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Coloring and Circular Coloring
g g

Four Coloring Theorem

Four Color Theorem (Appel-Haken 1976)

Every planar map is four colorable.

FCUR COLORS
SUFFICE

Cnty

FOUR COLORS

SUFFICE

More compute-aided proofs found later. (RSST 1997 etc.)
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Coloring and Circular Coloring

Coloring Planar Graphs

For vertex coloring

4CT: Every planar graph is 4-colorable.
3CT: Every triangle-free planar graph is 3-colorable.
OB: A graph is 2-colorable iff it contains no odd cycle
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Coloring and Circular Coloring

Coloring Planar Graphs

For vertex coloring

4CT: Every planar graph is 4-colorable.

3CT: Every triangle-free planar graph is 3-colorable.
OB: A graph is 2-colorable iff it contains no odd cycle.

How about coloring between 2 and 3 7

2.9-coloring, 2.5-coloring, (2 + %)-coloring ?
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Coloring and Circular Coloring

Circular Coloring

A graph G is circular &

3—colorable if there exists a function
¢: V(G) — Zj such that

llc(z) — c(y)||, > d, for any edge zy € E(G)
(d =1 gives proper vertex coloring)
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Coloring-Flow of Planar Graphs
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Coloring and Circular Coloring

Circular Coloring

A graph G is circular %—colorable if there exists a function

¢: V(G) — Zj such that
le(z) — e(w)ll, > d. for any edge zy € E(C)
(d =1 gives proper vertex coloring)

Definition of circular chromatic number y.(G)

Xc(G): the least rational number r such that G is circular
r-colorable.

X(G) = [XC(G)-L XC(C2p+1) =24 %
Xe(G) <2+ 1% iff G has a homomorphism to Copy1.
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Coloring and Circular Coloring
& g

Homomorphism: C7 — Cjs
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Coloring and Circular Coloring
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Homomorphism: C7 — Cjs
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Coloring and Circular Coloring
& g

Homomorphism: C7 — Cjs
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Coloring and Circular Coloring

Homomorphism: C7 — C5 and C5 — Cj




Co g
0008000

Coloring and Circular Coloring

Homomorphism: C7 — C5 and C5 — Cj3, so C7 — Cs.
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Coloring and Circular Coloring

Homomorphism: C7 — C5 and C5 — Cj3, so C7 — Cs.

o Circular Coloring is monotonic.
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Coloring and Circular Coloring

Planar Circular Coloring Conjecture

The following is modified from Jaeger’s conjecture.

Planar Circular Coloring Conjecture

Xe(G) <2+ % for any planar graph G of girth > 2k.

o k =1 is the Four Color Theorem; k = 2 is Grotzsch’s
Theorem; it is open for k > 3.
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Coloring and Circular Coloring

Planar Circular Coloring Conjecture

The following is modified from Jaeger’s conjecture.

Planar Circular Coloring Conjecture

Xe(G) <2+ % for any planar graph G of girth > 2k.

o k =1 is the Four Color Theorem; k = 2 is Grotzsch’s
Theorem; it is open for k > 3.

e For k =4, it is known that x.(G) < 2.5 for girth(G) > 10
(by Dvorak&Postle 2017),
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r of Planar Graphs
Coloring and Circular Coloring

Planar Circular Coloring Conjecture

The following is modified from Jaeger’s conjecture.

Planar Circular Coloring Conjecture

Xe(G) <2+ % for any planar graph G of girth > 2k.

o k =1 is the Four Color Theorem; k = 2 is Grotzsch’s
Theorem; it is open for k > 3.

e For k =4, it is known that x.(G) < 2.5 for girth(G) > 10
(by Dvorak&Postle 2017),

e For k = 6, it is known that x.(G) < 7/3 for girth(G) > 16
(by Postle&Smith-Roberge 2019+, Cranston&Li 2020)
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Coloring and Circular Coloring

Planar Circular Coloring Conjecture

Planar Circular Coloring Conjecture

Xe(G) <2+ % for any planar graph G of girth > 2k.

