A refinement of choosability of graphs

Xuding Zhu

$$\chi(G) = \min \{ k: G \text{ is } k - colorable \}$$

 $ch(G) = \min \{k: G \text{ is } L - colorable for any } k - list assignment L\}$

 $\chi(G) = \min \{ k: G \text{ is } k - colorable \}$

 $ch(G) = \min \{k: G \text{ is } L - colorable for any } k - list assignment L\}$

 $\chi(G) \leq ch(G)$ for any graph G.

 $\chi(G) = \min\{k: G \text{ is } k - colorable\}$

 $ch(G) = \min \{k: G \text{ is } L - colorable for any } k - list assignment L\}$

 $\chi(G) \leq ch(G)$ for any graph G.

 $ch(K_{m,m}) > k \text{ if } m = \binom{2k-1}{k}.$

 $\chi(G) = \min \{ k: G \text{ is } k - colorable \}$

 $ch(G) = \min \{k: G \text{ is } L - colorable for any } k - list assignment L\}$

 $\chi(G) \leq ch(G)$ for any graph G.

$$ch(K_{m,m}) > k \text{ if } m = \binom{2k-1}{k}.$$

The reason why a k-colorable graph is not L-colorable for a k-list assignment L is that lists assigned to vertices by L may be complicately entangled.

Definition 2. Assume $\lambda = \{k_1, k_2, \ldots, k_q\}$ is a partition of k and G is a graph. A λ -assignment of G is a k-assignment L of G in which the colours in $\bigcup_{x \in V(G)} L(x)$ can be partitioned into sets C_1, C_2, \ldots, C_q so that for each vertex x and for each $1 \leq i \leq q$, $|L(x) \cap C_i| = k_i$. Each C_i is called a *colour group* of L. We say G is λ -choosable if G is \overline{L} -colourable for any λ -assignment L of G.

Definition 2. Assume $\lambda = \{k_1, k_2, \ldots, k_q\}$ is a partition of k and G is a graph. A λ -assignment of G is a k-assignment L of G in which the colours in $\bigcup_{x \in V(G)} L(x)$ can be partitioned into sets C_1, C_2, \ldots, C_q so that for each vertex x and for each $1 \leq i \leq q$, $|L(x) \cap C_i| = k_i$. Each C_i is called a *colour group* of L. We say G is λ -choosable if G is L-colourable for any λ -assignment L of G.

· if $\lambda = \{1, 1, ..., 1\}$, then λ -choosable \Leftrightarrow k-colorable.

Definition 2. Assume $\lambda = \{k_1, k_2, \ldots, k_q\}$ is a partition of k and G is a graph. A λ -assignment of G is a k-assignment L of G in which the colours in $\bigcup_{x \in V(G)} L(x)$ can be partitioned into sets C_1, C_2, \ldots, C_q so that for each vertex x and for each $1 \leq i \leq q$, $|L(x) \cap C_i| = k_i$. Each C_i is called a *colour group* of L. We say G is λ -choosable if G is L-colourable for any λ -assignment L of G.

· if $\lambda = \{1, 1, ..., 1\}$, then λ -choosable \Leftrightarrow k-colorable.

· if $\lambda = \{k\}$, then λ -choosable \Leftrightarrow k-choosable.

4CT is tight in the refined scale of λ -choosability.

Note: Every λ – *choosable* graph is λ' – *choosable*.

Note: Every λ – *choosable* graph is λ' – *choosable*.

Definition 4: Assume λ is a partition of k and λ' is a partition of $k' \ge k$. We write $\lambda' \le \lambda$ if λ' is a refinement of a partition λ'' of k' which is obtained from λ by increasing some of parts of λ .

Note: Every λ – *choosable* graph is λ' – *choosable*.

Definition 4: Assume λ is a partition of k and λ' is a partition of $k' \ge k$. We write $\lambda' \le \lambda$ if λ' is a refinement of a partition λ'' of k' which is obtained from λ by increasing some of parts of λ .

