k'-colors nodes in $T - 1$ rounds.
$A :$ algorithm that k-colors nodes in T rounds.
Speed up 3-coloring

A : algorithm that k-colors nodes in T rounds.

$c \in [1, k]$
Speed up 3-coloring

\[A : \text{algorithm that } k\text{-colors nodes in } T \text{ rounds.} \]
\(\mathcal{A} \): algorithm that \(k \)-colors nodes in \(T \) rounds.

\[\forall i \leq n \]

\[T - 1 \quad T - 1 \]
\(\mathcal{A} \) : algorithm that \(k \)-colors nodes in \(T \) rounds.

\(\forall id \leq n \)

\(T \quad c \in [1, k] \quad T \)

\(T - 1 \quad S_L \in 2^k \quad T - 1 \)
A : algorithm that \(k \)-colors nodes in \(T \) rounds.

\[c \in [1, k] \]

\[T - 1 \]

\[S_L \]

\[\forall \text{id} \leq n \]
\(\mathcal{A} \): algorithm that \(k \)-colors nodes in \(T \) rounds.
\(\mathcal{A} \) : algorithm that \(k \)-colors nodes in \(T \) rounds.

\[c \in [1, k] \]

\[T - 1 \]

\[S_L \# S_R \in 2^k \times 2^k \]
A : algorithm that k-colors nodes in T rounds.

$S_L \# S_R \in 2^k \times 2^k$

$S_L \cap S_R = \emptyset$
\[A : \text{algorithm that } k\text{-colors nodes in } T\text{ rounds}. \]
\(\mathcal{A} \) : algorithm that \(k \)-colors nodes in \(T \) rounds.
A : algorithm that k-colors nodes in T rounds.

\[SL \cap SR = \emptyset \land S'_L \cap S'_R = \emptyset \]
\(A\) : algorithm that \(k\)-colors nodes in \(T\) rounds.

\[
S_L \cap S_R = \emptyset \land S_L' \cap S_R' = \emptyset
\]

\[
S_L' \cap S_R \neq \emptyset
\]
\[A : \text{algorithm that}\ k\text{-colors nodes in}\ T\ \text{rounds.} \]

\[S_L \cap S_R = \emptyset \land S'_L \cap S'_R = \emptyset \]

\[S'_L \cap S_R \neq \emptyset \]

\[S_L \neq S'_L \land S_R \neq S'_R \]
\[A : \text{algorithm that } k\text{-colors nodes in } T \text{ rounds.} \]
\[A_1 : \text{algorithm that } 4^k\text{-colors edges in } T - 1 \text{ rounds.} \]
\(\mathcal{A} \): algorithm that \(k \)-colors nodes in \(T \) rounds.

\(\mathcal{A}_1 \): algorithm that \(4^k \)-colors edges in \(T - 1 \) rounds.

c \(\in \) \([1, 4^k]\)
\[\mathcal{A} : \text{algorithm that } k\text{-colors nodes in } T \text{ rounds.} \]
\[\mathcal{A}_1 : \text{algorithm that } 4^k\text{-colors edges in } T - 1 \text{ rounds.} \]
\(\mathcal{A} \): algorithm that \(k \)-colors nodes in \(T \) rounds.
\(\mathcal{A}_1 \): algorithm that \(4^k \)-colors edges in \(T - 1 \) rounds.
\(\mathcal{A} \) : algorithm that \(k \)-colors nodes in \(T \) rounds.

\(\mathcal{A}_1 \) : algorithm that \(4^k \)-colors edges in \(T - 1 \) rounds.
\(\mathcal{A} \) : algorithm that \(k \)-colors nodes in \(T \) rounds.

\(\mathcal{A}_1 \) : algorithm that \(4^k \)-colors edges in \(T - 1 \) rounds.
Speed up 3-coloring

\(\mathcal{A} \): algorithm that \(k \)-colors nodes in \(T \) rounds.

\(\mathcal{A}_1 \): algorithm that \(4^k \)-colors edges in \(T - 1 \) rounds.

\(\mathcal{A}_2 \): algorithm that \(4^{4^k} \)-colors nodes in \(T - 1 \) rounds.