Thm ((ii)LTWZ 2013 plus (i)(iii) LWZ 2020 )

For a planar graph G,

(i) if girth(G) > 6p — 2, then x.(G) <2+ 2/(2p — 1);
(ii) if girth(G) > 6p, then x.(G) <2+ 1/p;

(iii) if girth(G) > 6p + 2, Then x.(G)<2+ 1/p.
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Coloring and Circular Coloring

Planar Circular Coloring Conjecture

Planar Circular Coloring Conjecture

Xe(G) <2+ % for any planar graph G of girth > 2k.

Thm ((ii)LTWZ 2013 plus (i)(iii) LWZ 2020 )

For a planar graph G,

(i) if girth(G) > 6p — 2, then x.(G) <2+ 2/(2p — 1);
(ii) if girth(G) > 6p, then x.(G) <2+ 1/p;

(iii) if girth(G) > 6p + 2, Then x.(G)<2+ 1/p.

@ Those results are proved via flows and orientations.
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Coloring and Circular Coloring
g g

Circular Coloring Table

Circular Coloring and Girth in Planar Graphs

Girth | Conjectured x.(Q) Known x.(G)

2 e < 4(4CT) e < 4(4CT)

4 Xe < 3(3CT) Xe < 3(Grotzsch)

6 Xe < § ?

8 Xe < 2.5 ?

10 Xe < 2 Ye < 2.5(DP17,CL20)
12 Xe < % xe < 3(LTWZ13)

16 Ye < 16/7 e < 7/3(PS19+,CL20)
4p Xe <2+ ]%(Jaegerl%l) *

6p—2 | * Xe < 2+2/(2p — 1)(LWZ20)
6p % Xe <2+ 5 (LTWZ13)
6p+2 | * Xe < 2+ (LWZ20)
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Flow-Coloring Duality

The Flow Theory

Tutte initiated Integer Flows

Figure: W. T. Tutte(1917-2002)
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Flow-Coloring Duality

Tutte’s Flow Theory

Let G = (V, E) be a graph (which may have parallel edges).
e D = D(G): an orientation of a graph G
e f: E(G)— A (where A is a subset of an Abelian group)




r of Planar Graphs
0@00000
Flow-Coloring Duality

Tutte’s Flow Theory

Let G = (V, E) be a graph (which may have parallel edges).
e D = D(G): an orientation of a graph G
e f: E(G)— A (where A is a subset of an Abelian group)

(D, f) is called a flow if, under orientation D, for any vertex v,

balanced: sum of in-flow = sum of out-flow at v

Y o= Y fle), Ve V(G

ecEt(v) e€E—(v)
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Flow-Coloring Duality

Integer and Circular Flows

Flow: pair (D, f) with sum of in-flow = sum of out-flow, Vv

(D, f): a nowhere-zero k-flow(k-NZF) if, in addition,

fiE e {£1,42, . +(k—1)}
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Flow-Coloring Duality

Integer and Circular Flows

Flow: pair (D, f) with sum of in-flow = sum of out-flow, Vv

(D, f): a nowhere-zero k-flow(k-NZF) if, in addition,
fiE e (1,42, £(k—1)}
(D, f): a circular £-flow if, in addition,

fiEe {&d,(d+1),...,+(k—d)}
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Flow-Coloring Duality

Examples of Flow

4

circular 9/2-flow (values in{+2,+3,...,+£7})
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Flow-Coloring Duality

Tutte’s Coloring-Flow Duality

Flow Theory initiated by Tutte as generalization of map-coloring
problems. (“map”:= bridgeless plane graph “country”:= face)

Coloring-Flow Duality Theorem (Tutte 1954)

A bridgeless plane graph is k-face-colorable if and only if it
admits a nowhere-zero k-flow.
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Tutte’s Coloring-Flow Duality

Circular Flow-Coloring Duality (Goddyn-Tarsi-Zhang, 1998)
For a plane graph G and its dual G*,
G has a circular f—ﬂow iff x.(G*) < %

\urm,é~

&

Y,
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Flow-Coloring Duality

Circular Flow

Definition of circular flow index ¢(G)

¢(G): the smallest r = % such that G admits a circular r-flow.

