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Coloring and Circular Coloring

Four Coloring Theorem

Four Color Theorem (Appel-Haken 1976)

Every planar map is four colorable.

More compute-aided proofs found later. (RSST 1997 etc.)
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Coloring and Circular Coloring

Coloring Planar Graphs

For vertex coloring

4CT: Every planar graph is 4-colorable.

3CT: Every triangle-free planar graph is 3-colorable.

OB: A graph is 2-colorable iff it contains no odd cycle.

How about coloring between 2 and 3 ?

2.9-coloring, 2.5-coloring, (2 + 1
p)-coloring ?
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Coloring and Circular Coloring

Circular Coloring

A graph G is circular k
d -colorable if there exists a function

c : V (G) 7→ Zk such that
||c(x)− c(y)||

k
≥ d, for any edge xy ∈ E(G)

(d = 1 gives proper vertex coloring)

Definition of circular chromatic number χc(G)

χc(G): the least rational number r such that G is circular
r-colorable.

χ(G) = dχc(G)e, χc(C2p+1) = 2 + 1
p

χc(G) ≤ 2 + 1
p iff G has a homomorphism to C2p+1.
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Coloring and Circular Coloring

Homomorphism: C7 → C5

and C5 → C3, so C7 → C3.
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Coloring and Circular Coloring

Planar Circular Coloring Conjecture

The following is modified from Jaeger’s conjecture.

Planar Circular Coloring Conjecture

χc(G) ≤ 2 + 2
k for any planar graph G of girth ≥ 2k.

k = 1 is the Four Color Theorem; k = 2 is Grötzsch’s
Theorem; it is open for k ≥ 3.

For k = 4, it is known that χc(G) ≤ 2.5 for girth(G) ≥ 10
(by Dvořák&Postle 2017),

For k = 6, it is known that χc(G) ≤ 7/3 for girth(G) ≥ 16
(by Postle&Smith-Roberge 2019+, Cranston&Li 2020)
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Coloring and Circular Coloring

Planar Circular Coloring Conjecture

Planar Circular Coloring Conjecture

χc(G) ≤ 2 + 2
k for any planar graph G of girth ≥ 2k.

Thm ((ii)LTWZ 2013 plus (i)(iii)LWZ 2020 )

For a planar graph G,
(i) if girth(G) ≥ 6p− 2, then χc(G) ≤ 2 + 2/(2p− 1);
(ii) if girth(G) ≥ 6p, then χc(G) ≤ 2 + 1/p;
(iii) if girth(G) ≥ 6p+ 2, Then χc(G)<2 + 1/p.

Those results are proved via flows and orientations.
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Coloring and Circular Coloring

Circular Coloring Table

Circular Coloring and Girth in Planar Graphs
Girth Conjectured χc(G) Known χc(G)

2 χc ≤ 4(4CT) χc ≤ 4(4CT)

4 χc ≤ 3(3CT) χc ≤ 3(Grotzsch)

6 χc ≤ 8
3 ?

8 χc ≤ 2.5 ?

10 χc ≤ 12
5 χc ≤ 2.5(DP17,CL20)

12 χc ≤ 7
3 χc ≤ 5

2(LTWZ13)

16 χc ≤ 16/7 χc ≤ 7/3(PS19+,CL20)

. . . . . . . . .

4p χc ≤ 2 + 1
p(Jaeger1981) ∗

6p− 2 ∗ χc ≤ 2 + 2/(2p− 1)(LWZ20)

6p ∗ χc ≤ 2 + 1
p(LTWZ13)

6p+ 2 ∗ χc < 2 + 1
p(LWZ20)
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Flow-Coloring Duality

The Flow Theory

Tutte initiated Integer Flows

Figure: W. T. Tutte(1917–2002)
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Flow-Coloring Duality

Tutte’s Flow Theory

Let G = (V,E) be a graph (which may have parallel edges).