Note: Every λ – *choosable* graph is λ' – *choosable*.

$$\lambda = (k_1, k_2, \dots, k_q) \text{ and } \lambda' = (k'_1, k'_2, \dots, k'_p).$$

$$\begin{array}{cccc} 1 & m & \lambda = (k_1, k_2, \dots, k_q) \text{ and } \lambda' = (k'_1, k'_2, \dots, k'_p). \\ G_1 & (K_{k_1}) & \cdots & (K_{k_1}) \cdots & (K_{k_1}) \\ \vdots & & & \\ G_i & (K_{k_i}) \cdots & (K_{k_i}) \cdots & (K_{k_i}) \\ \vdots & & & \\ G_q & (K_{k_q}) \cdots & (K_{k_q}) \cdots & (K_{k_q}) \end{array}$$

 $\lambda = (k_1, k_2, \dots, k_q) \text{ and } \lambda' = (k'_1, k'_2, \dots, k'_p).$ n m $G_1(K_{k_1})\dots(K_{k_1})\dots(K_{k_1})$ if at least k'_j colours in C'_j are used by vertices in G_i . G_i $(K_{k_i}) \dots (K_{k_i}) \dots (K_{k_i})$ G_q $(K_{k_q}) \dots (K_{k_q}) \dots (K_{k_q})$

$$\lambda = (k_1, k_2, \dots, k_q) \text{ and } \lambda' = (k'_1, k'_2, \dots, k'_p)$$

For each index $i \in \{1, 2, \dots, q\}, \sum_{j \in J_i} k'_j \ge k_i.$

111

Signed graph colouring and $\lambda\text{-choosability}$

Signed graph colouring and λ -choosability

A k-colouring of (G, σ) is a mapping $f: V(G) \to N_k$ such that for each edge e = xy, $f(x) \neq \sigma(e)f(y)$

$$N_k = \{0, 1, -1, 2, -2, \dots, q, -q\}$$
 if $k = 2q + 1$ is odd.
 $N_k = \{1, -1, 2, -2, \dots, q, -q\}$ if $k = 2q$ is even

a Z_k -colouring of (G, σ) is a mapping $f: V(G) \to Z_k$ such that for each edge e = xy, $f(x) \neq \sigma(e)f(y)$.

A graph G is signed k-colourable (respectively, signed Z_k -colourable) if for any signature σ of G, the signed graph (G, σ) is k-colourable (respectively, Z_k -colourable).

A set *I* of integers is called symmetric if for any integer *i*, $i \in I$ implies that $-i \in I$.

An assignment L of a graph G is symmetric if for each vertex v of G, L(v) is symmetric.

We say *G* is weakly *k*-choosable if *G* is *L*-colorable for any symmetric assignment *L*.

Theorem 13. Every signed 4-colourable graph is weakly 4-choosable.

L is a symmetric 4-assignment of G.

L is a symmetric 4-assignment of G.

 $L^+(u)=\{|i|:i\in L(u)\}$

L is a symmetric 4-assignment of G.

 $L^+(u)=\{|i|:i\in L(u)\}$

$$\sigma(e) = \begin{cases} -1, & \text{if } \min L^+(u) = \max L^+(v) \text{ or } \min L^+(v) = \max L^+(u), \\ 1, & \text{otherwise.} \end{cases}$$

L is a symmetric 4-assignment of G.

 $L^+(u)=\{|i|:i\in L(u)\}$

$$\sigma(e) = \begin{cases} -1, & \text{if } \min L^+(u) = \max L^+(v) \text{ or } \min L^+(v) = \max L^+(u), \\ 1, & \text{otherwise.} \end{cases}$$

$$\phi(v) = \begin{cases} \max L^+(v), & \text{if } f(v) = 2, \\ -\max L^+(v), & \text{if } f(v) = 1, \\ \min L^+(v), & \text{if } f(v) = -2, \\ -\min L^+(v), & \text{if } f(v) = -1. \end{cases}$$

Theorem 13. Every signed 4-colourable graph is weakly 4-choosable.

