Ramsey theory

Simple example:

Given any set of 6 people either there are 3 among them such that everyone knows everyone else, or there are 3 among them such that no one knows the other two.

In this statement 6 can be replaced with any integer larger than 6 but it cannot be replaced by 5.

Example of 5 people not satisfying the condition

## In language of graphs

A 2-edge-colored graph: each edge is either Red or Blue (this coloring is not proper coloring).

Given a 2-edge-colored complete graph  $K_n$  and integers P & q what we are interested in is:

- · either p vertices where every edge is Red
- · or 9 vertices where every edge is Blue

Ramsey's Theorem

Given any two positive integers P & 9 there exists an integer R(P,q) such that for  $n \ge R(P,q)$  every 2-edge-colored contains either a Red  $K_P$  or Blue  $K_q$ .

Definition. The smallest possible choice in this theorem for R(P, q) is called Ramsey number of P and 9.

Examples.

- 
$$\mathbb{R}(P,2) = P$$

$$- R(3,3) = 6$$

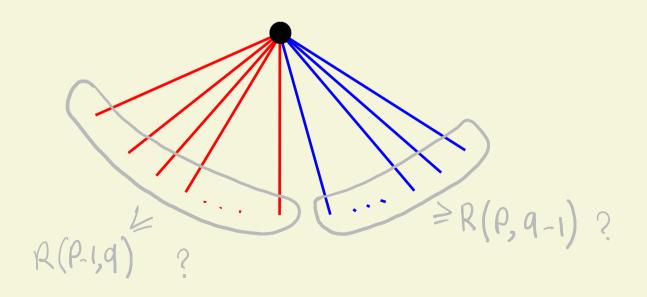
Proof.

We have R(P, 2) = R(2,P) = P.

For the other values of P&9 we apply induction on P+9,

taking P=9=2 as the base of induction  $\mathbb{R}(2, 2)=4$ .

Thus we assume that R(P,q) exists whenever  $P+q \leq K$  and consider a pair of  $P \otimes q$  with P+q=K+1.



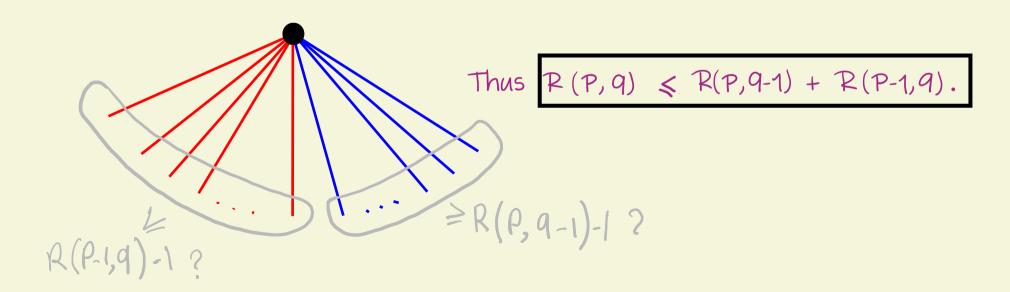
### Proof.

We have R(P, 2) = R(2,P) = P.

For the other values of P&9 we apply induction on P+9,

taking P=9=2 as the base of induction  $\mathbb{R}(2, 2)=4$ .

Thus we assume that R(P,q) exists whenever  $P+q \leq K$  and consider a pair of  $P \otimes Q$  with P+q=K+1.



#### Generalizations:

Hi: k-uniform complete hypergraph on n vertices

Vertices: an n-set (e.g. £1, 2, ... n3 = [n])

Hyper edge set: all k-subsets of [n],  $\binom{[n]}{k}$ 

L-edge-colored k-uniform complete hypergraph:

each hyperedge is assigned one of the L colors.

for n > f(K, r, r, r, ..., r) in any 1-edge-colored k-uniform on n vertices

hypergraph there exists an index i for which we have:

an r-subset of vertices which induces a k-uniform hypergraph all whose edges are colored with the ith color.

### Infinite Ramesy theory

## Given.

- An infinite set A
- A positive integer k (k-subsets to be considered)
- A set of L colors (1, 2, --1)
- A coloring  $\varphi$  of the k-subset of A.

### conclusion.

An infinite subset A' of A where all k-subsets have a same color.

