Vizing theorem. \(X'(G) \leq \Delta + 1 \) \(\quad (\ X'(G) \geq \Delta \) simple

For multigraphs we have two inequalities:

1. \(X'(G) \leq \Delta + \mu \rightarrow \text{maximum multiplicity} \)

2. \(X'(G) \leq \frac{3}{2} \Delta \text{ external case:} \)

Homework:

Determine \(X'(K_n) \).
Proof.

Main technique: Kempe chain.
We follow a proof by Ehrenfeucht, Fabor, Kierstead.

Stronger claim to prove:

Assum: 1) $d(v) \leq k$

2) for every $u \sim v$, $d(u) \leq k$

3) for at most one $u \sim v$, $d(u) = k$

4) $G - v$ is k-edge-colorable.

Then G is k-edge-colorable.
We follow a proof by Ehrenfeucht, Fabor, Kierstead.

Stronger claim to prove:

Assum: 1) \(d(v) \leq k \)

2) for every \(u \sim v \), \(d(u) \leq k \)

3) for at most one \(u \sim v \), \(d(u) \neq k \)

4) \(G-v \) is \(k \)-edge-colorable.

Then \(G \) is \(k \)-edge-colorable.

\[\Rightarrow \chi'(G) \leq \Delta(G) + 1 \], moreover, if vertices of degree \(\Delta(G) \) induce a forest (no cycle),

then \(\chi(G) = \Delta(G) \)
Proof of the stronger claim by induction on k.

Based on induction: $k=0$ ✓ $k=1$ ✓

Inductive assumption: the statement holds for $k-1$.

Our task: to prove it for k.

Let G be a graph together with a vertex v such that G and v satisfy the four conditions.
Step 1. Add pendant edges so that:

\[d(u_1) = k, \quad d(u_2) = d(u_3) = \ldots = d(u_k) = k - 1. \]
Step2. Color edges of $G-v$ using k colors.
Step 3. Define X_i: vertices U_i missing color i

- $X_1 = \emptyset$
- $X_2 = \{U_2\}$
- $X_3 = \{U_2, U_4\}$
- $X_4 = \{U_2, U_3, U_4, U_5\}$
- $X_5 = \{U_3, U_5\}$
Step 3. Define X_i: vertices U_i, missing color i

$X_1 = \emptyset$

$X_2 = \{u_2\}$

$X_3 = \{u_2, u_4\}$

$X_4 = \{u_1, u_3, u_4, u_5\}$

$X_5 = \{u_3, u_5\}$
We wish to make these sets of nearly equal size.

How to do that?

Observation:

$$\sum_{i=1}^{k} |x_i| = 2k - 1$$
Observation:

$$\sum_{i=1}^{k} |x_i| = 2k - 1$$

Show that at least one $|x_i| = 1$.
Construction of graphs of maximum degree 3 which are not 3-edge-colorable.

A gadget:

In every 3-edge-coloring of the gadget parallel edges of one side receive a same color and the three other pendant edges receive 3 different colors.
Corollary. The graph obtained from $K_{3,3}$ by subdividing one edge is not 3-edge-colorable.

$\chi' = 3$
Homework. The Petersen graph is not 3-edge-colorable.
Edge-coloring \rightarrow vertex-coloring

$G \rightarrow L(G)$

$\Delta = k \rightarrow \Delta \leq 2^{k-2}$

$\Delta=k$ \rightarrow ?

Diagram:
- A 4-vertex graph with a 2-coloring (blue and red).
- A 6-vertex graph with a 3-coloring (blue, red, green).
Beineke theorem: \(w(L(G)) \leq \chi(L(G)) \leq w(L(G)) + 1 \).

A graph \(H \) is the line graph of a graph \(G \) if and only if it does not have any of the following 9 graphs as a subgraph.
Strengthening Vizing theorem (Kierstead)

If H is a graph with no induced $K_{1,3}$ or K_5^- then $\chi(H) \in \{\omega(G), \omega(G) + 1\}$.

Improving Vizing theorem for bipartite graphs:

Theorem. If G is a bipartite graph, then $\chi(G) = \Delta(G)$

We will prove it using a min-max theorem.
Definition:

\[m(G) : \text{size of maximum matching of } G \]

\[\downarrow \]

A set of edges with no common vertex

\[c(G) : \text{order of a minimum cover of } G \]

\[\downarrow \]

A set vertices that cover all edges

\[c(G) \geq m(G) \]

Theorem. If \(G \) is a bipartite graph, then

\[m(G) = c(G) \]
Example

$C = m = 4$
Lemma. If \(G \) is a bipartite graph with at least one edge, then it has a vertex \(u \) which belongs to every maximum matching.

Proof. In fact we prove that for every edge \(uv \) one of \(u \) or \(v \) satisfies the condition of the lemma.

Toward a contradiction, suppose for an edge \(uv \) there are matchings \(M_u \) and \(M_v \), each of maximum size where \(M_u \) misses the vertex \(u \) and \(M_v \) misses the vertex \(v \).
Consider the subgraph induced by $m_u \cup m_v$.

Let P be the connected component of this subgraph that contains the vertex u.
Claim 1. P is a path (not a cycle).

Claim 2. P starts with a red edge and ends with a green one.

Claim 3. The vertex V does not belong to P.

Because G is bipartite, last vertex of P is in the same part as u, but v is in the other part.
In P switch red and green.
Theorem. If G is a bipartite graph, then $m(G) = c(G)$

Proof. By induction on $m(G)$.

If $m(G)=0$ then \checkmark

Also if $m(G)=1$ then \checkmark

Assume that the claim is valid for $m(G) \leq k-1$ and let G be a bipartite graph with $m(G) = k$.
Theorem. If G is a bipartite graph, then $m(G) = c(G)$

Let u be a vertex which is in every maximum matching. Consider $G - u$.
Corollary. If G is a k-regular bipartite graph, then $\chi'(G) = k$
Corollary. For every bipartite graph G we have

$$X'(G) = \Delta(G)$$
Corollary. Line graph of every bipartite graph G satisfies:

$$X(L(G)) = W(L(G))$$

Valid for every induced subgraph of $L(G)$
Perfect graph: A graph G where every induced subgraph H satisfies $\chi(H) = \omega(H)$.
Homework.

1. Show that for $k \geq 2$ the odd cycle C_{2k+1}
 and its complement are not perfect.

2*. Show that there are graphs with
 $\omega(G) = 2$ and $\chi(G) = k$ (for every k).

3*. Show that for every g and k there exists
 a graph G which has no cycle of length smaller
 than g and has chromatic number k.