Ramsey theory

Simple example:

Given any set of 6 people either there are 3 among them such that everyone knows everyone else, or there are 3 among them such that no one knows the other two.

In this statement 6 can be replaced with any integer larger than 6 but it cannot be replaced by 5.
Example of 5 people not satisfying the condition
In language of graphs

A 2-edge-colored graph: each edge is either Red or Blue (this coloring is not proper coloring).

Given a 2-edge-colored complete graph K_n and integers $p \& q$ what we are interested in is:

- either p vertices where every edge is Red
- or q vertices where every edge is Blue
Ramsey's Theorem

Given any two positive integers $P \& Q$ there exists an integer $R(P, Q)$ such that for $n \geq R(P, Q)$ every 2-edge-colored graph contains either a Red K_P or Blue K_Q.

Definition. The smallest possible choice in this theorem for $R(P, Q)$ is called Ramsey number of P and Q.
Examples.

- $R(p, 2) = p$

- $R(3, 3) = 6$
Proof.

We have $R(P, 2) = R(2, P) = P$.
For the other values of P&Q we apply induction on $P+Q$, taking $P=Q=2$ as the base of induction $R(2, 2)=4$.
Thus we assume that $R(P,Q)$ exists whenever $P+Q \leq K$ and consider a pair of P&Q with $P+Q = K+1$.
Proof.

We have $R(P, 2) = R(2, P) = P$.

For the other values of P and Q we apply induction on $P+Q$,
taking $P=Q=2$ as the base of induction $R(2, 2)=4$.

Thus we assume that $R(P, Q)$ exists whenever $P+Q \leq K$ and
consider a pair of P and Q with $P+Q = K+1$.

Thus $R(P, Q) \leq R(P, Q-1) + R(P-1, Q)$.

\[
\begin{array}{c}
R(P, Q) \\
\leq \\
R(P-1, Q) \\
\geq R(P, Q-1)-1 ?
\end{array}
\]
Generalizations:

H_k^n: k-uniform complete hypergraph on n vertices

Vertices: an n-set (e.g. $\{1, 2, \ldots, n\} = [n]$)

Hyper edge set: all k-subsets of $[n]$, $\binom{[n]}{k}$

L-edge-colored k-uniform complete hypergraph:

each hyperedge is assigned one of the L colors.

Ramsey's theorem: Given integers $k, r_1, r_2, \ldots, r_i, k \geq 2, r_1, r_2, \ldots, r_i \geq k$,

there exists an integer $f(K, r_1, r_2, \ldots, r_i)$ such that

for $n \geq f(K, r_1, r_2, \ldots, r_i)$ in any L-edge-colored k-uniform on n vertices

hypergraph there exists an index i for which we have:

an r_i-subset of vertices which induces a k-uniform

hypergraph all whose edges are colored with the i^{th} color.
Infinite Ramesy theory

Given.
- An infinite set A
- A positive integer k (k-subsets to be considered)
- A set of l colors (1, 2, --l)
- A coloring φ of the k-subset of A

Conclusion.
An infinite subset A' of A where all k-subsets have a same color.
König's Lemma:

In every locally finite, connected, infinite tree there exists an infinite path.
Extremely difficult question:

Determine \(R(P, 9) \) or \(R(r_1, r_2, \ldots, r_l) \) in general.

What is known:

\[
\begin{align*}
R(3, 3) &= 6 \\
R(3, 4) &= 9 \\
R(3, 5) &= 14 \\
R(3, 6) &= 18 \\
R(3, 10) &\in \{40, 41, 42, 3\} \\
\vdots \\
R(3, t) &\text{ is of order } \frac{t^2}{\log t}
\end{align*}
\]

Every triangle-free graph on \(n \) vertices has an independent set of order \(\Theta(\sqrt{n \log n}) \)
Most special cases that are open:

\[43 \leq R(5,5) \leq 48 \]

\[102 \leq R(6,6) \leq 165 \]
Best upper bound:

\[R(p, q) \leq R(p, q-1) + R(p-1, q) \]

\[
\binom{k+l}{k} = \binom{k+l-1}{k} + \binom{k-1+l}{l}
\]

\[\rightarrow R(p, q) \leq \binom{p+q-2}{q-1} \]

\[\Rightarrow R(p, p) \leq (1 + o(1)) \frac{4^{s-1}}{\sqrt{\pi s}}. \]
Best lower bound: K_n total number of 2-edge-colorings?
Best lower bound:

\[K_n \]

probabilistic method

total number of 2-edge-colorings?

