Ramsey theory

Simple example:

Given any set of 6 people either there are 3 among them such that everyone knows everyone else, or there are 3 among them such that no one knows the other two.

In this statement 6 can be replaced with any integer larger than 6 but it cannot be replaced by 5.
Example of 5 people not satisfying the condition
In language of graphs

A 2-edge-colored graph: each edge is either Red or Blue (this coloring is not proper coloring).

Given a 2-edge-colored complete graph K_n and integers p & q what we are interested in is:

- either p vertices where every edge is Red
- or q vertices where every edge is Blue
Ramsey's Theorem

Given any two positive integers P & q there exists an integer $R(P, q)$ such that for $n \geq R(P, q)$ every 2-edge-colored contains either a Red K_P or Blue K_q.

Definition. The smallest possible choice in this theorem for $R(P, q)$ is called Ramsey number of P and q.
Examples.

- \(R(p, 2) = p \)

- \(R(3, 3) = 6 \)
Proof.

We have \(R(P, 2) = R(2, P) = P \).

For the other values of \(P \& q \) we apply induction on \(P+q \), taking \(P=q=2 \) as the base of induction \(R(2, 2)=4 \).

Thus we assume that \(R(P,q) \) exists whenever \(P+q \leq K \) and consider a pair of \(P \& q \) with \(P+q = K+1 \).
Proof.

We have \(R(P, 2) = R(2, P) = P \).

For the other values of \(P \& Q \) we apply induction on \(P + Q \), taking \(P = Q = 2 \) as the base of induction \(R(2, 2) = 4 \).

Thus we assume that \(R(P, Q) \) exists whenever \(P + Q \leq K \) and consider a pair of \(P \& Q \) with \(P + Q = K + 1 \).

Thus \(R(P, Q) \leq R(P, Q-1) + R(P-1, Q) \).
Generalizations:

H_k^n: k-uniform complete hypergraph on n vertices

Vertices: an n-set (e.g. $\{1, 2, \ldots, n\} = [n]$)

Hyper edge set: all k-subsets of $[n]$, $\binom{[n]}{k}$

L-edge-colored k-uniform complete hypergraph:

each hyperedge is assigned one of the L colors.

Ramsey’s theorem: Given integers k, r_1, r_2, \ldots, r_l with $k \geq 2$, $r_1, r_2, \ldots, r_l \geq k$,

there exists an integer $f(K, r_1, r_2, \ldots, r_l)$ such that

for $n \geq f(K, r_1, r_2, \ldots, r_l)$ in any L-edge-colored k-uniform on n vertices

hypergraph there exists an index i for which we have:

an r_i-subset of vertices which induces a k-uniform hypergraph all whose edges are colored with the i^{th} color.
Infinite Ramesy theory

Given.
- An infinite set A
- A positive integer k (k-subsets to be considered)
- A set of l colors (1, 2, ..., l)
- A coloring φ of the k-subset of A

Conclusion.
An infinite subset A' of A where all k-subsets have a same color.
König's Lemma:

In every locally finite, connected, infinite tree there exists an infinite path.
Extremely difficult question:

Determine $R(p,q)$ or $R(r_1, r_2, \ldots, r_k)$ in general.

What is known:

- $R(3, 3) = 6$
- $R(4, 4) = 18$
- $R(3, 4) = 9$
- $R(4, 5) = 25$
- $R(3, 5) = 14$
- $R(3, 6) = 18$
- $R(3, 10) \in \{40, 41, 42, 43\}$

$R(3, t)$ is of order $\frac{t^2}{\log t}$

Every triangle-free graph on n vertices has an independent set of order $\Theta(\sqrt{n \log n})$
Most special cases that are open:

\[43 \leq R(5,5) \leq 48 \]

\[102 \leq R(6,6) \leq 165 \]
Best upper bound:

\[R(p, q) \leq R(p, q-1) + R(p-1, q) \]

\[\binom{k+l}{k} = \binom{k+l-1}{k} + \binom{k-1+l}{l} \]

\[\rightarrow R(p, q) \leq \binom{p+q-2}{q-1} \]

\[\Rightarrow R(p, p) \leq (1 + o(1)) \frac{4^{s-1}}{\sqrt{\pi s}}. \]
Best lower bound: K_n

total number of 2-edge-colorings?
Best lower bound:

\[K_n \]

\[K_p \]

total number of 2-edge-colorings?