König's Lemma:

In every locally finite, connected, infinite tree there exists an infinite path.

Extremly difficult question.

Determine R(P,9) or R(r, r, ..., r) in general.

What is known:

$$R(3, 3) = 6$$

$$R(4,4) = 18$$

$$R(3, 4)=9$$
  $R(4, 5)=25$ 

$$R(4, 5) = 25$$

$$R(3, 5) = 14$$

$$R(3, 6) = 18$$

$$R(3, t)$$
 is of order  $\frac{t^2}{\log t}$ 

Ly Every triangle-free graph on n vertices has an idependent set of order  $\theta$  (In logn) Most special cases that are open:

#### Best upper bound:

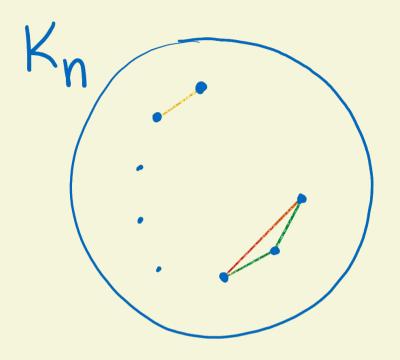
$$P(P, 9) \leq R(P, 9-1) + R(P-1, 9)$$

$$\begin{pmatrix} K+L \\ K \end{pmatrix} = \begin{pmatrix} K+L-1 \\ K \end{pmatrix} + \begin{pmatrix} K-1+1 \\ L \end{pmatrix}$$

$$\rightarrow R(P,q) \in \begin{pmatrix} P+q-2 \\ \gamma-1 \end{pmatrix}$$

$$= > \mathcal{R}(P, P) \leqslant (1+0(1)) \frac{4}{\sqrt{\pi} s}.$$

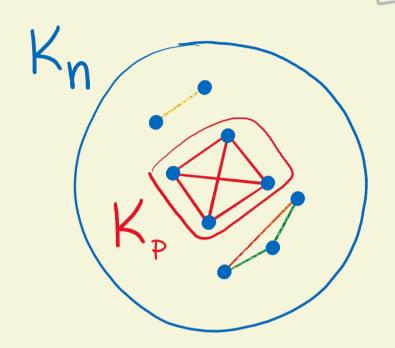
### Best lower bound:



total number of 2-edge-colorings?

#### Best lower bound:

probabilistic method



total number of 2-edge-colorings?

total number of 2-edge-colorings where a given  $K_p$  is monochromatic?

$$\Rightarrow$$
 if  $\binom{n}{p} < 2$ 

 $\Rightarrow$  if  $\binom{n}{p} < 2$ , then there exist an edg-coloring without a monochromatic Kp.

$$\Rightarrow R(P,P) \geq (1+O(1)) \frac{\sqrt{2}}{e} 2^{\frac{1}{2}}$$

### Lower bounds by (algebraic) constructions:

T: an additive) group

5: a subset of [, normally assumed to satisfy XES =-XES.

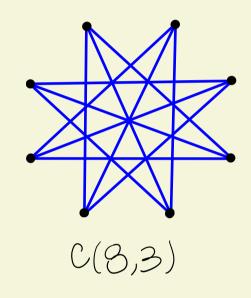
Cayley graph (T,S)

