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The reason why a k-colorable graph 1s not L-colorable for a k-list
assignment L 1s that lists assigned to vertices by L may be
complicately entangled.
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4CT 1s tight 1n the refined scale of A-choosability.



Definition 3: Assume A and A" are two partitions of k, A’ is a
refinement of A if A" is obtained from A by subdividing some parts of A.



Definition 3: Assume A and A" are two partitions of k, A’ is a
refinement of A if A" is obtained from A by subdividing some parts of A.

Note: Every A — choosable graph is A' — choosable.



Definition 3: Assume A and A" are two partitions of k, A’ is a
refinement of A if A’ is obtained from A by subdividing some parts of A.

Note: Every A — choosable graph is A' — choosable.

Definition 4: Assume A is a partition of k and A’ is a partition of
k' > k. Wewrite ' < Aif A’ is a refinement of a partition A" of
k' which is obtained from A by increasing some of parts of 1.



Definition 3: Assume A and A" are two partitions of k, A’ is a
refinement of A if A’ is obtained from A by subdividing some parts of A.

Note: Every A — choosable graph is ' — choosable.

Definition 4: Assume A is a partition of k and A’ is a partition of
k' > k. Wewrite ' < Aif A’ is a refinement of a partition A" of
k' which is obtained from A by increasing some of parts of 1.

Note: Every A — choosable graph is A' — choosable.



Theorem 2: A < A" & Every A-choosable graph is A'-choosable.



Theorem 2: A < A" & Every A-choosable graph is A'-choosable.

A = (k1,ko,...,k;) and X' = (K}, k5, ..., k).

P



Theorem 2: A < A" & Every A-choosable graph is A'-choosable.

A = (ky1,ko,...,k;) and X' = (K}, ks, ...

KL,

P



Theorem 2: A < A" & Every A-choosable graph is A'-choosable.
1 m n

Gl @ o @ o
Gi @ o @ o @
Gq o N .

A = (k1,ko,...,k;) and X' = (K}, k5, ..., k).

!
C1,Cs, ... ,C'I’, are disjoint colour sets such that each |(';\ = ‘2/.';- — 1.



Theorem 2: A < A" & Every A-choosable graph is A'-choosable.

(k1,koy. .. ky) and X' = (k{,K5,... k).

P
C1,Cy, ..., C), are disjoint colour sets such that each |("| = 2k} —

Gl @ @ @ ,' is the family of all A’--sul)scts of ( e
. (" c c n — |S|

; ©)-(@-(@) =
Gq ‘ o ‘ - .‘

1



Theorem 2: A < A" & Every A-choosable graph is A'-choosable.

A = (ky1,ko,...,k;) and X' = (K}, ks, ...

KL,

P



Theorem 2: A < A" & Every A-choosable graph is A'-choosable.

(k1,koy. .. ky) and X' = (k{,K5,... k).

P

G C' is occupied by G;
1 if at least A colours in C"; are used by vertices in G;.
o (k). (k). .



Theorem 2: A < A" & Every A-choosable graph is A'-choosable.

(k1,koy. .. ky) and X' = (k{,K5,... k).

P

G C' is occupied by G;
1 if at least A colours in C are used by vertices in G.
. Ji=1{j: C'.;- is occupied by G;}.  # (),



Theorem 2: A < A" & Every A-choosable graph is A'-choosable.

(k1,koy. .. ky) and X' = (k{,K5,... k).

P
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1 if at least £/ colours in C'; are used by vertices in Gj.
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Signed graph colouring and A-choosability

A k-colouring of (G, o) is a mapping [ : V(G) — Ni such that for each edge e = xy,

f(z) #o(e)f(y)
N ={0,1,-1,2,-2,...,¢,—q} if k = 2¢+ 1 is odd.
N, ={1,-1,2,-2,...,q,—q} if k = 2q is even

a Zy-colouring of (G, o) is a mapping f : V(G) = Zj such that for each edge e = xy, f(x) # ale)f(y).