total number of 2-edge-colorings where a given \(K_p \) is monochromatic?

\[\Rightarrow \binom{n}{p} < 2^{\binom{p}{2}} \], then there exist an edge-coloring without a monochromatic \(K_p \).

\[\Rightarrow R(p, p) \geq (1+o(1)) \frac{\sqrt{2}}{e} 2^{\frac{p}{2}} \]
Lower bounds by (algebraic) constructions:

\(\Gamma \): an additive group

\(S \): a subset of \(\Gamma \), normally assumed to satisfy \(x \in S \iff -x \in S \).

Cayley graph \((\Gamma, S)\)

- vertex set: elements of
- edge set: \(x - y \iff x - y \in S \)
Examples

$G=(\mathbb{Z}_8, \{\pm 3, 4\})$.

Other names: Wagner graph

(in classification of K_5-minor-free graphs)
Examples
Field \((F, +, \cdot)\)

\((F, +)\): an additive group with 0 as identity

\((F_{-0}, \cdot)\): a multiplicative group with 1 as identity.

Both are commutative and, moreover, \(a(b+c)=ab+ac\)

Finite Field: a Field where \(F\) is a finite set.
Field \((F, +, \cdot)\)

\((F, +)\): an additive group with 0 as identity

\((F - 0, \cdot)\): a multiplicative group with 1 as identity.

Both are commutative and, moreover, \(a(b+c)=ab+ac\)

Finite Field: a Field where \(F\) is a finite set.

Examples: \(\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_5, \mathbb{Z}_6, \mathbb{Z}_7, \mathbb{Z}_8, \mathbb{Z}_9?\)

\(\mathbb{Z}_2 \times \mathbb{Z}_2?\)
GF(4): Field on 4 elements

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Golios theory. A finite field of order \(q \) exists if and only if \(q = p^n \) for a prime number \(p \).
Golios theory A finite field of order q exists if and only if $q = p^n$ for a prime number p.

Question. How to build $GF(9)$?

Note: Any two finite fields of a same order are isomorphic.
For \(n=1 \), i.e. \(q=P \), \((\mathbb{Z}_p,+,,x)\) is the finite field of order \(P \).

For \(n \geq 2 \) we consider a polynomial \(f(x) \) of degree \(n \) whose coefficients are from \(\mathbb{Z}_p \), with the property that it is irreducible on \(\mathbb{Z}_p[X] \).

\[
\text{Lemma:} \quad f(x) \neq q(x)h(x)
\]

Homework. There exists such a polynomial for every \(n \geq 2 \).

Theorem. \(\mathbb{Z}_p[x]/f(x) \) is the field of order \(p^n \).
Examples

In $GF(2)$ the polynomial $f(x) = x^n + x + 1$ is irreducible.

To build $GF(8)$ we take $x^3 + x + 1$

(that means each time you see an x^3 you may replace it with $x + 1$)

coefficient of polynomials come from $GF(2)$, thus $0, 1$, and, therefore, all coefficient are 1 in this example.
Examples

In $GF(2)$ the polynomial $f(x) = x^n + x + 1$ is irreducible.

To build $GF(3)$ we take $x^3 + x + 1$

(that means each time you see an x^3 you may replace it with $x+1$)