D = D(G): an orientation of a graph G

f : E(G) 7→ A (where A is a subset of an Abelian group)

(D, f) is called a flow if, under orientation D, for any vertex v,

balanced: sum of in-flow = sum of out-flow at v∑
e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e),∀v ∈ V (G).
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Flow-Coloring Duality

Integer and Circular Flows

Flow: pair (D, f) with sum of in-flow = sum of out-flow, ∀v
(D, f): a nowhere-zero k-flow(k-NZF) if, in addition,

f : E 7→ {±1,±2, . . . ,±(k − 1)}

(D, f): a circular k
d -flow if, in addition,

f : E 7→ {±d,±(d+ 1), . . . ,±(k − d)}
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Flow-Coloring Duality

Examples of Flows
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Flow-Coloring Duality

Tutte’s Coloring-Flow Duality

Flow Theory initiated by Tutte as generalization of map-coloring

problems. (“map”:= bridgeless plane graph “country”:= face)

Coloring-Flow Duality Theorem (Tutte 1954)

A bridgeless plane graph is k-face-colorable if and only if it
admits a nowhere-zero k-flow.
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Flow-Coloring Duality

Tutte’s Coloring-Flow Duality

Circular Flow-Coloring Duality (Goddyn-Tarsi-Zhang, 1998)

For a plane graph G and its dual G∗,
G has a circular k

d -flow iff χc(G
∗) ≤ k

d .
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Flow-Coloring Duality

Circular Flow

Definition of circular flow index φ(G)

φ(G): the smallest r = k
d such that G admits a circular r-flow.

Circular Flow-Coloring Duality (Goddyn-Tarsi-Zhang, 1998)

For a plane graph G and its dual G∗, φ(G) ≤ k
d iff χc(G

∗) ≤ k
d .

Planar Circular Coloring Conjecture

χc(G) ≤ 2 + 2
k for any planar graph G of girth ≥ 2k.

How about bounds of flow index φ ?
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Flow Problems

Flow Conjectures

k=1 4CT: φ ≤ 4 for every bridgeless planar graph.

How about general graphs?Peterson graph φ(P ) = 5 > 4 !

Conj Tutte’s 5-flow conjecture: φ ≤ 5 for every bridgeless graph.
Tutte’s 4-flow conjecture: φ ≤ 4 for every bridgeless
Peterson-minor-free graph.

k=2 3CT: φ ≤ 3 for every 4-edge-connected planar graph.

Conj Tutte’s 3-flow conjecture: φ ≤ 3 for every 4-edge-connected
graph.

How about other values of k ?

Conj Jaeger’s circular flow conjecture: for even k, φ ≤ 2 + 2
k for

every 2k-edge-connected graph.
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Flow Problems

Flow Theorems

Flow Theorems

Snark Thm (ERSST): Every bridgeless cubic graph
without Peterson-minor admits a nowhere-zero 4-flow.

4Flow Thm (Jaeger1979): φ ≤ 4 for every 4-edge-conn
graph.

6Flow Thm (Seymour1981): φ ≤ 6 for every bridgeless
graph.

3Flow Thm (LTWZ2013): φ ≤ 3 for every 6-edge-conn
graph.

Circular Flow Thm (LTWZ2013): φ ≤ 2 + 1
p for every

6p-edge-conn graph.

(coloring)near bipartite VS (flow) near Eulerian
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Flow Problems

Flow Index Table in 2020

Flow Index and Edge Connectivity of Graphs
Edge-Conn. Conjectured φ Known φ

2 φ ≤ 5(Tutte1954) φ ≤ 6(Seymour1981)

4 φ ≤ 3(Tutte1972) φ ≤ 4(Jaeger1979)

6 φ < 3(LTWZ18) φ ≤ 3(LTWZ13)

8 ��
��XXXXφ ≤ 2.5(False) φ<3(LTWZ18)

10 ∗ φ ≤ 8
3(LWZ20)

12 �
��HHHφ ≤ 7

3(False)(HLWZ18) φ ≤ 5
2(LTWZ13)

14 ∗ φ<5
2(LWZ20)

16 ��
�HHHφ ≤ 9
4(False) φ ≤ 12

5 (LWZ20)

. . . . . . . . .

