Reminder

signed projective cube of dimension d, SPC(d):

Vertices: Z_2^d

positive edges: xy where $x-Y \in \{e_1, e_2 \dots e_d\}$

negative edges: xy where x-Y = J.

Homework. $SPC(d) \longrightarrow SPC(d-2)$

Conjecture. Given a signed planar graph (G, 6), if $9_{ij}(G, 6) \ge 9_{ij}(SPC(d))$ for every $ij \in \mathbb{Z}_2^2$, then $(G, 6) \longrightarrow SPC(d)$.

d even: SPC(d) can be switched to all edges being -.
d odd: SPC(d) is a signed bipartite graph.

d even: PC(d) bounds the class of planar graphs of odd-girth $\geq d+1$.

d odd: SPC(d) bounds the class of signed bipartite graphs of negative-girth $\geq d+1$.

Notion(s) of perfectness:

PC(2d) is (the?) smallest possible graph of odd-girth 2d+1 which bounds the class of planar graphs of odd-girth at least 2d+1.

SPC(2d-1) is (the?) smallest possible signed bipartite graph of negative girth 2d which bounds the class of signed bipartite planar graphs of negative girth at least 2d.

Notion(s) of perfectness:

Theorem. There exists a planar graph of odd-girth 2d+1 [Naserasr, Sen, with a set W of 2^{2d} vertices such that for Sun] any two vertices u and v in W, identifying u and v would create an odd cycle of length at most 2d-1.

Similar result holds for signed bipartite case.

Construction:

Construction:

Construction:

Final result for d=4 (odd girth 5)

Remarks:

The constructions are of treewidth 3.

Theorem. If G is a graph of treewidth at most 3 [Meirun Chen, Naserasr] and odd-girth at least 2d+1, then $G \longrightarrow PC(2d)$

Note: for treewidth at most 2, the best homomorphism bound and the best clique bound do not match.

 $PC(2k+1) \longrightarrow PC(2k-1)$ \uparrow ?

planar graphs
of odd-girth
at least 2k+1

.... PC(6) \rightarrow PC(4) \rightarrow PC(2)The planar graphs triangle-free planar graphs of odd-girth planar graphs

at least 7

Conjecture. Every planar graph of odd-girth at least 2k+3 maps to K(2k+1, k).

Would imply the best possible bound of $2+\frac{1}{k}$ for the fractional chromatic number of this class.

Would imply the best possible, bound of $2 + \frac{1}{k}$ for the circular chromatic number of this class.

Conjecture. Every planar graph of odd-girth at least 4k-1 maps to M_{2K+1} .

Would imply the best possible; bound of $2 + \frac{2}{2k-1}$ for the circular chromatic number of this class.

Analogous questions are asked for mapping signed bipartite planar graphs to SPC(2d-1).