\(c \in [1, 4^{4^k}] \)
Speed up 3-coloring

\(\mathcal{A} \) : algorithm that \(k \)-colors nodes in \(T \) rounds.
\(\mathcal{A}_1 \) : algorithm that \(4^k \)-colors edges in \(T - 1 \) rounds.
\(\mathcal{A}_2 \) : algorithm that \(4^{4^k} \)-colors nodes in \(T - 1 \) rounds.
\[\ldots \]
\(\mathcal{A}_{2^l} \) : algorithm that \(4^{4^{4^{\ldots^k}}} \)-colors nodes in \(T - l \) rounds.
Speed up 3-coloring

\(A \) : algorithm that \(k \)-colors nodes in \(T \) rounds.
\(A_1 \) : algorithm that \(4^k \)-colors edges in \(T - 1 \) rounds.
\(A_2 \) : algorithm that \(4^4^k \)-colors nodes in \(T - 1 \) rounds.
\ldots
\(A_{2^l} \) : algorithm that \(4^4^4^\ldots^k \)-colors nodes in \(T - l \) rounds.

If we have \(k = 3 \) and \(T < \frac{\log^* n}{2} \),
\[\Rightarrow \] We create a \(c \)-coloring algorithm in 0 rounds, with \(c = 4^4^3 < n \).
The \((d, \delta)\) Bipartite Algorithm
Biregular Trees

- Black-White Bipartite Tree
- Black nodes of degree \(d\) or 1, White nodes of degree \(\delta\) or 1.
The Black-White Algorithm

- **Bipartite locally verifiable problem** on a \((d, \delta)\) Biregular Trees is a 3-tuple \(\Pi = (\Sigma, A, P)\):
 - \(\Sigma\) : output alphabet
 - \(A \subseteq \Sigma^d\) : outputs on Black nodes of degree \(d\)
 - \(P \subseteq \Sigma^\delta\) : outputs on White nodes of degree \(\delta\)

- Black nodes are **Active** : they produce an output of \(A\) on their edges.
- White nodes are **Passive** : they check that the output on their edges is in \(P\).
Examples

- 5-edge coloring, $\Sigma = \{1, 2, 3, 4, 5\}$
- $A = \{[c_1, c_2, c_3, c_4] \text{ with } c_1 < c_2 < c_3 < c_4\}$, $P = \{[c_1, c_2, c_3] \text{ with } c_1 < c_2 < c_3\}$
Examples

- Maximal Matching, $\Sigma = \{M, U, P\}$

Examples

- Sinkless Orientation, $\Sigma = \{I, O\}$
- $A = \{[O, _, _, _]\}, P = \{[I, _, _]\}$
Examples

- Weak 3-labeling, $\Sigma = \{1, 2, 3\}$
- $A = \{[c_1, c_2, c_3, c_4] \text{ with } c_1 \neq c_4\}, \ P = \{[c_1, c_2, c_3] \text{ with } c_1 \neq c_3\}$
Round Elimination
Principle of Round Elimination

- Problem Π_0 solved in T rounds on (d, δ)-biregular trees
- \Rightarrow Construct $\Pi_1 = re(\Pi_0)$ solvable in $T - 1$ rounds on (δ, d)-biregular trees
- $\Pi_0 \rightarrow \Pi_1 \rightarrow \ldots \rightarrow \Pi_T = re^T(\Pi_0)$ solvable in 0 round
- Π_T not solvable with no communication $\Rightarrow \Pi_0$ not solvable in T rounds

$\Pi_0 = (\Sigma_0, A_0, P_0), \Pi_1 = (\Sigma_1, A_1, P_1)$

- $\Sigma_1 \subseteq (P(\Sigma_0) \setminus \emptyset)$
- $[X_1, \ldots, X_\delta] \in A_1 \iff \forall x_1 \in X_1 \ldots \forall x_\delta \in X_\delta, [x_1, \ldots, x_\delta] \in P_0$
- $[X_1, \ldots, X_d] \in P_1 \iff \exists x_1 \in X_1 \ldots \exists x_d \in X_d, [x_1, \ldots, x_d] \in A_0$
Weak 3-labeling

\(\Pi_0\) on \((3, 2)\)-biregular trees:

- \(\Sigma_0 = \{1, 2, 3\}\)
- \(A_0 = \{[1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 3], [1, 3, 3], [2, 2, 3], [2, 3, 3]\}\)
- \(P_0 = \{[1, 1], [2, 2], [3, 3]\}\)