6p− 2 ∗ φ ≤ 2 + 2
2p−1(LWZ20)

6p ∗ φ ≤ 2 + 1
p(LTWZ13)

6p+ 2 ∗ φ < 2 + 1
p(LWZ20)
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Flow Problems

Flows from Modulo k-Orientation

An orientation D is called a modulo k-orientation of G if

indegree ≡ outdegree (mod k), ∀v ∈ V (G)

Proposition (Tutte, Steinberg-Younger)

A graph admits a nowhere-zero 3-flow if and only if it admits a
modulo 3-orientation.
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Theorem (Jaeger 1981)

φ(G) ≤ (2 + 1
p) iff G admits a modulo (2p+ 1)-orientation.
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Results and Counterexamples

Circular Flow Conjecture

Circular Flow Conjecture (Jaeger 1981)

Every 4p-edge-connected graph has a mod (2p+ 1)-orientation.

Some history:

C log n-conn. (by Lai-Zhang 1992, Alon-Linial-Meshulam
1992, Lai-Shao-Wu-Zhou 2009)

In 2012, Thomassen’s breakthrough : 100p2-edge-conn.
In 2013, Lovász-Thomassen-Wu-Zhang: 6p-edge-conn.

True for random graphs and random regular graphs by
Sudokov 2001, by Alon-Pralat 2011

∃Counterexamples for p ≥ 3 by Han-Li-Wu-Zhang 2018
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Results and Counterexamples

The Circular Flow Conjecture of Jaeger is False

Theorem A (Han-Li-Wu-Zhang, 2018)

For every p ≥ 3, there are infinite families of 4p-edge-connected
graphs admitting no modulo (2p+ 1)-orientations.

We will try to present a proof sketch in the rest of this lecture.
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Results and Counterexamples

Some tools for modulo orientations

Orientation with boundary: A function
β : V (G) 7→ Z2p+1 is called a Z2p+1-boundary if∑

v∈V (G) β(v) ≡ 0 (mod 2p+ 1). An orientation D with

d+D(v)− d−D(v) ≡ β (mod 2p+ 1), ∀v is called a
β-orientation.

Pre-orientation and extension

Splitting

graph contraction: If H has some “strong” property, we
try to work on G/H by induction, and then orient E(H) to
modify boundary, resulting a desired orientation of G.
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Results and Counterexamples

Orientations and β-orientations

For a Z2p+1-boundary β, a β-orientation is an orientation
D with d+D(v)− d−D(v) ≡ β (mod 2p+ 1),∀v.

The above is taken (mod 2p+ 1). For orientation with
prescribed value in Z, there is a nice iff theorem of Hakimi.

Hakimi’s Thm, 1960s

Let b : V (G) 7→ Z. Then G has an orientation D such that
d+D(v)− d−D(v) = b(v),∀v
iff the following holds:∑

v∈V (G) b(v) = 0, b(v)− dG(v) is even ∀v, and

|
∑
v∈S

b(v)| ≤ dG(S),∀S ⊂ V (G)
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Results and Counterexamples

Some observation on Orientations

For a Z2p+1-boundary β and a β-orientation D of G,
if dG(v) is small (say < 4p+ 2), then (depends on the parity),
d+D(v)− d−D(v) = b(v) has two candidates:

if β(v) and dG(v) has the same parity, then
d+D(v)− d−D(v) = b(v) ∈ {β(v), β(v)− 4p− 2}
if β(v) and dG(v) has the different parities, then
d+D(v)− d−D(v) = b(v) ∈ {β(v) + 2p+ 1, β(v)− 2p− 1}

Observation:

If G has max degree < 4p+ 2, in a modulo (2p+ 1)-orientation
D of G (that is β = 0,∀v), we have
(a) d+D(v)− d−D(v) ∈ {2p+ 1,−2p− 1} for each odd vertex v,
(b) d+D(v)− d−D(v) = 0 for each even vertex v.
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Results and Counterexamples

Start from Complete Graph

complete graph K4p admits no mod (2p+ 1)-orientation.