A graph G is signed k-colourable (respectively, signed Zj-colourable) if for any signature o of G,

the signed graph (G, o) is k-colourable (respectively, Z-colourable).



A set I of integers 1s called symmetric 1f for any integer i,
i € I implies that —i € I.

An assignment L of a graph G 1s symmetric if for each vertex v
of G, L(v) is symmetric.

We say G 1s weakly k-choosable 1f G 1s L -colorable for any
symmetric assignment L.
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o(e) =

1. otherwise.

(max LT (v), if f(v) =2,
—max Lt (v), if f(v) =1,

min L (v), if f(v)= -2,
 —min LT (v), if f(v)=—1.

¢(v) = <




Theorem 13. Every signed 4-colourable graph is weakly 4-choosable.

There 1s a graph which 1s weakly 4-choosable but not signed 4-colorable.



Conjecture 1 : [ Macajovd, Raspaud and Skoviera,2016 ]
Every planar graph 1s signed 4-colorable.

Conjecture 2 : [ Kiindgen and Ramamurthi, 2002 ]
Every planar graph 1s weakly 4-choosable.



Conjecture 1 : [ Macajovd, Raspaud and Skoviera,2016 ]
Every planar graph 1s signed 4-colorable.

U

Conjecture 2 : [ Kiindgen and Ramamurthi, 2002 ]
Every planar graph 1s weakly 4-choosable.



Conjecture 1 : [ Macajovd, Raspaud and Skoviera,2016 ]
Every planar graph 1s signed 4-colorable.

Kardos and Narboni constructed a planar graph
U which is not signed 4-colorable.

Conjecture 2 : [ Kiindgen and Ramamurthi, 2002 ]
Every planar graph 1s weakly 4-choosable.
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Theorem 14. Fvery signed Zj-colourable graph is {1,1,2}-choosable.

(- is a signed Zj-colourable graph
L is a {1,1,2}-assignment of G.
11,2} C Nyevig)L(v).

L'(v) = L(v) — {1, 2}.

(—1, if min L'(u) = max L'(v) or min L'(v) = max L' (u),

og(e) = 4
1 otherwise.
(max L'(v), if f(v) =3,
b(v) = ¢ min L'(v), if f(v) =1,
1, if f(v) =0,
2, if f(v)=2.
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- There 1s a planar graph 1s not {1,1,2}-choosable. [Kemnitz and Voigt, 2018]

U

- There 1s a planar graph 1s not signed z, -colorable.

Conjecture: [ Kang and Steffen , 2017 ]
Every planar graph 1s signed z,-colorable.




Theorem 16. The signed planar graph (G, o) is not Zi-colourable.



Theorem 16. The signed planar graph (G, o) is not Zi-colourable.

For any Zy-colouring f of (H,o), {f(u), f(v)} N{0,2} # 0.
w




Theorem 16. The signed planar graph (G, o) is not Zi-colourable.
For any Zy-colouring f of (H,o), {f(u), f(v)} N{0,2} # 0.

OW Case 1: f(xg) =3




Theorem 16. The signed planar graph (G, o) is not Zy-colourable.
For any Zy-colouring f of (H,o), {f(u), f(v)} N{0,2} # 0.

OW Case 1: f(xg) =3

Case2: f(x4) =3




Theorem 16. The signed planar graph (G, o) is not Zy-colourable.
For any Zy-colouring f of (H,o), {f(u), f(v)} N{0,2} # 0.

OW Case 1: f(xg) =3

Case2: f(x4) =3

Case2.1: f(x3) =0




Theorem 16. The signed planar graph (G, o) is not Zy-colourable.
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w
0 Case 1: f(xs) =3

Case2: f(x4) =3

Case2.1: f(x3) =0

Case2.2 f(x3) =2

vy 3
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Thank you!