\(\Pi_1\) on \((2, 3)\)-biregular trees
Weak 3-labeling

\(\Pi_0 \) on \((3, 2)\)-biregular trees:

- \(\Sigma_0 = \{1, 2, 3\} \)
- \(A_0 = \{[1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 3], [1, 3, 3], [2, 2, 3], [2, 3, 3]\} \)
- \(P_0 = \{[1, 1], [2, 2], [3, 3]\} \)

\(\Pi_1 \) on \((2, 3)\)-biregular trees:

- \(\Sigma_1 = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\} \)
- \(A_1 = \{\{\{1\}, \{1\}\}, \{\{2\}, \{2\}\}, \{\{3\}, \{3\}\}\} \)
- \(P_1 = \{\{\{1\}, \{1\}, \{2\}\}, \{\{1\}, \{1\}, \{3\}\}, \{\{1\}, \{2\}, \{2\}\}, \{\{1\}, \{2\}, \{3\}\}, \{\{1\}, \{3\}, \{3\}\}, \{\{2\}, \{2\}, \{3\}\}, \{\{2\}, \{3\}, \{3\}\}\} \)
Neighbourhood Simulation
Neighbourhood Simulation

$\text{ball}(u, 3)$
Neighbourhood Simulation

ball(u, 3)
Neighbourhood Simulation

ball(u, 3)
Neighbourhood Simulation

$ball(u, 3)$
Neighbourhood Simulation

\[\text{ball}(u, 3) \]
Algorithm of Π_1

A_0 solves Π_0 in T rounds. A_1 does in $T - 1$ rounds:

- For each White node u, u gets its ball of radius $T - 1$.
- For each $v \in N(u)$, u simulates all possible balls of radius T of v.
- $X_{u,v} = \{\text{outputs of the possible balls of radius } T \text{ of } v\}$.

Correction:

- $\forall x_{v_1} \in X_{u,v_1} \ldots x_{v_\delta} \in X_{u,\delta}$, their exists $\text{ball}(u, T)$ where A_0 produces $[x_{v_1}, \ldots, x_{v_\delta}]$
 $\Rightarrow [x_{v_1}, \ldots, x_{v_\delta}] \in P_0 \Rightarrow [X_{u,v_1}, \ldots, X_{u,v_\delta}] \in A_1$.
- For any Black node v, for any $\text{ball}(v, T)$ and $u \in N(v)$, $X_{u,v}$ contains $A_0(u, v)$
 $\Rightarrow [X_{u_1,v}, \ldots, X_{v_d,v}] \in P_1$.
Back to weak 3-labeling

- Π_1 on $(2, 3)$-biregular trees:
 - $\Sigma_1 = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
 - $A_1 = \{[\{1\}, \{1\}], [\{2\}, \{2\}], [\{3\}, \{3\}]\}$
 - $P_1 = \{[\{1\}, \{1\}, \{2\}], [\{1\}, \{1\}, \{3\}], [\{1\}, \{2\}, \{2\}], [\{1\}, \{2\}, \{3\}], [\{1\}, \{3\}, \{3\}], [\{2\}, \{2\}, \{3\}], [\{2\}, \{3\}, \{3\}]\}$
Back to weak 3-labeling

- Π_1 on $(2, 3)$-biregular trees:
 - $\Sigma_1 = \{1, 2, 3\}$
 - $A_1 = \{[1, 1], [2, 2], [3, 3]\}$
 - $P_1 = \{[1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 3], [1, 3, 3], [2, 2, 3], [2, 3, 3]\}$
Back to weak 3-labeling

- Π_1 on $(2, 3)$-biregular trees:
 - $\Sigma_1 = \{1, 2, 3\}$
 - $A_1 = \{[1, 1], [2, 2], [3, 3]\}$
 - $P_1 = \{[1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 3], [1, 3, 3], [2, 2, 3], [2, 3, 3]\}$

- Π_1 cannot be solved in 0 round \Rightarrow Π_0 needs at least 2 rounds.

- Π_2 on $(3, 2)$-biregular trees
Back to weak 3-labeling

- \(\Pi_1 \) on \((2, 3)\)-biregular trees:
 - \(\Sigma_1 = \{1, 2, 3\} \)
 - \(A_1 = \{[1, 1], [2, 2], [3, 3]\} \)
 - \(P_1 = \{[1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 3], [1, 3, 3], [2, 2, 3], [2, 3, 3]\} \)
 - \(\Pi_1 \) cannot be solved in 0 round \(\Rightarrow\) \(\Pi_0 \) needs at least 2 rounds.