Circular Flow-Coloring Duality (Goddyn-Tarsi-Zhang, 1998)

For a plane graph G and its dual G*, ¢(G) < % iff x.(G*) < %.

Planar Circular Coloring Conjecture

Xe(G) <2+ % for any planar graph G of girth > 2k.

How about bounds of flow index ¢ 7
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Flow Problems

Flow Conjectures

k=1 4CT: ¢ < 4 for every bridgeless planar graph.
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Flows of Graphs
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Flow Problems

Flow Conjectures

k=1 4CT: ¢ < 4 for every bridgeless planar graph.

e How about general graphs?
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Flow Problems

Flow Conjectures

k=1 4CT: ¢ < 4 for every bridgeless planar graph.
e How about general graphs?Peterson graph ¢(P) =15 > 4!

Conj Tutte’s 5-flow conjecture: ¢ < 5 for every bridgeless graph.
Tutte’s 4-flow conjecture: ¢ < 4 for every bridgeless
Peterson-minor-free graph.
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Flow Problems

Flow Conjectures

k=1 4CT: ¢ < 4 for every bridgeless planar graph.
e How about general graphs?Peterson graph ¢(P) =15 > 4!

Conj Tutte’s 5-flow conjecture: ¢ < 5 for every bridgeless graph.
Tutte’s 4-flow conjecture: ¢ < 4 for every bridgeless
Peterson-minor-free graph.

k=2 3CT: ¢ < 3 for every 4-edge-connected planar graph.

Conj Tutte’s 3-flow conjecture: ¢ < 3 for every 4-edge-connected
graph.

@ How about other values of k 7

Conj Jaeger’s circular flow conjecture: for even k, ¢ < 2+ % for
every 2k-edge-connected graph.




Flow Problems

Flow Theorems

e Snark Thm (ERSST): Every bridgeless cubic graph
without Peterson-minor admits a nowhere-zero 4-flow.

o 4Flow Thm (Jaeger1979): ¢ < 4 for every 4-edge-conn
graph.

e 6Flow Thm (Seymour1981): ¢ < 6 for every bridgeless
graph.

e 3Flow Thm (LTWZ2013): ¢ < 3 for every 6-edge-conn
graph.

e Circular Flow Thm (LTWZ2013): ¢ <2+ % for every
6p-edge-conn graph.

(coloring)near bipartite VS (flow) near Eulerian
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Flow Problems

Flow Index Table in 2020

Flow Index and Edge Connectivity of Graphs

Edge-Conn. | Conjectured ¢ Known ¢

2 ¢ < 5(Tuttel954) ¢ < 6(Seymour1981)

4 ¢ < 3(Tuttel972) ¢ < 4(Jaeger1979)

6 ¢ < 3(LTWZ18) ¢ < 3(LTWZ13)

8 ‘&=-275(False) $p<3(LTWZ18)

10 % ¢ < §(LWZ20)

12 ¢>< T (False) (HLWZ18) | ¢ < 3(LTWZ13)

14 * ¢<5(LWZ20)

16 ¢ =<7 (False) ¢ < £(LWZ20)

6p — 2 * ¢<2+2 7 (LWZ20)

6p * p<2+ p(LTWZ13)
6p+ 2 " s<2t l(Iwz20) [
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Flow Problems

Flows from Modulo k-Orientation

An orientation D is called a modulo k-orientation of G if

indegree = outdegree (mod k),Vv € V(QG)
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Flows of Graphs
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Flow Problems

Flows from Modulo k-Orientation

An orientation D is called a modulo k-orientation of G if

indegree = outdegree (mod k),Vv € V(QG)

Proposition (Tutte, Steinberg-Younger)

A graph admits a nowhere-zero 3-flow if and only if it admits a
modulo 3-orientation.