There is a graph which is weakly 4-choosable but not signed 4-colorable.

Conjecture 1 : [*Máčajová*, Raspaud and *Škoviera*, 2016] Every planar graph is signed 4-colorable.

Conjecture 2 : [Kündgen and Ramamurthi, 2002] Every planar graph is weakly 4-choosable. Conjecture 1 : [*Máčajová*, Raspaud and *Škoviera*, 2016] Every planar graph is signed 4-colorable.

 \downarrow

Conjecture 2 : [Kündgen and Ramamurthi, 2002] Every planar graph is weakly 4-choosable. Conjecture 1 : [*Máčajová*, Raspaud and *Škoviera*, 2016] Every planar graph is signed 4-colorable.

Kardoš and Narboni constructed a planar graph which is not signed 4-colorable.

Conjecture 2 : [Kündgen and Ramamurthi, 2002] Every planar graph is weakly 4-choosable. **Theorem 14.** Every signed Z_4 -colourable graph is $\{1, 1, 2\}$ -choosable.

L is a $\{1, 1, 2\}$ -assignment of G.

- L is a $\{1,1,2\}\text{-assignment}$ of G.
- $\{1,2\} \subseteq \cap_{v \in V(G)} L(v).$
- $L'(v) = L(v) \{1, 2\}.$

 $L \text{ is a } \{1, 1, 2\}\text{-assignment of } G.$ $\{1, 2\} \subseteq \cap_{v \in V(G)} L(v).$ $L'(v) = L(v) - \{1, 2\}.$ $\sigma(e) = \begin{cases} -1, & \text{if } \min L'(u) = \max L'(v) \text{ or } \min L'(v) = \max L'(u), \\ 1, & \text{otherwise.} \end{cases}$

L is a $\{1, 1, 2\}$ -assignment of G. $\{1,2\} \subseteq \cap_{v \in V(G)} L(v).$ $L'(v) = L(v) - \{1, 2\}.$ $\sigma(e) = \begin{cases} -1, & \text{if } \min L'(u) = \max L'(v) \text{ or } \min L'(v) = \max L'(u), \\ 1, & \text{otherwise.} \end{cases}$ $\phi(v) = \begin{cases} \max L'(v), & \text{if } f(v) = 3, \\ \min L'(v), & \text{if } f(v) = 1, \\ 1, & \text{if } f(v) = 0, \\ 2, & \text{if } f(v) = 2. \end{cases}$

 \cdot There is a planar graph is not $\{1,1,2\}$ -choosable. [Kemnitz and Voigt, 2018]

 \cdot There is a planar graph is not {1,1,2}-choosable. [Kemnitz and Voigt, 2018]

· There is a planar graph is not signed z_4 -colorable.

• There is a planar graph is not {1,1,2}-choosable. [Kemnitz and Voigt, 2018]

 \cdot There is a planar graph is not signed z_4 -colorable.

Conjecture: [Kang and Steffen , 2017] Every planar graph is signed z_4 -colorable.

Theorem 16. The signed planar graph (G, σ) is not Z₄-colourable.

Theorem 16. The signed planar graph (G, σ) is not Z_4 -colourable. For any Z_4 -colouring f of (H, σ) , $\{f(u), f(v)\} \cap \{0, 2\} \neq \emptyset$.

Theorem 16. The signed planar graph (G, σ) is not Z₄-colourable. For any Z₄-colouring f of (H, σ) , $\{f(u), f(v)\} \cap \{0, 2\} \neq \emptyset$. Case 1: $f(x_5) = 3$ χ_{r} χ_A

Theorem 16. The signed planar graph (G, σ) is not Z_4 -colourable. For any Z_4 -colouring f of (H, σ) , $\{f(u), f(v)\} \cap \{0, 2\} \neq \emptyset$.

Theorem 16. The signed planar graph (G, σ) is not Z_4 -colourable. For any Z_4 -colouring f of (H, σ) , $\{f(u), f(v)\} \cap \{0, 2\} \neq \emptyset$.

Thank you!