By contradiction. If ∃D,

d+D(v)− d−D(v) = (2p+ 1) or − (2p+ 1)

V + : v with = (2p+ 1), V − : v with = −(2p+ 1).
|V +| = |V −| = 2p. Then

2p(2p+ 1) =
∑
v∈V +

(d+D(v)− d−D(v)) = |∂+(V +)| − |∂−(V +)|

≤ |∂(V +)| = 2p · 2p

a contradiction!
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Construction 1

complete graph plus (p− 1) triangles
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Figure: The graphs G1 and G2.
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Construction 1

add two new vertices and some edges
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Figure: The graphs G1 and G2.
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Construction 2

W = (2p− 1)C4p+1 ·K1
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r
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Figure: The graph W for p = 3.



Coloring-Flow of Planar Graphs Flows of Graphs Remarks on Flows of Signed Graphs

Results and Counterexamples

2-sum (like dual of Hajos-join)

Lemma for 2-sum

Let H = H1 ⊕2 H2. If neither H1 nor H2 admits modulo
(2p+ 1)-orientation, then H = H1 ⊕2 H2 admits no modulo
(2p+ 1)-orientation.
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Figure: 2-sum of H1 and H2.
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Final Construction via 2-sum

M is 4p-edge-connected without mod (2p+ 1)-orientation.

p
p p p p

pppppp p p p m m m
m
mmmmmm

m
m m

Figure: The graph M for p = 3.
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Results and Counterexamples

Remarks

Similar construction to obtain (4p+ 1)-edge-connected
counterexamples.

Extend to infinite many counterexamples via 2-sum.

Several related conjectures are false.

Every odd-(4p+1)-edge-connected graph admits a circular
(2+1/p)-flow. (Zhang, 2002 odd-connectivity version)

Every (4p+1)-edge-connected graph admits all modulo
(2p+ 1) β-orientation. (Lai, 2007 all boundary version)

Every (4p+1)-edge-connected graph admits a modulo
(2p+ 1)-orientation. (Kochol 2001, and asked whether
equivalent to 4p-edge-connected)
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p = 2 Case and Nowhere-zero 5-flow

Denote 3G to the graph obtained from G by replacing each
edge with three parallel edges.

Proposition (Jaeger 1988)

φ(G) ≤ 5 if and only if φ(3G) ≤ 2.5.

d d�

-
-

d d-1

m

Z5-NZF in G

d d�

�
�

d d-2

m

Mod 5-orientation in 3G
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Results and Counterexamples

Connecting 5-Flow with Circular 5/2-flow

Proposition (Jaeger 1988)

φ(G) ≤ 5 if and only if φ(3G) ≤ 2.5.

5-flow conjecture equivalent form: φ(3G) ≤ 2.5 for any
bridgeless graph G.

Observation:

Equivalent Form of Seymour’s 6-flow Thm:
φ(3G) ≤ 18

7 ≈ 2.572 for any bridgeless graph G.

Jaeger’s stronger Conjecture (1988)

φ(G) ≤ 2.5 for any 9-edge-connected graph G.
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Connecting 5-Flow with Circular 5/2-flow

Jaeger’s stronger Conjecture (1988)

φ(G) ≤ 2.5 for any 9-edge-connected graph G.

True for 12-edge-connected graphs (L-T-W-Z 2013)

Thomassen and CQ 2015 asked how to get a better
estimation of φ for 9-edge-connected graphs. (or 8-conn)

Theorem (Li-Thomassen-Wu-Zhang, 2018)

φ(G)< 3 for any 8-edge-connected graph G.