A mod 3-orientation K4 has no mod 3-orientation.
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Flows of G
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Flow Problems

Flows from Modulo k-Orientation

An orientation D is called a modulo k-orientation of G if

indegree = outdegree (mod k),Vv € V(QG)

Proposition (Tutte, Steinberg-Younger)

A graph admits a nowhere-zero 3-flow if and only if it admits a
modulo 3-orientation.

A mod 3-orientation K4 has no mod 3-orientation.

Theorem (Jaeger 1981)

o(G) < (24 1%) iff G admits a modulo (2p + 1)-orientation. @




Flows of Graphs

Results and Counterexamples

Circular Flow Conjecture
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Circular Flow Conjecture (Jaeger 1981)

Every 4p-edge-connected graph has a mod (2p + 1)-orientation.

SONG

0
P

518

53

LS



Flow sraphs
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Results and Counterexamples

Circular Flow Conjecture

Circular Flow Conjecture (Jaeger 1981)

Every 4p-edge-connected graph has a mod (2p + 1)-orientation.

Some history:

e (C'logn-conn. (by Lai-Zhang 1992, Alon-Linial-Meshulam
1992, Lai-Shao-Wu-Zhou 2009)

e In 2012, Thomassen’s breakthrough : 100p*-edge-conn.
In 2013, Lovasz-Thomassen-Wu-Zhang: 6p-edge-conn.

@ True for random graphs and random regular graphs by
Sudokov 2001, by Alon-Pralat 2011

o JCounterexamples for p > 3 by Han-Li-Wu-Zhang 2018
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Results and Counterexamples

The Circular Flow Conjecture of Jaeger is

Theorem A (Han-Li-Wu-Zhang, 2018)

For every p > 3, there are infinite families of 4p-edge-connected
graphs admitting no modulo (2p + 1)-orientations.

We will try to present a proof sketch in the rest of this lecture.
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Results and Counterexamples

Some tools for modulo orientations

e Orientation with boundary: A function
B : V(G) — Zgpy is called a Zgpii-boundary if
> vev(c) B(v) =0 (mod 2p + 1). An orientation D with
df(v) —dp(v) = B (mod 2p + 1), Vv is called a
[-orientation.

o Pre-orientation and extension

e Splitting

o graph contraction: If H has some “strong” property, we
try to work on G/H by induction, and then orient E(H) to
modify boundary, resulting a desired orientation of G.
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Results and Counterexamples

Orientations and [-orientations

e For a Zg,41-boundary 3, a -orientation is an orientation

D with d},(v) — dp(v) = 8 (mod 2p + 1), Vo.

The above is taken (mod 2p + 1). For orientation with
prescribed value in Z, there is a nice iff theorem of Hakimi.

Hakimi’s Thm, 1960s

Let b: V(G) + Z. Then G has an orientation D such that

dp(v) = dp(v) = b(v), Yo
iff the following holds:
> vev(c) b(v) =0, b(v) — d(v) is even Vv, and

1> b(v)] < da(S),VS C V(G)

veES
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Results and Counterexamples

Some observation on Orientations

For a Zap11-boundary 3 and a [-orientation D of G,
if dg(v) is small (say < 4p + 2), then (depends on the parity),
df(v) — dp(v) = b(v) has two candidates:
e if 5(v) and dg(v) has the same parity, then
df(v) — dp(v) = b(v) € {B(v), B(v) —4p — 2}
e if B(v) and dg(v) has the different parities, then
dh(v) —dp(v) = b(v) € {B(v) +2p+1,8(v) —2p — 1}

Observation:

If G has max degree < 4p + 2, in a modulo (2p + 1)-orientation
D of G (that is § = 0,Vv), we have

(a) df(v) —dp(v) € {2p+1,—2p — 1} for each odd vertex v,
(b) df(v) — dp(v) = 0 for each even vertex v.
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Start from Complete Graph

e complete graph Ky, admits no mod (2p + 1)-orientation.
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Results and Counterexamples

Start from Complete Graph

e complete graph Ky, admits no mod (2p + 1)-orientation.
e By contradiction. If 3D,

dp(v) —dp(v) = (2p+1) or —(2p+1)

o VT:vwith=(2p+1), V~:vwith=-(2p+1).
|[V*| =|V~| =2p. Then

2p(2p+1) = Y (df(v) —dp(v))

veV+

(VI =lo~ (V)
< (V) =2p-2p

a contradiction!




