Multiplicative graphs

Xuding Zhu

Zhejiang Normal University

Outline

A graph K is strongly multiplicative if for any connected graphs G and H, the following holds:

A graph K is strongly multiplicative if for any connected graphs G and H, the following holds:

For any odd cycle C, D in G and in H, respectively,

A graph K is strongly multiplicative if for any connected graphs G and H, the following holds:

For any odd cycle C, D in G and in H, respectively,

 $(\mathcal{C} \times \mathcal{H}) \cup (\mathcal{G} \times \mathcal{C}') \rightarrow \mathcal{K} \Rightarrow \mathcal{G} \rightarrow \mathcal{K} \text{ or } \mathcal{H} \rightarrow \mathcal{K}.$

A graph K is strongly multiplicative if for any connected graphs G and H, the following holds:

For any odd cycle C, D in G and in H, respectively,

 $(\mathcal{C} \times \mathcal{H}) \cup (\mathcal{G} \times \mathcal{C}') \rightarrow \mathcal{K} \Rightarrow \mathcal{G} \rightarrow \mathcal{K} \text{ or } \mathcal{H} \rightarrow \mathcal{K}.$

All known multiplicative graphs are strongly multiplicative.

A graph K is strongly multiplicative if for any connected graphs G and H, the following holds:

For any odd cycle C, D in G and in H, respectively,

 $(\mathcal{C} \times \mathcal{H}) \cup (\mathcal{G} \times \mathcal{C}') \rightarrow \mathcal{K} \Rightarrow \mathcal{G} \rightarrow \mathcal{K} \text{ or } \mathcal{H} \rightarrow \mathcal{K}.$

All known multiplicative graphs are strongly multiplicative.

Theorem

Odd cycles are strongly multiplicative.

A graph K is strongly multiplicative if for any connected graphs G and H, the following holds:

For any odd cycle C, D in G and in H, respectively,

 $(\mathcal{C} \times \mathcal{H}) \cup (\mathcal{G} \times \mathcal{C}') \rightarrow \mathcal{K} \Rightarrow \mathcal{G} \rightarrow \mathcal{K} \text{ or } \mathcal{H} \rightarrow \mathcal{K}.$

All known multiplicative graphs are strongly multiplicative.

Theorem

Odd cycles are strongly multiplicative.

In particular, K₃ is multiplicative. [El-Zahar, Sauer, 1985]

Assume *K* is an odd cycle.

Assume *K* is an odd cycle. $C = (v_1, v_2, \dots, v_p)$ is a cycle.

Assume *K* is an odd cycle. $C = (v_1, v_2, ..., v_p)$ is a cycle. $f : V(C) \rightarrow V(K)$ (not necessarily a homomorphism).

Assume *K* is an odd cycle. $C = (v_1, v_2, ..., v_p)$ is a cycle. $f : V(C) \rightarrow V(K)$ (not necessarily a homomorphism).

- A fixed point of f is a vertex v_i such that $f(v_{i-1}), f(v_i), f(v_{i+1})$ are three consecutive vertices of K.
- *f* is odd or even if *f* has an odd number or an even number of fixed points.

Odd cycles are multiplicative

Assume *G*, *H* are connected graphs, *C*, *D* are odd cycles of *G*, *H*, respectively. $f: (G \times D) \cup (C \times H) \rightarrow K$ is a homomorphism. We need to show that $G \rightarrow K$ or $H \rightarrow K$.

Definition

For $v \in V(D)$, $f_v : V(G) \rightarrow V(K)$ is defined as $f_v(x) = f(x, v)$.

Odd cycles are multiplicative

Assume *G*, *H* are connected graphs, *C*, *D* are odd cycles of *G*, *H*, respectively. $f: (G \times D) \cup (C \times H) \rightarrow K$ is a homomorphism. We need to show that $G \rightarrow K$ or $H \rightarrow K$.

Definition

For $v \in V(D)$, $f_v : V(G) \rightarrow V(K)$ is defined as $f_v(x) = f(x, v)$.