We develop a new tool: strongly connected modulo orientation
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Strongly Connected Modulo Orientation

Theorem (Jaeger 1981)

φ(G) ≤ 2 + 1/p iff G admits a modulo (2p+ 1)-orientation.

Theorem (Li-Thomassen-Wu-Zhang, 2018)

φ(G) < 2 + 1/p iff G admits a strongly connected modulo
(2p+ 1)-orientation.

Theorem (Li-Thomassen-Wu-Zhang, 2018)

Every 8-edge-connected graph admits a strongly connected
modulo 3-orientation.

We conjecture 6-edge-connectivity sufficient.
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No circular 2.5-flow–but Not The End

In 2018, No counterexample was found when p = 1, 2.

Tutte’s 3-Flow Conjecture might be still true.

The p = 2 case still leaves hope to approach Tutte’s 5-Flow
Conjecture. (Positive side: φ < 3 for 8-conn)

But now(2020+), our counterexamples extends to p = 2.

Theorem (Li-Wu-Zhang, manuscript in preparing)

For every p ≥ 2, there are infinite families of (4p+ 1)-edge
-connected graphs with flow index φ>2 + 1

p .
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Flow Index for given connectivity

New Question:

What is the correct (best) flow index for given connectivity?

(There is a related Additive Basis Conjecture of
Jaeger-Linial-Payan-Tarsi 1992, if the strongest form of this
conjecture is true, it would provide some good flow index
bound.)
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New values for flow index

Flow Index and Edge Connectivity of Graphs
Edge-Conn. Conjectured φ Known φ

2 φ ≤ 5(Tutte1954) φ ≤ 6(Seymour1981)

4 φ ≤ 3(Tutte1972) φ ≤ 4(Jaeger1979)

6 φ < 3(LTWZ2018) φ ≤ 3(LTWZ2013)

8 ���
�XXXXφ ≤ 2.5(False) φ < 3(LTWZ2018)

10 ∗ φ ≤ 8
3(LWZ2020)

12 �
��HHHφ ≤ 7

3(False) φ ≤ 5
2(LTWZ2013)

14 ∗ φ < 5
2(LWZ2020)

16 ��
�HHHφ ≤ 9
4(False) φ ≤ 12

5 (LWZ2020)

. . . . . . . . .

6p− 2 ∗ φ ≤ 2 + 2
2p−1(LWZ2020)

6p ∗ φ ≤ 2 + 1
p(LTWZ2013)

6p+ 2 ∗ φ < 2 + 1
p(LWZ2020)
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New Tools: Extended Tutte Orientation

Theorem (Li-Wu-Zhang, 2020)

A graph admits a circular k
p -flow if and only if it has a

(k, p)-extended-Tutte-orientation (ETO) D, which is an
orientation D of (k − 2p)G with

d+D(v)− d−D(v) ≡ kdG(v) (mod 2k), ∀v ∈ V (G).

This extends Tutte’s fact and Jaeger’s modulo orientation to
all rational numbers.

Theorem (For (2 + 2
2p−1)-flow)

For any (6p− 2)-edge-connected graph G, 2G has a
(4p, 2p− 1)-ETO, and hence φ(G) ≤ 2 + 2

2p−1 .
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New Tools: Extended Tutte Orientation

Theorem (For (< 2 + 1
p)-flow)

For any (6p+ 2)-edge-connected graph G, φ(G) < 2 + 1
p .

The key idea is to extend a (2 + 1
p − ε1)-flow of G/H to a

(2 + 1
p − ε2)-flow of G.

(strongly connected mod orientation seems not applicable to prove it!)