Flows of Graphs
000000 @0000000000000000000000000
Results and Counterexamples

Construction 1

e complete graph plus (p — 1) triangles

[ ] [ ] [ ] e o o [ ) [ ) [ ]
V4p V4p—1 U3p—2
U3 V3p-3
U1 V9 U3p—5 U3p—4
G1

Figure: The graphs Gy and Gs.
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Results and Counterexamples

Construction 1

o add two new vertices and some edges

(p — 2) parallel edges

L] L] ° ¢ .. ° [ ] L]
v4pv4p_1 ’U3p_
v V3,3

'LAI Vo' U3p—BU3p—4

G1 G2
Figure: The graphs G1 and Gs.
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Results and Counterexamples

Construction 2

Figure: The graph W for p=3.
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Results and Counterexamples

2-sum (like dual of Hajos-join)

Let H = Hy ®9 Hs. If neither Hy nor Hy admits modulo
(2p + 1)-orientation, then H = H; ®9 Hy admits no modulo
(2p + 1)-orientation.

Uy U2
D2 =
U1 Vg

H, H, H
Figure: 2-sum of Hy and Hs.
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Results and Counterexamples

Final Construction via 2-sum

e M is 4p-edge-connected without mod (2p + 1)-orientation.

Figure: The graph M for p = 3.
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Results and Counterexamples

Remarks

e Similar construction to obtain (4p + 1)-edge-connected
counterexamples.

o Extend to infinite many counterexamples via 2-sum.
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Results and Counterexamples

Remarks

e Similar construction to obtain (4p + 1)-edge-connected
counterexamples.

o Extend to infinite many counterexamples via 2-sum.

Several related conjectures are false.

e Every odd-(4p+1)-edge-connected graph admits a circular
(24+1/p)-flow. (Zhang, 2002 odd-connectivity version)

e Every (4p+1)-edge-connected graph admits all modulo
(2p + 1) B-orientation. (Lai, 2007 all boundary version)

e Every (4p+1)-edge-connected graph admits a modulo
(2p + 1)-orientation. (Kochol 2001, and asked whether
equivalent to 4p-edge-connected)
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Results and Counterexamples

p = 2 Case and Nowhere-zero 5-flow

Denote 3G to the graph obtained from G by replacing each
edge with three parallel edges.

Proposition (Jaeger 1988)

#(G) < 5 if and only if ¢(3G) < 2.5.

O_l_o O—Z—O Z5—NZF in G

O@O O@O Mod 5-orientation in 3G
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Results and Counterexamples

Connecting 5-Flow with Circular 5/2-flow

Proposition (Jaeger 1988)
¢(G) <5 if and only if ¢(3G) < 2.5.

5-flow conjecture equivalent form: ¢(3G) < 2.5 for any
bridgeless graph G.
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Results and Counterexamples

Connecting 5-Flow with Circular 5/2-flow

Proposition (Jaeger 1988)
¢(G) <5 if and only if ¢(3G) < 2.5.

5-flow conjecture equivalent form: ¢(3G) < 2.5 for any
bridgeless graph G.

Observation:

Equivalent Form of Seymour’s 6-flow Thm:
»(3G) < 1—78% 2.572 for any bridgeless graph G.

Jaeger’s stronger Conjecture (1988)

#(G) < 2.5 for any 9-edge-connected graph G.
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Results and Counterexamples

Connecting 5-Flow with Circular 5/2-flow

Jaeger’s stronger Conjecture (1988)
?(G) < 2.5 for any 9-edge-connected graph G.

e True for 12-edge-connected graphs (L-T-W-Z 2013)

@ Thomassen and CQ 2015 asked how to get a better
estimation of ¢ for 9-edge-connected graphs. (or 8-conn)

Theorem (Li-Thomassen-Wu-Zhang, 2018)
#(G)< 3 for any 8-edge-connected graph G.