For $v \in V(H)$,

$$f_{v}: V(C) \rightarrow V(K).$$

Odd cycles are multiplicative

Assume *G*, *H* are connected graphs, *C*, *D* are odd cycles of *G*, *H*, respectively. $f: (G \times D) \cup (C \times H) \rightarrow K$ is a homomorphism. We need to show that $G \rightarrow K$ or $H \rightarrow K$.

Definition

For $v \in V(D)$, $f_v : V(G) \rightarrow V(K)$ is defined as $f_v(x) = f(x, v)$.

For $v \in V(H)$,

$$f_{\mathcal{V}}: \mathcal{V}(\mathcal{C}) \to \mathcal{V}(\mathcal{K}).$$

For $u \in V(G)$,

 $f_u: V(D) \to V(K).$

Observation

Assume $C = (v_1, v_2, \dots, v_p)$. For $v \in V(H)$,

 $f_{v}(v_{i}), f_{v}(v_{i+2})$ have a common neighbor in *K*.

Observation

Assume $C = (v_1, v_2, \dots, v_p)$. For $v \in V(H)$,

 $f_{v}(v_{i}), f_{v}(v_{i+2})$ have a common neighbor in *K*.

Let $vv' \in E(H)$, then $f_{v'}(v_{i+1})$ is a common neighbor of $f_v(v_i), f_v(v_{i+2})$.

Let $vv' \in E(H)$, then $f_{v'}(v_{i+1})$ is a common neighbor of $f_v(v_i), f_v(v_{i+2})$.

Because $(v, v_i)(v', v_{i+1})$, $(v, v_{i+2})(v', v_{i+1})$) are edges of $C \times H$.

Let $vv' \in E(H)$, then $f_{v'}(v_{i+1})$ is a common neighbor of $f_v(v_i), f_v(v_{i+2})$.

Because $(v, v_i)(v', v_{i+1})), (v, v_{i+2})(v', v_{i+1}))$ are edges of $C \times H$.

So either

$$f_{v}(v_{i})=f_{v}(v_{i+2})$$

or

 $f_V(v_i), f_V(v_{i+2})$ have distance 2 (if K is not a triangle).

- vv' ∈ E(H) implies that the restrictions of f_v and f_{v'} to C have the same parity,
- For $v \in V(D)$, $u \in V(C)$, f_u , f_v have different parities.

```
Assume for v \in V(D) and u \in V(C),
```

- f_u is odd.
- f_v is even.

Since *G* and *H* are connected, for any odd cycle *C'* of *G*, for any vertex *u* of *D*, the restriction of f_u to *C'* is odd, for any vertex *v* of *C*, for any cycle *D'* of *H*, the restriction of f_v to *D'* is even.

Let *u* be a vertex of *D* and let

$$X = \{ v \in V(G) : \exists vv' \in E(G), f(v, u)f(v', u) \notin E(K) \}.$$

Lemma

X contains no odd cycle.

Assume X contains an odd cycle C'.

Let *u* be a vertex of *D* and let

$$X = \{ v \in V(G) : \exists vv' \in E(G), f(v, u)f(v', u) \notin E(K) \}.$$

Lemma

X contains no odd cycle.

Assume X contains an odd cycle C'.

 $f|_u$ to C' is odd $\Rightarrow \exists v_{i-1}, v_i, v_{i+1} \in C'$,

Let *u* be a vertex of *D* and let

$$X = \{ v \in V(G) : \exists vv' \in E(G), f(v, u)f(v', u) \notin E(K) \}.$$

Lemma

X contains no odd cycle.

Assume X contains an odd cycle C'.

$$f|_u$$
 to C' is odd $\Rightarrow \exists v_{i-1}, v_i, v_{i+1} \in C'$,

 $f(v_{i-1}, u), f(v_i, u), f(v_{i+1}, u)$ are three consecutive vertices of *K*.

```
(v_i, u') adjacent to both (v_{i-1}, u) and (v_{i+1}, u)
```

 (v_i, u') adjacent to both (v_{i-1}, u) and (v_{i+1}, u)

 \Rightarrow *f*(*v_i*, *u'*) is adjacent to both *f*(*v_{i-1}*, *u*), *f*(*v_{i+1}*, *u*).