total number of 2-edge-colorings where a given \(K_p \) is monochromatic?

\[\Rightarrow \text{if } \binom{n}{p} < 2^{p/2} \text{, then there exist an edge-coloring without a monochromatic } K_p. \]

\[\Rightarrow R(p, p) \geq (1 + o(1)) \frac{\sqrt{2}}{e} \cdot 2^{p/2} \]
Lower bounds by (algebraic) constructions:

\(\Gamma \): an additive group

\(S \): a subset of \(\Gamma \), normally assumed to satisfy \(x \in S \iff -x \in S \).

Cayley graph \((\Gamma, S)\)

- vertex set: elements of
- edge set: \(x-y \iff x-y \in S \)
Examples

\[G = (\mathbb{Z}_8, \{ \pm 3, 4 \}). \]

\begin{itemize}
 \item \text{C}(8,3)
 \item \text{V}_8
 \item Möbius
\end{itemize}

Other names: Wagner graph

(in classification of \(K_5 \)-minor-free graphs)
Examples
Field \((F,+,\cdot)\)

\((F,+):\) an additive group with 0 as identity
\((F_0,\cdot):\) a multiplicative group with 1 as identity.

Both are commutative and, moreover, \(a(b+c)=ab+ac\)

Finite Field: a Field where \(F\) is a finite set.
Field \((F,+,:)\)

\((F,+):\) an additive group with 0 as identity

\((F\cdot 0,:):\) a multiplicative group with 1 as identity.

Both are commutative and, moreover, \(a(b+c)=ab+ac\)

Finite Field: a Field where \(F\) is a finite set.

Examples: \(\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_5, \mathbb{Z}_6, \mathbb{Z}_7, \mathbb{Z}_8, \mathbb{Z}_9\)?

\(\mathbb{Z}_2 \times \mathbb{Z}_2\)?
$GF(4)$: Field on 4 elements

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Golios theory A finite field of order \(q \) exists if and only if
\[q = p^n \] for a prime number \(p \).
Golios theory: A finite field of order q exists if and only if $q = p^n$ for a prime number p.

Question: How to build $GF(9)$?

Note: Any two finite fields of a same order are isomorphic.
For $n=1$, i.e. $q=p$, $(\mathbb{Z}_p,+,-,\times)$ is the finite field of order p.

For $n \geq 2$ we consider a polynomial $f(x)$ of degree n whose coefficients are from \mathbb{Z}_p, with the property that it is irreducible on $\mathbb{Z}_p[X]$.

\[f(x) \neq q(x)h(x) \]

Homework. There exists such a polynomial for every $n \geq 2$.

Theorem. $\mathbb{Z}_p[x]/f(x)$ is the field of order p^n.
Examples

In $GF(2)$ the polynomial $f(x) = x^3 + x + 1$ is irreducible.

To build $GF(8)$ we take $x^3 + x + 1$

(that means each time you see an x^3 you may replace it with $x + 1$)

coefficient of polynomials come from $GF(2)$, thus $0, 1$, and, therefore, all coefficient are 1 in this example.
Examples

In GF(2) the polynomial \(f(x) = x^n + x^1 \) is irreducible.

To build GF(2^3) we take \(x^3 + x + 1 \)

(that means each time you see an \(x^3 \) you may replace it with \(x + 1 \))

coefficient of polynomials come from GF(2), thus 0, 1; and, therefore,

all coefficient are 1 in this example.