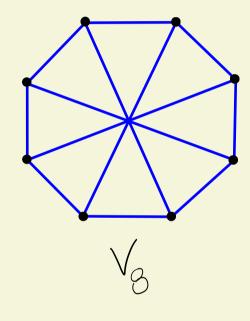
-vertex set: elements of

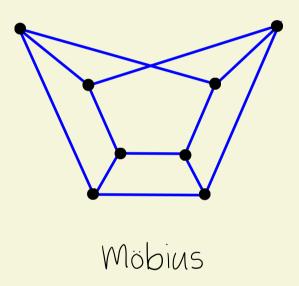
-edge set:  $X - y \iff X - y \in S$ 

## Examples

$$G=(Z_{3}, \{\pm 3, 4\}).$$



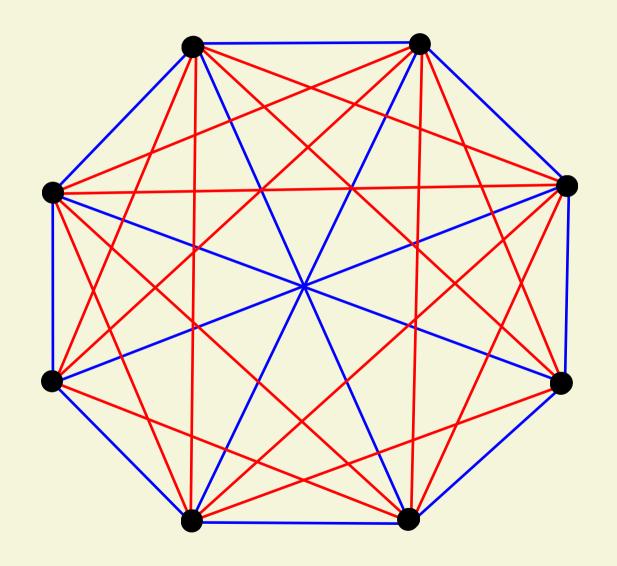




Other names: Wagner graph

(in classification of K5-minor-free graphs)

# Examples



Field (F,+,)

(F,+): an additive group with o as identity

(F\_0,·): a multiplicative group with 1 as identity.

Both are commutative and, moreover, a(b+c)=ab+ac

Finite Field: a Field where F is a finite set.

Field (F,+,.)

(F,+): an additive group with D as identity

(F\_0,.): a multiplicative group with 1 as identity.

Both are commutative and, moreover, a(b+c)=ab+ac

Finite Field: a Field where F is a finite set.

Examples:  $Z_2$ ,  $Z_3$ ,  $Z_4$ ,  $Z_5$ ,  $Z_6$ ,  $Z_7$ ,  $Z_8$ ,  $Z_9$ ?  $Z_2 \times Z_2$ ?

# GF(4): Field on 4 elements

| + | D | 1 | 2      | 3 | X | D | 1 | 2     | 3        |
|---|---|---|--------|---|---|---|---|-------|----------|
|   |   |   | 2      |   | 0 | 0 | D | 0     | <b>D</b> |
|   |   |   | 3      |   | 1 | 0 | 1 | 2     | 3        |
| 2 | 2 | 3 | 0      | 1 | 2 | 0 | 2 | 3     | 1        |
| 3 | 3 | 2 | D<br>1 | 0 | 3 | 0 | 3 | 2 3 1 | 2        |

Golios theory. A finite field of order q exists if and only if  $q = p^n$  for a prime number P.

Golios theory. A finite field of order q exists if and only if  $q = p^n$  for a prime number p.

Question. How to build GF(9)?

Note: Any two finite fields of a same order are isomorphic.

For n=1, i.e. 9=P,  $(Z_P,+,x)$  is the finite field of order P. For  $n \ge 2$  we consider a polynomial f(x) of degree n whose coefficients are from  $Z_P$ , with the property that it is irreducible on  $Z_P[X]$ .  $f(x) \ne g(x)h(x)$ 

Homework. There exists such a polynomial for every  $n \ge 2$ .

Theorem.  $Z_{p}[x]/f(x)$  is the field of order  $p^{n}$ .

#### Examples

In GF(2) the polynomial  $f(x) = x^n + x + 1$  is irreducible.

To build GF(8) we take  $x^3+x+1$  (that means each time you see an  $x^3$  you may replace it with x+1) coefficient of polynomials come from GF(2), thus  $\{0, 1\}$ , and, therefore, all coefficient are 1 in this example.

#### Examples

In GF(2) the polynomial  $f(x) = x^n + x + |$  is irreducible.

To build GF(8) we take  $x^3+x+1$ 

(that means each time you see an  $x^3$  you may replace it with x+1)

coefficient of polynomials come from GF(2), thus {0, 13, and, therefore,

all coefficient are 1 in this example.