 (v_i, u') adjacent to both (v_{i-1}, u) and (v_{i+1}, u)

 \Rightarrow *f*(*v_i*, *u'*) is adjacent to both *f*(*v_{i-1}*, *u*), *f*(*v_{i+1}*, *u*).

This implies that $f(v_i, u') = f(v_i, u)$.

 (v_i, u') adjacent to both (v_{i-1}, u) and (v_{i+1}, u)

 \Rightarrow *f*(*v_i*, *u'*) is adjacent to both *f*(*v_{i-1}*, *u*), *f*(*v_{i+1}*, *u*).

This implies that $f(v_i, u') = f(v_i, u)$.

As $v_i \in X$, there is an edge $v_i v'_i \in E(G)$, such that $f(v_i, u)f(v'_i, u) \notin E(K)$.

 (v_i, u') adjacent to both (v_{i-1}, u) and (v_{i+1}, u)

 \Rightarrow *f*(*v_i*, *u'*) is adjacent to both *f*(*v_{i-1}*, *u*), *f*(*v_{i+1}*, *u*).

This implies that $f(v_i, u') = f(v_i, u)$.

As $v_i \in X$, there is an edge $v_i v'_i \in E(G)$, such that $f(v_i, u)f(v'_i, u) \notin E(K)$.

So $f(v_i, u')f(v_i', u) \notin E(K)$, but $(v_i, u')(v_i', u) \in E(G \times D)$.

Let

$$h(x) = \begin{cases} f(x, u), & \text{if } x \notin X_1 \ ,\\ f(x, u'), & \text{if } x \in X_1. \end{cases}$$

Let

$$h(x) = \begin{cases} f(x, u), & \text{if } x \notin X_1, \\ f(x, u'), & \text{if } x \in X_1. \end{cases}$$

If $xx' \in E(G)$, then either $h(x) = f(x, u) \neq f(x', u') = h(x')$, or $h(x) = f(x, u), h(x') = f(x', u), x \notin X$ and hence $f(x, u)f(x', u) \in E(K)$.

Let

$$h(x) = \begin{cases} f(x, u), & \text{if } x \notin X_1, \\ f(x, u'), & \text{if } x \in X_1. \end{cases}$$

If $xx' \in E(G)$, then either $h(x) = f(x, u) \neq f(x', u') = h(x')$, or $h(x) = f(x, u), h(x') = f(x', u), x \notin X$ and hence $f(x, u)f(x', u) \in E(K)$.

So h is a homomorphism from G to K. Therefore K is strongly multiplicative.

Theorem (Tardif (2005))

For any positive integers $2q \le p < 4q$, $K_{p;q}$ is multiplicative.
Graph operations

• $\Gamma_{2k+1}(G)$ (also denoted by $P_{2k+1}(G)$):

- Vertex set V(G).
- Join two vertices of G by an edge if they are connected by a walk of length 2k + 1.

• Vertices:

 $\{(A_0,A_1,\ldots,A_k):A_i\subseteq V(G),|A_0|=1,A_1\neq \emptyset,A_i\bowtie A_{i+1}\}.$

 $A_i \subseteq B_{i+1}, B_i \subseteq A_{i+1}, A_k \bowtie B_k.$

For any graphs G and H, for any odd integer k, the following hold:

For any graphs G and H, for any odd integer k, the following hold:

• $G \to H$ implies $\Gamma_k(G) \to \Gamma_k(H)$.

For any graphs G and H, for any odd integer k, the following hold:

• $G \to H$ implies $\Gamma_k(G) \to \Gamma_k(H)$.

For any graphs G and H, for any odd integer k, the following hold:

• $G \to H$ implies $\Gamma_k(G) \to \Gamma_k(H)$.

For any graphs G and H, for any odd integer k, the following hold:

$$2 \ \ \Gamma_k(G \times H) = \Gamma_k(G) \times \Gamma_k(H).$$

- **(**) $\Gamma_k(G) \to H$ if and only if $G \to \Omega_k(H)$.

