Ramsey theory

Simple example:

Given any set of 6 people either there are 3 among them such that everyone knows everyone else, or there are 3 among them such that no one knows the other two.

In this statement 6 can be replaced with any integer larger than 6 but it cannot be replaced by 5.
Example of 5 people not satisfying the condition
In language of graphs

A 2-edge-colored graph: each edge is either Red or Blue (this coloring is not proper coloring).

Given a 2-edge-colored complete graph K_n and integers $p \ & q$ what we are interested in is:

- either p vertices where every edge is Red
- or q vertices where every edge is Blue
Ramsey’s Theorem

Given any two positive integers P & Q there exists an integer $R(P, Q)$ such that for $n \geq R(P, Q)$ every 2-edge-colored graph contains either a Red K_P or Blue K_Q.

Definition. The smallest possible choice in this theorem for $R(P, Q)$ is called Ramsey number of P and Q.
Examples.

- \(R(p, 2) = p \)

- \(R(3, 3) = 6 \)
Proof.

We have $R(P, 2) = R(2, P) = P$.

For the other values of P & q we apply induction on $P+q$, taking $P=q=2$ as the base of induction $R(2, 2)=4$.

Thus we assume that $R(P,q)$ exists whenever $P+q \leq K$ and consider a pair of P & q with $P+q = K+1$.

\[R(P-1,q) \leq R(P,q-1) \]
Proof.

We have \(R(P, 2) = R(2, P) = P \).

For the other values of \(P \& q \) we apply induction on \(P + q \), taking \(P = q = 2 \) as the base of induction \(R(2, 2) = 4 \).

Thus we assume that \(R(P, q) \) exists whenever \(P + q \leq K \) and consider a pair of \(P \& q \) with \(P + q = K + 1 \).

Thus \(R(P, q) \leq R(P, q-1) + R(P-1, q) \).
Generalizations:

H^n_k: k-uniform complete hypergraph on n vertices

Vertices: an n-set (e.g. $\{1, 2, \ldots, n\} = [n]$)

Hyper edge set: all k-subsets of $[n]$, $\binom{[n]}{k}$

L-edge-colored k-uniform complete hypergraph:

each hyperedge is assigned one of the L colors.

Ramsey's theorem: Given integers $k, r_1, r_2, \ldots, r_l \geq k$, there exists an integer $f(K, r_1, r_2, \ldots, r_l)$ such that

for $n \geq f(K, r_1, r_2, \ldots, r_l)$ in any L-edge-colored k-uniform on n vertices hypergraph there exists an index i for which we have:

an r_i-subset of vertices which induces a k-uniform hypergraph all whose edges are colored with the i^{th} color.
Infinite Ramesy theory

Given.
- An infinite set A
- A positive integer k (k-subsets to be considered)
- A set of l colors (1, 2, ..., l)
- A coloring φ of the k-subset of A

Conclusion.
An infinite subset A' of A where all k-subsets have a same color.
König's Lemma:

In every locally finite, connected, infinite tree there exists an infinite path.
Extremely difficult question:

Determine $R(P, 9)$ or $R(r_1, r_2, \ldots, r_l)$ in general.

What is known:

\begin{align*}
 R(3, 3) &= 6 & R(4, 4) &= 18 \\
 R(3, 4) &= 9 & R(4, 5) &= 25 \\
 R(3, 5) &= 14 \\
 R(3, 6) &= 18 \\
 R(3, 10) &\in \{40, 41, 423\} \\
 \vdots & \\
 R(3, t) &\text{ is of order } \frac{t^2}{\log t} \\
\end{align*}

\[\rightarrow \text{ Every triangle-free graph on n vertices has an independent set of order } \Theta(\sqrt{n \log n}) \]
Most special cases that are open:

\[43 \leq R(5,5) \leq 48 \]
\[102 \leq R(6,6) \leq 165 \]
Best upper bound:

\[R(p, q) \leq R(p, q-1) + R(p-1, q) \]

\[
\binom{k+l}{k} = \binom{k+l-1}{k} + \binom{k-1+l}{l}
\]

\[\rightarrow R(p, q) \leq \binom{p+q-2}{q-1} \]

\[\Rightarrow R(p, p) \leq (1 + o(1)) \frac{4^{s-1}}{\sqrt{\pi s}}. \]
Best lower bound: K_n total number of 2-edge-colorings?
Best lower bound:

\[K_n \]

\[K_p \]

If \(\binom{n}{p} < 2^{\left(\binom{p}{2}\right)} \), then there exist an edge-coloring without a monochromatic \(K_p \).