We develop a new tool: strongly connected modulo orientation
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Results and Counterexamples

Strongly Connec
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ed Modulo Orientation

Theorem (Jaeger 1981)

#(G) <2+ 1/p iff G admits a modulo (2p + 1)-orientation.
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Results and Counterexamples

Strongly Connected Modulo Orientation

Theorem (Jaeger 1981)
¢(G) <2+ 1/p iff G admits a modulo (2p + 1)-orientation.

Theorem (Li-Thomassen-Wu-Zhang, 2018)

#(G) < 2+ 1/p iff G admits a strongly connected modulo

(2p + 1)-orientation.

Theorem (Li-Thomassen-Wu-Zhang, 2018)
Every 8-edge-connected graph admits a strongly connected
modulo 3-orientation.

We conjecture 6-edge-connectivity sufficient.
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Results and Counterexamples

No circular 2.5-flow—but Not The End

In 2018, No counterexample was found when p = 1, 2.
o Tutte’s 3-Flow Conjecture might be still true.

o The p = 2 case still leaves hope to approach Tutte’s 5-Flow
Conjecture. (Positive side: ¢ < 3 for 8-conn)




Flows of Graphs
0000000000000 000e000000000000000

Results and Counterexamples

No circular 2.5-flow—but Not The End

In 2018, No counterexample was found when p = 1, 2.
o Tutte’s 3-Flow Conjecture might be still true.

o The p = 2 case still leaves hope to approach Tutte’s 5-Flow
Conjecture. (Positive side: ¢ < 3 for 8-conn)

But now(2020+), our counterexamples extends to p = 2.

Theorem (Li-Wu-Zhang, manuscript in preparing)

For every p > 2, there are infinite families of (4p + 1)-edge
-connected graphs with flow index ¢>2 + %.
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Results and Counterexamples

Flow Index for given connectivity

New Question:

What is the correct (best) flow index for given connectivity?

(There is a related Additive Basis Conjecture of
Jaeger-Linial-Payan-Tarsi 1992, if the strongest form of this
conjecture is true, it would provide some good flow index

bound.)
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Results and Counterexamples

New values for flow index

Flow Index and Edge Connectivity of Graphs

Edge-Conn. | Conjectured ¢ Known ¢

2 ¢ < 5(Tuttel954) | ¢ < 6(Seymourl981)

4 ¢ < 3(Tuttel972) | ¢ < 4(Jaeger1979)

6 ¢ < 3(LTWZ2018) | ¢ < 3(LTWZ2013)

8 ‘=<2 (False) ¢ < 3(LTWZ2018)

10 % ¢ < 5(LWZ2020)

12 $< (False) ¢ < 3(LTWZ2013)

14 * ¢ < 5(LWZ2020)

16 <7 (False) ¢ < L2(LWZ2020)

6p —2 * ¢ <2+ 57 2 (LWZ2020)
6p * <2+ p(LTWZQOlS)
6p + 2 * ¢ < 2+ - (LWZ2020)
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Results and Counterexamples

New Tools: Extended Tutte Orientation

Theorem (Li-Wu-Zhang, 2020)

A graph admits a circular %—ﬂow if and only if it has a
(k, p)-extended-Tutte-orientation (ETO) D, which is an
orientation D of (k — 2p)G with

d(v) —dp(v) = kdg(v) (mod 2k), Vv € V(G).

This extends Tutte’s fact and Jaeger’s modulo orientation to
all rational numbers.
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Results and Counterexamples

New Tools: Extended Tutte Orientation

Theorem (Li-Wu-Zhang, 2020)

A graph admits a circular %—ﬂow if and only if it has a
(k, p)-extended-Tutte-orientation (ETO) D, which is an
orientation D of (k — 2p)G with

d(v) —dp(v) = kdg(v) (mod 2k), Vv € V(G).