- \(\Pi_2 \) on \((3, 2)\)-biregular trees:
 - \(\Sigma_2 = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\} \)
 - \(A_2 = \{[[1, 2, 3], \{1, 2\}, \{3\}], [[1, 2, 3], \{1, 3\}, \{2\}], [[1, 2, 3], \{2, 3\}, \{1\}], [[1, 2], \{1, 3\}, \{2, 3\}]]\} \)
 - \(P_2 = \{[X, Y]|X \cap Y \neq \emptyset\} \)
 - \(\Pi_2 \) can be solved in 0 round.
Sinkless Orientation
Sinkless Orientation on Paths

- \(\Sigma = \{ I, O \} \)
- \(A = \{ [I, O], [O, O] \} \)
- \(P = \{ [I, O], [I, I] \} \)

Brandt et. al (2016)

Sinkless Orientation cannot be solved in \(o(n) \) on paths.
Sinkless Orientation on Paths

- $\Sigma = \{I, O\}$
- $A = \{[I, O], [O, O]\}$
- $P = \{[I, O], [I, I]\}$

Brandt et. al (2016)
Sinkless Orientation cannot be solved in $o(n)$ on paths.

Suppose their exists an algorithm in time $T(n) \leq (n - 5)/4$:
Sinkless Orientation on Paths

- $\Sigma = \{I, O\}$
- $A = \{[I, O], [O, O]\}$
- $P = \{[I, O], [I, I]\}$

Brandt et. al (2016)
Sinkless Orientation cannot be solved in $o(n)$ on paths.

Suppose their exists an algorithm in time $T(n) \leq (n - 5)/4$:
Sinkless Orientation on Paths

- \(\Sigma = \{I, O\} \)
- \(A = \{[I, O], [O, O]\} \)
- \(P = \{[I, O], [I, I]\} \)

Brandt et. al (2016)

Sinkless Orientation cannot be solved in \(o(n) \) on paths.

Suppose their exists an algorithm in time \(T(n) \leq (n - 5)/4 \) :
Sinkless Orientation on Paths

- $\Sigma = \{l, O\}$
- $A = \{[l, O], [O, O]\}$
- $P = \{[l, O], [l, l]\}$

Brandt et. al (2016)
Sinkless Orientation cannot be solved in $o(n)$ on paths.

Suppose their exists an algorithm in time $T(n) \leq (n - 5)/4$:
Sinkless Orientation on Paths

- $\Sigma = \{I, O\}$
- $A = \{[I, O], [O, O]\}$
- $P = \{[I, O], [I, I]\}$

Brandt et. al (2016)
Sinkless Orientation cannot be solved in $o(n)$ on paths.

Suppose there exists an algorithm in time $T(n) \leq (n - 5)/4$:
Sinkless Orientation on Paths

- $\Sigma = \{I, O\}$
- $A = \{[I, O], [O, O]\}$
- $P = \{[I, O], [I, I]\}$

Brandt et. al (2016)

Sinkless Orientation cannot be solved in $o(n)$ on paths.

Suppose there exists an algorithm in time $T(n) \leq (n - 5)/4$:

![Diagram of Sinkless Orientation on Paths]
Sinkless Orientation on Paths

- $\Sigma = \{I, O\}$
- $A = \{[I, O], [O, O]\}$
- $P = \{[I, O], [I, I]\}$

Brandt et. al (2016)
Sinkless Orientation cannot be solved in $o(n)$ on paths.

Suppose there exists an algorithm in time $T(n) \leq (n - 5)/4$:
Sinkless Orientation on Paths

- \(\Sigma = \{I, O\} \)
- \(A = \{[I, O], [O, O]\} \)
- \(P = \{[I, O], [I, I]\} \)

Brandt et. al (2016)

Sinkless Orientation cannot be solved in \(o(n) \) on paths.