<table>
<thead>
<tr>
<th>.</th>
<th>0</th>
<th>1</th>
<th>x</th>
<th>x+1</th>
<th>x^2</th>
<th>x^2+1</th>
<th>x^2+x</th>
<th>x^2+x+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x+1</td>
<td>x^2</td>
<td>x^2+1</td>
<td>x^2+x</td>
<td>x^2+x+1</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>x</td>
<td>x^2</td>
<td>x^2+x</td>
<td>x+1</td>
<td>1</td>
<td>x^2+x+1</td>
<td>x^2+1</td>
</tr>
<tr>
<td>x+1</td>
<td>0</td>
<td>x+1</td>
<td>x^2+x</td>
<td>x^2+1</td>
<td>x^2+x+1</td>
<td>x^2</td>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>x^2</td>
<td>0</td>
<td>x^2</td>
<td>x+1</td>
<td>x^2+x+1</td>
<td>x^2+x</td>
<td>x</td>
<td>x^2+1</td>
<td>1</td>
</tr>
<tr>
<td>x^2+1</td>
<td>0</td>
<td>x^2+1</td>
<td>1</td>
<td>x^2</td>
<td>x</td>
<td>x^2+x+1</td>
<td>x+1</td>
<td>x^2+x</td>
</tr>
<tr>
<td>x^2+x</td>
<td>0</td>
<td>x^2+x</td>
<td>x^2+x+1</td>
<td>1</td>
<td>x^2+1</td>
<td>x+1</td>
<td>x</td>
<td>x^2</td>
</tr>
<tr>
<td>x^2+x+1</td>
<td>0</td>
<td>x^2+x+1</td>
<td>x^2+1</td>
<td>x</td>
<td>1</td>
<td>x^2+x</td>
<td>x^2</td>
<td>x+1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x +1</td>
<td>x²</td>
<td>x² + 1</td>
<td>x² + x</td>
<td>x² + x +1</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x +1</td>
<td>x²</td>
<td>x² + 1</td>
<td>x² + x</td>
<td>x² + x +1</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>x</td>
<td>x²</td>
<td>x² + x</td>
<td>x +1</td>
<td>1</td>
<td>x² + x +1</td>
<td>x² + 1</td>
</tr>
<tr>
<td>x +1</td>
<td>0</td>
<td>x +1</td>
<td>x² + x</td>
<td>x² + 1</td>
<td>x² + x +1</td>
<td>x²</td>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>x²</td>
<td>0</td>
<td>x²</td>
<td>x +1</td>
<td>x² + x +1</td>
<td>x² + x</td>
<td>x</td>
<td>x² + 1</td>
<td>1</td>
</tr>
<tr>
<td>x² + 1</td>
<td>0</td>
<td>x² + 1</td>
<td>1</td>
<td>x²</td>
<td>x</td>
<td>x² + x +1</td>
<td>x +1</td>
<td>x² + x</td>
</tr>
<tr>
<td>x² + x</td>
<td>0</td>
<td>x² + x</td>
<td>x² + x +1</td>
<td>1</td>
<td>x² + 1</td>
<td>x +1</td>
<td>x</td>
<td>x²</td>
</tr>
<tr>
<td>x² + x +1</td>
<td>0</td>
<td>x² + x +1</td>
<td>x² + 1</td>
<td>x</td>
<td>1</td>
<td>x² + x</td>
<td>x²</td>
<td>x +1</td>
</tr>
</tbody>
</table>
Quadratic Residues:

Solutions of \(x = a^2 \) in \(\mathbb{GF}(q) \)

Examples: \(QR(\mathbb{Z}_5) = \{ \pm 1 \} \)
\(QR(\mathbb{Z}_7) = \{ 1, 2, -3 \} \)

Homework: If \(q \equiv 1 \pmod{4} \), then \(-1 \in QR(\mathbb{GF}(q)) \).

If \(q \equiv 3 \pmod{4} \), then \(-1 \not\in QR(\mathbb{GF}(q)) \).
Paley graph of order $q \equiv 1 \pmod{4}$,

$(\mathbb{F}_q, \mathcal{P}(\mathbb{F}_q))$
Paley graph of order 5
Paley graph of order 17
Analogue of Ramsey theory for oriented graphs:

T_n: tournament of order n

TT_n: transitive tournament of order n

Theorem. For every k there exists an $f(k)$ such that for $n \geq f(k)$ every T_n contains a copy of TT_k.