| •                     | 0 | 1                     | Χ                     | X +1                  | $\chi^2$              | $x^2 + 1$               | X <sup>2</sup> + X      | $X^{2}+ X + 1$             |
|-----------------------|---|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|-------------------------|----------------------------|
| 0                     | 0 | 0                     | O                     | 0<br>X +1             | O<br>X <sup>2</sup>   | 0<br>X <sup>2</sup> + 1 | O<br>X <sup>2</sup> + X | 0<br>X <sup>2</sup> + X +1 |
| X                     | 0 | X                     | χ <sup>2</sup>        | χ <sup>2</sup> + X    | X +1                  | 1                       | X <sup>2</sup> + X +1   | $x^2 + 1$                  |
|                       |   | X +1                  | x <sup>2</sup> + X    | $x^2 + 1$             | X <sup>2</sup> + X +1 | X <sup>2</sup>          | 1                       | X                          |
| χ <sup>2</sup>        | 0 | X <sup>2</sup>        | X +1                  | X <sup>2</sup> + X +1 | X <sup>2</sup> + X    | X                       | X <sup>2</sup> + 1      | 1                          |
| x <sup>2</sup> + 1    | 0 | X <sup>2</sup> + 1    | 1                     | χ <sup>2</sup>        | Χ                     | X <sup>2</sup> + X +1   | X +1                    | X <sup>2</sup> + X         |
| X <sup>2</sup> + X    | 0 | χ <sup>2</sup> + X    | X <sup>2</sup> + X +1 | 1                     | X <sup>2</sup> + 1    | X +1                    | Х                       | χ <sup>2</sup> -           |
| X <sup>2</sup> + X +1 | 0 | X <sup>2</sup> + X +1 | $x^2 + 1$             | Χ                     | 1                     | x <sup>2</sup> + X      | X <sup>2</sup> -        | X +1                       |

|                       | 0 | 1                     | X                     | X +1                  | χ <sup>2</sup>      | $x^2 + 1$                                | X <sup>2</sup> + X      | $X^{2}+X+1$                |
|-----------------------|---|-----------------------|-----------------------|-----------------------|---------------------|------------------------------------------|-------------------------|----------------------------|
| 0                     | 0 | 0                     | O<br>X                | O<br>X +1             | 0<br>x <sup>2</sup> | 0<br>X <sup>2</sup> + 1                  | 0<br>x <sup>2</sup> + X | 0<br>X <sup>2</sup> + X +1 |
| X                     | 0 | X                     | x <sup>2</sup>        | X <sup>2</sup> + X    | X +1                | X <sup>2</sup> + 1  O X <sup>2</sup> + 1 | x <sup>2</sup> + x +1   | $x^2 + 1$                  |
| X +1                  | 0 | X +1                  | X <sup>2</sup> + X    | $x^2 + 1$             | $X^{2}+X+1$         | X <sup>2</sup>                           | 1                       | X                          |
| X <sup>2</sup>        | 0 | χ²-                   | X +1                  | X <sup>2</sup> + X +1 | X <sup>2</sup> + X  | X                                        | x <sup>2</sup> + 1      | 1                          |
| x <sup>2</sup> + 1    | 0 | $x^2 + 1$             | 1                     | X <sup>2</sup>        | X                   | X <sup>2</sup> + X +1                    | X +1                    | x <sup>2</sup> + X         |
| X <sup>2</sup> + X    | 0 | X <sup>2</sup> + X    | X <sup>2</sup> + X +1 | 1                     | $x^2 + 1$           | X +1                                     | X                       | X <sup>2</sup>             |
| x <sup>2</sup> + x +1 | 0 | X <sup>2</sup> + X +1 | x <sup>2</sup> + 1    | X                     | 1                   | x <sup>2</sup> + X                       | χ <sup>2</sup> -        | X +1                       |

Quderatic Residues:

Solutions of 
$$x = a^2$$
 in  $GF(9)$ 

Examples: 
$$QR(Z_5) = \{\pm 1\}$$
.

QR 
$$(Z_7) = {12,-33}$$
.

Homework: If 
$$9 \equiv 1 \pmod{4}$$
, then  $-1 \in QR (GF(9))$ .

If 
$$9=3 \pmod{4}$$
, then  $-1 \notin QR (GF(9))$ .

Paley graph of order  $Q \equiv 1 \pmod{4}$ ,  $(G \neq (9), Q \neq (G \neq (9)))$ 

# Paley graph of order 5

# Paley graph of order 17

Analogue of Ramsey theory for oriented graphs:

Tn: tournament of order n

Ttn: transitive tournament of order n

Theorem. For every k there exists an f(k) such that for  $n \gg f(k)$  every  $T_n$  contains a copy of  $TT_k$ .