Suppose their exists an algorithm in time \(T(n) \leq (n - 5)/4 \):

![Diagram of sinkless orientation on paths](image)
Sinkless Orientation on Trees

\[\Pi : \]

- Nodes of degree \(d \geq 3 \) need an outgoing edge
- Nodes of degree \(\leq 2 \) have no restriction

There exists a \(O(\log n) \) algorithm:

- Nodes of degree \(\leq 2 \) orient edges toward them (in case of conflict, toward the Black node)
- If at the previous round, one of your edge got oriented, it must be outgoing
 Orient the remaining of your edges toward you
- In a tree, there is always at distance \(\log n \) from you a node of degree \(\leq 2 \)
Sinkless Orientation Speed Up

\[\Pi_0 : \]
- \(\Sigma_0 = \{ I, O \} \)
- \(A_0 = \{ [O, O, O], [O, O, I], [O, I, I] \} \)
- \(P_0 = \{ [I, I, I], [I, I, O], [I, O, O] \} \)

\[\Pi_1 \]
\(\Pi_0 : \)
- \(\Sigma_0 = \{I, O\} \)
- \(A_0 = \{[O, O, O], [O, O, I], [O, I, I]\} \)
- \(P_0 = \{[I, I, I], [I, I, O], [I, O, O]\} \)

\(\Pi_1 : \)
- \(\Sigma_1 = \{\{I\}, \{O, I\}\} \)
- \(A_1 = \{[\{I\}, \{O, I\}, \{O, I\}]\} \)
- \(P_1 = \{[\{I\}, \{I\}, \{O, I\}], [\{I\}, \{O, I\}, \{O, I\}]\} \)
Sinkless Orientation Speed Up

\[\Pi_0:\]
- \(\Sigma_0 = \{I, O\}\)
- \(A_0 = \{[O, O, O], [O, O, I], [O, I, I]\}\)
- \(P_0 = \{[I, I, I], [I, I, O], [I, O, O]\}\)

\[\Pi_1:\]
- \(\Sigma_1 = \{\{I\}, \{O, I\}\} = \{A, B\}\)
- \(A_1 = \{\{\{I\}, \{O, I\}, \{O, I\}\}\} = \{[A, B, B]\}\)
- \(P_1 = \{\{\{I\}, \{I\}, \{O, I\}\}, \{\{I\}, \{O, I\}, \{O, I\}\}, \{\{O, I\}, \{O, I\}, \{O, I\}\}\}\)
 = \{[A, A, B], [A, B, B], [B, B, B]\}\)
Sinkless Orientation Speed Up

\[\Pi_1 : \]

- \[\Sigma_1 = \{A, B\} \]
- \[A_1 = \{[A, B, B]\} \]
- \[P_1 = \{[A, A, B], [A, B, B], [B, B, B]\} \]

\[\Pi_2 \]
Sinkless Orientation Speed Up

\(\Pi_1 : \)
- \(\Sigma_1 = \{A, B\} \)
- \(A_1 = \{[A, B, B]\} \)
- \(P_1 = \{[A, A, B], [A, B, B], [B, B, B]\} \)

\(\Pi_2 : \)
- \(\Sigma_2 = \{\{B\}, \{A, B\}\} \)
- \(A_2 = \{\{\{B\}, \{A, B\}, \{A, B\}\}\} \)
- \(P_2 = \{\{\{B\}, \{B\}, \{A, B\}\}, \{\{B\}, \{A, B\}, \{A, B\}\}, \{\{A, B\}, \{A, B\}, \{A, B\}\}\} \)
Sinkless Orientation Lower Bound

- $\forall i \geq 1, \Pi_i = \Pi_1$
- A solves Π_0 in T rounds $\Rightarrow \Pi_1$ can be solved in 0 round

Sinkless Orientation cannot be solved?!
Sinkless Orientation Lower Bound

- $\forall i \geq 1, \Pi_i = \Pi_1$
- A solves Π_0 in T rounds $\Rightarrow \Pi_1$ can be solved in 0 round

Sinkless Orientation cannot be solved ?!

- A T round algorithm with no leaves $\Rightarrow 3 \times 2^T$ nodes
- With $T(n) = \Omega(\log n)$, we cannot do the speed up

Chang et. al (2016)
Sinkless Orientation cannot be solved in $o(\log n)$ rounds.
Bibliography

- Sebastian Brandt. **An automatic speedup theorem for distributed problems.** In PODC 2019.

- Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel Rybicki, Jukka Suomela, and Jara Uitto. **A lower bound for the distributed Lovász local lemma.** In STOC 2016.

- Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. **An exponential separation between randomized and deterministic complexity in the LOCAL model.** In FOCS 2016.