This extends Tutte’s fact and Jaeger’s modulo orientation to
all rational numbers.

Theorem (For (2 + 2p2_ 7)-flow)

For any (6p — 2)-edge-connected graph G, 2G has a
2
(4p,2p — 1)-ETO, and hence ¢(G) < 2+ —
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New Tools: Extended Tutte Orientation

Theorem (For (< 2+ ]l))—ﬂow)

For any (6p + 2)-edge-connected graph G, ¢(G) < 2 + %.

The key idea is to extend a (2 + % —€1)-flow of G/H to a
2+ % — e9)-flow of G.

(strongly connected mod orientation seems not applicable to prove it!)
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New Tools: Extended Tutte Orientation

Theorem (For (< 2+ %)—ﬂow)

For any (6p + 2)-edge-connected graph G, ¢(G) < 2 + %.

The key idea is to extend a (2 + % —€1)-flow of G/H to a
2+ % — e9)-flow of G.
(strongly connected mod orientation seems not applicable to prove it!)

Edge-Conn. | Known ¢

2 ¢ < 6(Seymour1981)
Summery Table | 6p — 2 <2+ 2132—_1(LV\/220)
6p ¢ <2+ L(LTWZ2013)

6p + 2 ¢ <2+ (LWZ20)
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More on [-orientation

Definition

(a) A function g : V(G) — {0,£1,..., %k} is called a

(2k, B)-boundary if

> vev(c) B(v) =0 (mod 2k) and B(v) = d(v) (mod 2) for every
v € V(G). For a vertex subset A C V(G), define its boundary
B(A) € {0,£1,..., £k} such that B(A) = >, .4 B(v) (mod 2k).

(b) Given a (2k, §)-boundary, an orientation D of G is called a
(2k, B)-orientation if, for every vertex v € V(G),
df(v) —dp(v) = B(v) (mod 2k).
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Fact for [-orientation

(a) A graph G admits a circular %—ﬂow if and only if it has a
(2t 4+ 1,¢)-ETO, which is a (4t 4 2, §)-orientation of G with
Bv) = (2t + 1)dg(v) (mod 4t + 2),Vv € V(G).

(b) A graph G admits a circular 2
(4p,2p — 1)-ETO, which is an (8p, B) orientation of 2G with
B(v) = 4pdg(v) (mod 8p), Vv € V(G).

This is for the convenience of considering parity.
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The inductive Thm

Theorem B (LTWZ2013, Wu thesis2012)

Let G be a graph with a (2k, 8)-boundary. Let zy be a vertex of
V(G), and let D, be a pre-orientation of E(zy) which achieves
boundary 5(zp) at z9. Let Vo = {v € V(G) — 20 : B(v) = 0}. If
Vo # 0, we let vy be a vertex of Vj with smallest degree.
Assume that

() V(G)| > 3

(i) d(z0) < 2k — 2+ |8(z0)l;

(iii) d(A) > 2k — 2+ |B(A)]| for any A C V(G) \ {20} with

A # {v} and |[V(G) \ 4| > 1.

Then pre-orientation D, at zp can be extended to a

(2k, B)-orientation of the entire graph G.
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Proof Techniques:
o Contraction
e Splitting
@ Deletion

Each graph is (somehow) reducible by one of the above operations!
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Proof Sktech:

e Claim A. for any nontrivial A, d(A) > 2k + |5(A)|
(nontrivial edge-cuts are large by Contraction)

e Claim B. for any nontrivial A = {v},
d(v) =2k =2+ |B(v)]
(each vertex is “regular” by Splitting)

e Claim C. for each vertex v, B(v) has the same sign (say > 0)
(each vertex has positive boundary by Deletion)

o Final. Modify to get a vertex negative boundary, resulting
a contral
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Thm and applications

Theorem B’ (LTWZ2013, Wu thesis2012)

Let G be a (3k — 3)-edge-connected graph, where k > 2 is an
integer (oK for both even and odd). Then for any (2k, 8)-boundary 3, G
admits a (2k, §)-orientation.