For any graphs G and H, for any odd integer k, the following hold:

- **(**) $\Gamma_k(G) \to H$ if and only if $G \to \Omega_k(H)$.
- **5** $G \to H$ if and only if $\Omega_k(G) \to \Omega_k(H)$.

For any graphs G and H, for any odd integer k, the following hold:

•
$$\Gamma_k(G) \to H$$
 if and only if $G \to \Omega_k(H)$.

5
$$G \to H$$
 if and only if $\Omega_k(G) \to \Omega_k(H)$.

•
$$\Omega_k(G \times H) \rightarrow \Omega_k(G) \times \Omega_k(H)$$
 and $\Omega_k(G) \times \Omega_k(H) \rightarrow \Omega_k(G \times H).$

For any graph K and odd integer k,

For any graph K and odd integer k, K is strongly multiplicative if and only if $\Omega_k(K)$ is strongly multiplicative.

Assume *K* is strongly multiplicative.

and C, D are odd cycles in G, H, respectively.

and C, D are odd cycles in G, H, respectively.

Assume $(G \times D) \cup (C \times H) \rightarrow \Omega_k(K)$.

and C, D are odd cycles in G, H, respectively.

Assume $(G \times D) \cup (C \times H) \rightarrow \Omega_k(K)$.

 $(\Gamma_k(G \times D)) \cup (\Gamma_k(C \times H))$ is a subgraph of $\Gamma_k((G \times D) \cup (C \times H))$.

and C, D are odd cycles in G, H, respectively.

Assume $(G \times D) \cup (C \times H) \rightarrow \Omega_k(K)$.

 $(\Gamma_k(G \times D)) \cup (\Gamma_k(C \times H))$ is a subgraph of $\Gamma_k((G \times D) \cup (C \times H))$.

 $\Gamma_k(G \times D) = \Gamma_k(G) \times \Gamma_k(D)$ contains $\Gamma_k(G) \times D$ as a subgraph, and $(\Gamma_k(C \times H)) = \Gamma_k(C) \times \Gamma_k(H)$ contains $C \times \Gamma_k(H)$ as a subgraph,

and C, D are odd cycles in G, H, respectively.

Assume $(G \times D) \cup (C \times H) \rightarrow \Omega_k(K)$.

 $(\Gamma_k(G \times D)) \cup (\Gamma_k(C \times H))$ is a subgraph of $\Gamma_k((G \times D) \cup (C \times H))$.

 $\Gamma_k(G \times D) = \Gamma_k(G) \times \Gamma_k(D)$ contains $\Gamma_k(G) \times D$ as a subgraph, and $(\Gamma_k(C \times H)) = \Gamma_k(C) \times \Gamma_k(H)$ contains $C \times \Gamma_k(H)$ as a subgraph,

$$\Rightarrow G \rightarrow \Omega_k(K) \text{ or } H \rightarrow \Omega_k(K).$$

$$\Rightarrow G \rightarrow \Omega_k(K) \text{ or } H \rightarrow \Omega_k(K).$$

So $\Omega_k(K)$ is strongly multiplicative.

$$\Rightarrow G \rightarrow \Omega_k(K) \text{ or } H \rightarrow \Omega_k(K).$$

So $\Omega_k(K)$ is strongly multiplicative.

 $\Omega_k(K)$ is strongly multiplicative implies that *K* is strongly multiplicative.

Lemma (Tardif)

For p/q < 12/5,

Lemma (Tardif)

For p/q < 12/5, $\Omega_3(\Gamma_3(K_{p;q}))$ and $K_{p;q}$ are homomorphically equivalent.

Lemma (Tardif)

For p/q < 12/5, $\Omega_3(\Gamma_3(K_{p;q}))$ and $K_{p;q}$ are homomorphically equivalent.

Thus for p/q < 12/5, if $K_{p;q}$ is strongly mulplticative, then $\Gamma_3(K_{p;q}) = K_{k;3q-p}$ is strongly multplicative.

$$C_{2k+1} = K_{2k+1;k}.$$

$$C_{2k+1} = K_{2k+1;k}.$$

Repeatedly applying Γ_3 operations to C_{2k+1} for $k \ge 3$.

$$C_{2k+1} = K_{2k+1;k}.$$

Repeatedly applying Γ_3 operations to C_{2k+1} for $k \ge 3$.