\[R(p, p) \geq (1+O(1)) \frac{\sqrt{2}}{e} 2^{\frac{p}{2}} \]
Lower bounds by (algebraic) constructions:

\[\Gamma: \text{an additive group} \]
\[S: \text{a subset of } \Gamma, \text{ normally assumed to satisfy } x \in S = -x \in S. \]

Cayley graph \((\Gamma, S)\)

- vertex set: elements of \(\Gamma\)
- edge set: \(x - y \Leftrightarrow x - y \in S\)
Examples

\[G=(\mathbb{Z}_8, \{ \pm 3, 4\}). \]

C(8,3) \hspace{3cm} V_8 \hspace{3cm} \text{Möbius}

Other names: Wagner graph

(in classification of \(K_5 \)-minor-free graphs)
Examples
Field \((F,+,:)\)

\((F,+):\) an additive group with 0 as identity

\((F,\cdot,:):\) a multiplicative group with 1 as identity.

Both are commutative and, moreover, \(a(b+c)=ab+ac\)

Finite Field: a Field where \(F\) is a finite set.
Field \((F,+,\cdot)\)

\((F,+):\) an additive group with 0 as identity

\((F_0,\cdot):\) a multiplicative group with 1 as identity.

Both are commutative and, moreover, \(a(b+c)=ab+ac\)

Finite Field: a Field where \(F\) is a finite set.

Examples: \(\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_5, \mathbb{Z}_6, \mathbb{Z}_7, \mathbb{Z}_8, \mathbb{Z}_9?\)

\(\mathbb{Z}_2 \times \mathbb{Z}_2?\)
$GF(4)$: Field on 4 elements

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Golios theory: A finite field of order q exists if and only if $q = p^n$ for a prime number p.
Golios theory A finite field of order q exists if and only if $q = p^n$ for a prime number p.

Question. How to build $GF(q)$?

Note: Any two finite fields of a same order are isomorphic.
For $n = 1$, i.e. $q = p$, $(\mathbb{Z}_p, +, \cdot)$ is the finite field of order p.

For $n \geq 2$ we consider a polynomial $f(x)$ of degree n whose coefficients are from \mathbb{Z}_p, with the property that it is irreducible on $\mathbb{Z}_p[x]$.

$f(x) \neq q(x)h(x)$

Homework. There exists such a polynomial for every $n \geq 2$.

Theorem. $\mathbb{Z}_p[x]/f(x)$ is the field of order p^n.
Examples

In $\mathbb{GF}(2)$ the polynomial $f(x) = x^n + x + 1$ is irreducible.

To build $\mathbb{GF}(8)$ we take $x^3 + x + 1$

(that means each time you see an x^3 you may replace it with $x + 1$)

coefficient of polynomials come from $\mathbb{GF}(2)$, thus $0, 1$, and, therefore, all coefficient are 1 in this example.
Examples

In GF(2) the polynomial \(f(x) = x^n + x + 1 \) is irreducible.

To build GF(2^3) we take \(x^3 + x + 1 \)
(that means each time you see an \(x^3 \) you may replace it with \(x + 1 \))

coefficient of polynomials come from GF(2), thus 0, 1, \(\overline{1} \), and, therefore,