Summery Table

Edge-Conn. Known φ

2 φ ≤ 6(Seymour1981)

6p− 2 φ ≤ 2 + 2
2p−1(LWZ20)

6p φ ≤ 2 + 1
p(LTWZ2013)

6p+ 2 φ < 2 + 1
p(LWZ20)
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More on β-orientation

Definition

(a) A function β : V (G) 7→ {0,±1, . . . ,±k} is called a
(2k, β)-boundary if∑

v∈V (G) β(v) ≡ 0 (mod 2k) and β(v) ≡ d(v) (mod 2) for every
v ∈ V (G). For a vertex subset A ⊂ V (G), define its boundary
β(A) ∈ {0,±1, . . . ,±k} such that β(A) ≡∑

v∈A β(v) (mod 2k).

(b) Given a (2k, β)-boundary, an orientation D of G is called a
(2k, β)-orientation if, for every vertex v ∈ V (G),
d+D(v)− d−D(v) ≡ β(v) (mod 2k).
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Fact for β-orientation

Fact:

(a) A graph G admits a circular 2t+1
t -flow if and only if it has a

(2t+ 1, t)-ETO, which is a (4t+ 2, β)-orientation of G with
β(v) ≡ (2t+ 1)dG(v) (mod 4t+ 2), ∀v ∈ V (G).

(b) A graph G admits a circular 4p
2p−1 -flow if and only if it has a

(4p, 2p− 1)-ETO, which is an (8p, β)-orientation of 2G with
β(v) ≡ 4pdG(v) (mod 8p), ∀v ∈ V (G).

This is for the convenience of considering parity.
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The inductive Thm

Theorem B (LTWZ2013, Wu thesis2012)

Let G be a graph with a (2k, β)-boundary. Let z0 be a vertex of
V (G), and let Dz0 be a pre-orientation of E(z0) which achieves
boundary β(z0) at z0. Let V0 = {v ∈ V (G)− z0 : β(v) = 0}. If
V0 6= ∅, we let v0 be a vertex of V0 with smallest degree.
Assume that
(i) |V (G)| ≥ 3;
(ii) d(z0) ≤ 2k − 2 + |β(z0)|;
(iii) d(A) ≥ 2k − 2 + |β(A)| for any A ⊂ V (G) \ {z0} with
A 6= {v0} and |V (G) \A| > 1.
Then pre-orientation Dz0 at z0 can be extended to a
(2k, β)-orientation of the entire graph G.
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Proof Techniques:

Contraction

Splitting

Deletion

Each graph is (somehow) reducible by one of the above operations!
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Proof Sktech:

Claim A. for any nontrivial A, d(A) ≥ 2k + |β(A)|
(nontrivial edge-cuts are large by Contraction)

Claim B. for any nontrivial A = {v},
d(v) = 2k − 2 + |β(v)|
(each vertex is “regular” by Splitting)

Claim C. for each vertex v, β(v) has the same sign (say > 0)

(each vertex has positive boundary by Deletion)

Final. Modify to get a vertex negative boundary, resulting
a contra!
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Thm and applications

Theorem B’ (LTWZ2013, Wu thesis2012)

Let G be a (3k − 3)-edge-connected graph, where k ≥ 2 is an
integer (OK for both even and odd). Then for any (2k, β)-boundary β, G
admits a (2k, β)-orientation.

Two Applications:

For any (3k − 3)-edge-connected simple graph G with
|E(G)| being a multiple of k, E(G) can be decomposed into
K1,k’s.

Thomassen 2020: Every 7-odd-edge-connected
9-regular-graph can be edge-decomposed into three
3-regular subgraphs.
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Similar technique for planar mod orientations

Theorem (Cranston-Li 2020)

Every 11-odd-edge-connected graph admits mod 5-orientation.

Corollary (Cranston-Li 2020)

(i) Every planar graph with girth ≥ 10 admits a hom to C5.
(ii) Every directed planar graph of girth≥ 11 admits a
homomorphism to any 5-vertex tournament.

t t t t
t t

t t
t

H1 H2 H3

Figure: Some easy configurations, but not enough
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Spanning trees and Modulo Orientation

Necessary Condition for modulo orientations

Proposition

If G admits modulo (2p+ 1)-orientation with all possible
boundaries, then G contains 2p edge-disjoint spanning trees.