Obtain a dense sequence

$$P = \{\frac{n+1}{n-(3^i-1)/2} : n \ge 1, 0 \le i \le \log_3 n\}$$

 $K_{p;q}$ are strongly multiplicative for $p/q \in P$.

Theorem (Wrochna (2017))

Square-free graphs are strongly multiplicative.

A very rough sketch:

A very rough sketch:

Assume $\phi : (G \times D) \cup (C \times H) \rightarrow K$ is a homomorphism,

A very rough sketch:

Assume $\phi : (G \times D) \cup (C \times H) \rightarrow K$ is a homomorphism,

where G, H are connected graphs and C, D are odd cycles in G, H, respectively,

A very rough sketch:

Assume $\phi : (G \times D) \cup (C \times H) \rightarrow K$ is a homomorphism,

where G, H are connected graphs and C, D are odd cycles in G, H, respectively,

and K is a square-free graph.

A very rough sketch:

Assume $\phi : (G \times D) \cup (C \times H) \rightarrow K$ is a homomorphism,

where G, H are connected graphs and C, D are odd cycles in G, H, respectively,

and K is a square-free graph.

The graph $(G \times D) \cup (C \times H)$ has many 4-cycles.

A very rough sketch:

Assume $\phi : (G \times D) \cup (C \times H) \rightarrow K$ is a homomorphism,

where G, H are connected graphs and C, D are odd cycles in G, H, respectively,

and K is a square-free graph.

The graph $(G \times D) \cup (C \times H)$ has many 4-cycles.

Then one of the following holds:

- All cycles in *φ*((*G* × *D*) ∪ (*C* × *H*)) winds around a same closed walk *C*^{*} in *K*.
- For u ∈ V(D), under the projection φ_u, all cycles in G are mapped to trivial closed walks in K, i.e., can be reduced to the empty walk by recursively removing backtracking arcs of the form (u, v)(v, u). Or symmetrically, for v ∈ V(C), under the projection φ_v, all cycles in H are mapped to trivial closed walks in K.

If all cycles in $\phi((G \times D) \cup (C \times H))$ winds around a same closed walk C^* in K,
then since C^* is strongly multiplicative,

then since C^* is strongly multiplicative,

we conclude that $G \rightarrow C^* \rightarrow K$ or $H \rightarrow C^* \rightarrow K$.

then since C^* is strongly multiplicative,

we conclude that $G \rightarrow C^* \rightarrow K$ or $H \rightarrow C^* \rightarrow K$.

If for $u \in V(D)$, ϕ_u collapses all cycles in *G* to trivial closed walks in *K*,

then since C^* is strongly multiplicative,

we conclude that $G \rightarrow C^* \rightarrow K$ or $H \rightarrow C^* \rightarrow K$.

If for $u \in V(D)$, ϕ_u collapses all cycles in *G* to trivial closed walks in *K*,

then since C^* is strongly multiplicative,

we conclude that $G \to C^* \to K$ or $H \to C^* \to K$.

If for $u \in V(D)$, ϕ_u collapses all cycles in *G* to trivial closed walks in *K*,

then since C^* is strongly multiplicative,

we conclude that $G \to C^* \to K$ or $H \to C^* \to K$.

If for $u \in V(D)$, ϕ_u collapses all cycles in *G* to trivial closed walks in *K*,

then since C^* is strongly multiplicative,

we conclude that $G \to C^* \to K$ or $H \to C^* \to K$.

If for $u \in V(D)$, ϕ_u collapses all cycles in *G* to trivial closed walks in *K*,

As a consequence of Theorem 11, graphs of girth at least 5 are strongly multiplicative. It was further proved in [?] that if *K* has girth at least 13, then $\Omega_3(\Gamma_3(K))$ and *K* are homorphically equivalent. Then the same argument as above shows that for graphs *K* of girth at least 13, $\Gamma_3(K)$ are strongly multiplicative.

Theorem (Wrochna and Tardif)

If every edge of K is contained in at most one C_4 , then K is strongly multiplicative.