all coefficient are 1 in this example.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>(x)</th>
<th>(x + 1)</th>
<th>(x^2)</th>
<th>(x^2 + 1)</th>
<th>(x^2 + x)</th>
<th>(x^2 + x + 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(x)</td>
<td>(x + 1)</td>
<td>(x^2)</td>
<td>(x^2 + 1)</td>
<td>(x^2 + x)</td>
<td>(x^2 + x + 1)</td>
</tr>
<tr>
<td>(x)</td>
<td>0</td>
<td>(x)</td>
<td>(x^2)</td>
<td>(x^2 + x)</td>
<td>(x + 1)</td>
<td>1</td>
<td>(x^2 + x + 1)</td>
<td>(x^2 + 1)</td>
</tr>
<tr>
<td>(x + 1)</td>
<td>0</td>
<td>(x + 1)</td>
<td>(x^2 + x)</td>
<td>(x^2 + 1)</td>
<td>(x^2 + x + 1)</td>
<td>(x^2)</td>
<td>1</td>
<td>(x)</td>
</tr>
<tr>
<td>(x^2)</td>
<td>0</td>
<td>(x^2)</td>
<td>(x + 1)</td>
<td>(x^2 + x + 1)</td>
<td>(x^2 + x)</td>
<td>(x)</td>
<td>(x^2 + 1)</td>
<td>1</td>
</tr>
<tr>
<td>(x^2 + 1)</td>
<td>0</td>
<td>(x^2 + 1)</td>
<td>1</td>
<td>(x^2)</td>
<td>(x)</td>
<td>(x^2 + x + 1)</td>
<td>(x + 1)</td>
<td>(x^2 + x)</td>
</tr>
<tr>
<td>(x^2 + x)</td>
<td>0</td>
<td>(x^2 + x)</td>
<td>(x^2 + x + 1)</td>
<td>1</td>
<td>(x^2 + 1)</td>
<td>(x + 1)</td>
<td>(x)</td>
<td>(x^2)</td>
</tr>
<tr>
<td>(x^2 + x + 1)</td>
<td>0</td>
<td>(x^2 + x + 1)</td>
<td>(x^2 + 1)</td>
<td>(x)</td>
<td>1</td>
<td>(x^2 + x)</td>
<td>(x^2)</td>
<td>(x + 1)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>(x)</td>
<td>(x + 1)</td>
<td>(x^2)</td>
<td>(x^2 + 1)</td>
<td>(x^2 + x)</td>
<td>(x^2 + x + 1)</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(x)</td>
<td>(x + 1)</td>
<td>(x^2)</td>
<td>(x^2 + 1)</td>
<td>(x^2 + x)</td>
<td>(x^2 + x + 1)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(x)</td>
<td>(x + 1)</td>
<td>(x^2)</td>
<td>(x^2 + 1)</td>
<td>(x^2 + x)</td>
<td>(x^2 + x + 1)</td>
</tr>
<tr>
<td>(x)</td>
<td>0</td>
<td>(x)</td>
<td>(x^2)</td>
<td>(x^2 + x)</td>
<td>(x + 1)</td>
<td>1</td>
<td>(x^2 + x + 1)</td>
<td>(x^2 + 1)</td>
</tr>
<tr>
<td>(x + 1)</td>
<td>0</td>
<td>(x + 1)</td>
<td>(x^2 + x)</td>
<td>(x^2 + 1)</td>
<td>(x^2 + x + 1)</td>
<td>(x^2)</td>
<td>1</td>
<td>(x)</td>
</tr>
<tr>
<td>(x^2)</td>
<td>0</td>
<td>(x^2)</td>
<td>(x + 1)</td>
<td>(x^2 + x + 1)</td>
<td>(x^2 + x)</td>
<td>(x)</td>
<td>(x^2 + 1)</td>
<td>1</td>
</tr>
<tr>
<td>(x^2 + 1)</td>
<td>0</td>
<td>(x^2 + 1)</td>
<td>1</td>
<td>(x^2)</td>
<td>(x)</td>
<td>(x^2 + x + 1)</td>
<td>(x + 1)</td>
<td>(x^2 + x)</td>
</tr>
<tr>
<td>(x^2 + x)</td>
<td>0</td>
<td>(x^2 + x)</td>
<td>(x^2 + x + 1)</td>
<td>1</td>
<td>(x^2 + 1)</td>
<td>(x + 1)</td>
<td>(x)</td>
<td>(x^2)</td>
</tr>
<tr>
<td>(x^2 + x + 1)</td>
<td>0</td>
<td>(x^2 + x + 1)</td>
<td>(x^2 + 1)</td>
<td>(x)</td>
<td>1</td>
<td>(x^2 + x)</td>
<td>(x^2)</td>
<td>(x + 1)</td>
</tr>
</tbody>
</table>
Quadratic Residues:

Solutions of $x = a^2$ in $\mathbb{GF}(q)$

Examples:
$\text{QR}(\mathbb{Z}_5) = \{ \pm 1 \}$.
$\text{QR}(\mathbb{Z}_7) = \{ 1, 2, -3 \}$.

Homework: If $q \equiv 1 \pmod{4}$, then $-1 \in \text{QR}(\mathbb{GF}(q))$.
If $q \equiv 3 \pmod{4}$, then $-1 \notin \text{QR}(\mathbb{GF}(q))$.
Paley graph of order $q \equiv 1 \pmod{4}$,

$$(\mathbb{GF}(q), \mathbb{QR}(\mathbb{GF}(q)))$$
Paley graph of order 5
Paley graph of order 17
Analogue of Ramsey theory for oriented graphs:

T_n: tournament of order n

TT_n: transitive tournament of order n

Theorem. For every k there exists an $f(k)$ such that for $n \geq f(k)$ every T_n contains a copy of TT_k.