coefficient of polynomials come from $GF(2)$, thus $0, 1, 3$, and, therefore,

all coefficient are 1 in this example.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>x</th>
<th>$x+1$</th>
<th>x^2</th>
<th>$x^2 + 1$</th>
<th>$x^2 + x$</th>
<th>$x^2 + x + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>$x+1$</td>
<td>x^2</td>
<td>$x^2 + 1$</td>
<td>$x^2 + x$</td>
<td>$x^2 + x + 1$</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>x</td>
<td>x^2</td>
<td>$x^2 + x$</td>
<td>$x + 1$</td>
<td>1</td>
<td>$x^2 + x + 1$</td>
<td>$x^2 + 1$</td>
</tr>
<tr>
<td>$x + 1$</td>
<td>0</td>
<td>$x + 1$</td>
<td>$x^2 + x$</td>
<td>$x^2 + 1$</td>
<td>$x^2 + x + 1$</td>
<td>x^2</td>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>x^2</td>
<td>0</td>
<td>x^2</td>
<td>$x + 1$</td>
<td>$x^2 + x + 1$</td>
<td>$x^2 + x$</td>
<td>x</td>
<td>$x^2 + 1$</td>
<td>1</td>
</tr>
<tr>
<td>$x^2 + 1$</td>
<td>0</td>
<td>$x^2 + 1$</td>
<td>1</td>
<td>x^2</td>
<td>x</td>
<td>$x^2 + x + 1$</td>
<td>$x + 1$</td>
<td>$x^2 + x$</td>
</tr>
<tr>
<td>$x^2 + x$</td>
<td>0</td>
<td>$x^2 + x$</td>
<td>$x^2 + x + 1$</td>
<td>1</td>
<td>$x^2 + 1$</td>
<td>$x + 1$</td>
<td>x</td>
<td>x^2</td>
</tr>
<tr>
<td>$x^2 + x + 1$</td>
<td>0</td>
<td>$x^2 + x + 1$</td>
<td>$x^2 + 1$</td>
<td>x</td>
<td>1</td>
<td>$x^2 + x$</td>
<td>x^2</td>
<td>$x + 1$</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x +1</td>
<td>x^2</td>
<td>x^2 + 1</td>
<td>x^2 + x</td>
<td>x^2 + x +1</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x +1</td>
<td>x^2</td>
<td>x^2 + 1</td>
<td>x^2 + x</td>
<td>x^2 + x +1</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>x</td>
<td>x^2</td>
<td>x^2 + x</td>
<td>x +1</td>
<td>1</td>
<td>x^2 + x +1</td>
<td>x^2 + 1</td>
</tr>
<tr>
<td>x +1</td>
<td>0</td>
<td>x +1</td>
<td>x^2 + x</td>
<td>x^2 + 1</td>
<td>x^2 + x +1</td>
<td>x^2</td>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>x^2</td>
<td>0</td>
<td>x^2</td>
<td>x +1</td>
<td>x^2 + x +1</td>
<td>x^2 + x</td>
<td>x</td>
<td>x^2 + 1</td>
<td>1</td>
</tr>
<tr>
<td>x^2 + 1</td>
<td>0</td>
<td>x^2 + 1</td>
<td>1</td>
<td>x^2</td>
<td>x</td>
<td>x^2 + x +1</td>
<td>x +1</td>
<td>x^2 + x</td>
</tr>
<tr>
<td>x^2 + x</td>
<td>0</td>
<td>x^2 + x</td>
<td>x^2 + x +1</td>
<td>1</td>
<td>x^2 + 1</td>
<td>x +1</td>
<td>x</td>
<td>x^2</td>
</tr>
<tr>
<td>x^2 + x +1</td>
<td>0</td>
<td>x^2 + x +1</td>
<td>x^2 + 1</td>
<td>x</td>
<td>1</td>
<td>x^2 + x</td>
<td>x^2</td>
<td>x +1</td>
</tr>
</tbody>
</table>
Quadratic Residues:

Solutions of $x = a^2$ in $\mathbb{GF}(q)$

Examples:

$QR(\mathbb{Z}_5) = \{ \pm 1 \}.$

$QR(\mathbb{Z}_7) = \{ 1, 2, -3 \}.$

Homework: If $q \equiv 1 \pmod{4}$, then $-1 \in QR(\mathbb{GF}(q)).$

If $q \equiv 3 \pmod{4}$, then $-1 \notin QR(\mathbb{GF}(q)).$
Paley graph of order $q \equiv 1 \pmod{4}$,

$(\mathbb{GF}(q), \mathbb{QR}(\mathbb{GF}(q)))$
Paley graph of order 5
Paley graph of order 17
Analogue of Ramsey theory for oriented graphs:

T_n: tournament of order n

TT_n: transitive tournament of order n

Theorem. For every k there exists an $f(k)$ such that for $n \geq f(k)$ every T_n contains a copy of TT_k.