Two Applications:

e For any (3k — 3)-edge-connected simple graph G with
|E(G)| being a multiple of k, E(G) can be decomposed into
K Lk’s.

o Thomassen 2020: Every 7-odd-edge-connected
9-regular-graph can be edge-decomposed into three
3-regular subgraphs.
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Similar technique for planar mod orientations

Theorem (Cranston-Li 2020)

Every 11-odd-edge-connected graph admits mod 5-orientation.

Corollary (Cranston-Li 2020)

(i) Every planar graph with girth > 10 admits a hom to Cs.
(ii) Every directed planar graph of girth> 11 admits a
homomorphism to any 5-vertex tournament.

H1 H2 H3

Figure: Some easy configurations, but not enough
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Spanning trees and Modulo Orientation

Necessary Condition for modulo orientations

Proposition

If G admits modulo (2p + 1)-orientation with all possible
boundaries, then G contains 2p edge-disjoint spanning trees.

Nash-Williams and Tutte Theorem

G contains k edge-disjoint spanning trees if and only if for any
partition P = {Py, Py, ..., P}, St d(P;) — 2kt + 2k > 0.

Motivated by those facts, we are trying to use spanning tree
packing number to provide Sufficient Condition
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Partitions for mod 5-orientation

We define a weight function below to have some flexibility.

Let P ={Py, P,,..., P} be a partition of V(G). Define
wg(P) = 2521 d(P;) — 11t + 19 and

w(G) = min{wg(P) : P is a partition of V(G)}.

For example, w(2K2) =1, w(J;) = w(J2) = 0, w(3K3) = 3.

C C
=P AP AAB AAB
2K2 Jl J2

3Ko
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The Theorem for induction

Theorem

Let G be a planar graph and B be a Zs boundary of G. If

w(G) >0, then G admits a mod 5 [3-orientation, unless G is
one of the following problematic cases that there is a partition P

such that G /P is isomorphic to one of the graphs
2K2a 3K27 J17 J2~

C C
=8 AB AB AAB
3K 2K, Ji J2

2
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Idea in the proof

In a minimal counterexample G,
e Claim A: wg(P) > 8 for any “nontrivial” partition P.
This allows to use splitting and contraction.
o Claim B: Wy, Wa, W3 are all forbidden in G by splitting
and contraction.

Then a simple discharging would finish the proof. It would be
nice to extend to general mod (2p + 1)-orientation.
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Flows for bidirected signed graphs

André Bouchet in 1983 initiated Integer Flows of
bidirected signed graphs from the dual of
face-coloring in projective plane
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Flows in signed graphs

Let G be a signed graph and 7 be an orientation of G.
e A pair (7, f) is called a flow of G if

inflow=outflow at every vertex
(looking at those ‘half-edges’ incident with a vertex)
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Coloring-Flow Duality of Signed Graphs

e For a nonorientable surface,

‘k-face-coloring’ = Signed Graph k-NZF

Coloring-Flow of K4 in projective plane:
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NZF of Ordinary K4 and Signed K4

-3

3-NZF of a signed K4 4-NZF of K4
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¢ dual to Petersen (Re-drawing)

It has no 5-NZF by Bouchet’s dual Thm
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Flow Index Table of Signed Graphs

Flow Index and Edge Connectivity of Signed Graphs

Edge-Conn. | Conjectured ¢ Known ¢

0,1 ¢ < 6(Bouchet83) | ¢ < 11(DLLLZZ20)
2,3 ¢ < 6(Bouchet83) | 7

4 * ¢ < 4(D037)(RZ11)
5 ¢ < 3(WYZZ15) |

6 * ¢ < 4(RZ11)

8 * ¢ < 3(WYZZ15)

12 * 7¢ < 3(maybe??)
20 * 7¢ < 2.5(maybe??)
12p—1 * ¢ <2+ (Zhulb)
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Thank you for your attention !

Thank you very much!
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