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𝜒 𝐺 = min 𝑘: 𝐺 𝑖𝑠 𝑘 − 𝑐𝑜𝑙𝑜𝑟𝑎𝑏𝑙𝑒

𝑐ℎ 𝐺 = min 𝑘: 𝐺 𝑖𝑠 𝐿 − 𝑐𝑜𝑙𝑜𝑟𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑘 − 𝑙𝑖𝑠𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝐿
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𝑐ℎ 𝐾𝑚,𝑚 > 𝑘 𝑖𝑓 𝑚 = 2𝑘−1
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The reason why a k-colorable graph is not L-colorable for a k-list 
assignment L is that lists assigned to vertices by L may be 
complicately entangled.
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· if λ={1,1,…,1}, then λ-choosable ⇔ k-colorable.



· if λ={1,1,…,1}, then λ-choosable ⇔ k-colorable.

· if λ={k}, then λ-choosable ⇔ k-choosable.





4CT is tight in the refined scale of λ-choosability. 



Definition 3: Assume 𝜆 and 𝜆′ are two partitions of 𝑘, 𝜆′ is a 
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An assignment 𝐿 of a graph 𝐺 is symmetric if for each vertex 𝑣
of 𝐺, 𝐿(𝑣) is symmetric.

A set 𝐼 of integers is called symmetric if for any integer 𝑖, 
𝑖 ∈ 𝐼 implies that −𝑖 ∈ 𝐼.

We say 𝐺 is weakly 𝑘-choosable if 𝐺 is 𝐿 -colorable for any 
symmetric assignment 𝐿.













There is a graph which is weakly 4-choosable but not signed 4-colorable.



Conjecture 1 :  [ 𝑀 ƴ𝑎 Ƽ𝑐ajov ƴ𝑎, Raspaud and ෙ𝑆𝑘𝑜𝑣𝑖𝑒𝑟𝑎, 2016 ]
Every planar graph is signed 4-colorable.

Conjecture 2 :    [ K ሷ𝑢𝑛𝑑𝑔𝑒𝑛 and 𝑅𝑎𝑚𝑎𝑚𝑢𝑟𝑡ℎ𝑖, 2002 ]
Every planar graph is weakly 4-choosable.
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⇒ 𝐾𝑎𝑟𝑑𝑜 Ƽ𝑠 𝑎𝑛𝑑 𝑁𝑎𝑟𝑏𝑜𝑛𝑖 constructed a planar graph 
which is not signed 4-colorable. 
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· There is a planar graph is not {1,1,2}-choosable.   [Kemnitz and Voigt, 2018]
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· There is a planar graph is not {1,1,2}-choosable.   [Kemnitz and Voigt, 2018]

· There is a planar graph is not signed 𝑧4 -colorable.   

Conjecture:    [ Kang and Steffen , 2017 ]
Every planar graph is signed 𝑧4-colorable.
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