Nash-Williams and Tutte Theorem

G contains k edge-disjoint spanning trees if and only if for any
partition P = {P1, P2, . . . , Pt},

∑t
i=1 d(Pi)− 2kt+ 2k ≥ 0.

Motivated by those facts, we are trying to use spanning tree
packing number to provide Sufficient Condition
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Partitions for mod 5-orientation

We define a weight function below to have some flexibility.

Definition

Let P = {P1, P2, . . . , Pt} be a partition of V (G). Define
wG(P) =

∑t
i=1 d(Pi)− 11t+ 19 and

w(G) = min{wG(P) : P is a partition of V (G)}.

For example, w(2K2) = 1, w(J1) = w(J2) = 0, w(3K2) = 3.

r rA B

3K2

r rA B

C

2K2

r r
r

A B

J1

r r
r

A B

C

J2
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The Theorem for induction

Theorem

Let G be a planar graph and β be a Z5 boundary of G. If
w(G) ≥ 0, then G admits a mod 5 β-orientation, unless G is
one of the following problematic cases that there is a partition P
such that G/P is isomorphic to one of the graphs
2K2, 3K2, J1, J2.

r rA B

3K2

r rA B

C

2K2

r r
r

A B

J1

r r
r

A B

C

J2
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Idea in the proof

In a minimal counterexample G,

Claim A: wG(P) ≥ 8 for any “nontrivial” partition P.
This allows to use splitting and contraction.

Claim B: W1,W2,W3 are all forbidden in G by splitting
and contraction.

Then a simple discharging would finish the proof. It would be
nice to extend to general mod (2p+ 1)-orientation.

r r
r

r r
r r

r

r r
r rr

W1 W2 W3
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Flows for bidirected signed graphs

André Bouchet in 1983 initiated Integer Flows of
bidirected signed graphs from the dual of

face-coloring in projective plane
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Flows in signed graphs

Let G be a signed graph and τ be an orientation of G.

A pair (τ, f) is called a flow of G if
inflow=outflow at every vertex

(looking at those ‘half-edges’ incident with a vertex)

−1

−1

1

1

1
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Coloring-Flow Duality of Signed Graphs

For a nonorientable surface,
‘k-face-coloring’ ⇒ Signed Graph k-NZF

Coloring-Flow of K4 in projective plane:
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NZF of Ordinary K4 and Signed K4

1
2

−2

−1

1 −1

3-NZF of a signed K4

1
1

−3

2

2 1

4-NZF of K4
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K6 dual to Signed Petersen Graph in Projective Plane
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K6 dual to Petersen (Re-drawing)

It has no 5-NZF by Bouchet’s dual Thm
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Flow Index Table of Signed Graphs

Flow Index and Edge Connectivity of Signed Graphs
Edge-Conn. Conjectured φ Known φ

0,1 φ ≤ 6(Bouchet83) φ ≤ 11(DLLLZZ20)

2,3 φ ≤ 6(Bouchet83) ?

4 ∗ φ ≤ 4(D03?)(RZ11)

5 φ ≤ 3(WYZZ15) ∗
6 ∗ φ < 4(RZ11)

8 ∗ φ ≤ 3(WYZZ15)

. . . . . . . . .

12 ∗ ?φ < 3(maybe??)

20 ∗ ?φ ≤ 2.5(maybe??)

12p− 1 ∗ φ ≤ 2 + 1
p(Zhu15)
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Thank you for your attention !

Thank you very much!


	 Coloring-Flow of Planar Graphs
	Coloring and Circular Coloring
	Flow-Coloring Duality

	 Flows of Graphs
	Flow Problems
	Results and Counterexamples

	 Remarks on Flows of Signed Graphs

