イロト イボト イヨト イヨト

Э

1/51

Circular Coloring of Signed Graphs

Zhouningxin Wang

Université de Paris

wangzhou4@irif.fr

(A joint work with Reza Naserasr, Xuding Zhu)

March 20, 2021

- Circular coloring of graphs
- Homomorphism of signed graphs
- 2 Circular coloring of signed graphs
 - Circular chromatic number
 - Signed indicators
 - Tight cycle argument
- 3 Results on some classes of signed graphs
 - Signed bipartite planar graphs
 - Signed d-degenerate graphs
 - Signed planar graphs

4 Discussion

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Circular coloring of graphs

Circular coloring of graphs

Given a real number r, a circular r-coloring of a graph G is a mapping $f : V(G) \to C^r$ such that for any edge $uv \in E(G)$,

 $d_{(\mathrm{mod} r)}(f(u), f(v)) \geq 1.$

The circular chromatic number of G is defined as

 $\chi_c(G) = \inf\{r : G \text{ admits a circular } r\text{-coloring}\}.$

Circular coloring of signed graphs

Discussion 0000000

Circular coloring of graphs

Circular coloring of graphs

- A 3-chromatic graph is not 2-colorable, but if its circular chromatic number is near 2, then it is somehow "just barely" not 2-colorable.
- By Grotzsch's theorem, every triangle-free planar graph is 3-colorable. In generalizing this to circular chromatic number, we may ask what threshold on girth is needed to force the circular chromatic number to be at most $2 + \frac{1}{t}$.

Jaeger-Zhang conjecture [C.-Q. Zhang 2002]

Every planar graph of odd-girth 4k + 1 admits a circular $(2 + \frac{1}{k})$ -coloring.

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Homomorphism of signed graphs

Homomorphism of signed graphs

- A signed graph is a graph G = (V, E) together with an assignment $\{+, -\}$ on its edges, denoted by (G, σ) .
- A switching at vertex v is to switch the signs of all the edges incident to this vertex.
- The sign of a closed walk is the product of signs of all the edges of this walk.
- A homomorphism of signed graph (G, σ) to a signed graph (H, π) is a mapping φ from V(G) and E(G) correspondingly to V(H) and E(H) such that the adjacency, the incidence and the signs of the closed walks are preserved.
- If there exists one, we write $(G, \sigma) \rightarrow (H, \pi)$.

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Homomorphism of signed graphs

Homomorphism of signed graphs

- An edge-sign preserving homomorphism of a signed graph (G, σ) to (H, π) is a mapping f : V(G) → V(H) such that for every positive (respectively, negative) edge uv of (G, σ), f(u)f(v) is a positive (respectively, negative) edge of (H, π).
- If there exists one, we write $(G, \sigma) \xrightarrow{s.p.} (H, \pi)$.

Proposition

Given two signed graphs (G, σ) and (H, π) ,

$$(G, \sigma) \to (H, \pi) \Leftrightarrow \exists \sigma' \equiv \sigma, (G, \sigma') \xrightarrow{s.p.} (H, \pi).$$

Circular coloring of signed graphs

Discussion 0000000

Homomorphism of signed graphs

Double Switching Graphs

Given a signed graph (G, σ) on the vertex set $V = \{x_1, \ldots, x_n\}$, the Double Switching Graph of (G, σ) , denoted $DSG(G, \sigma)$, is a signed graph built as follows:

- We have two disjoint copies of V, $V^+ = \{x_1^+, x_2^+, \dots, x_n^+\}$ and $V^- = \{x_1^-, x_2^-, \dots, x_n^-\}$ in $DSG(\mathcal{G}, \sigma)$.
- Each set of vertices V^+ , V^- then induces a copy of (G, σ) .
- Furthermore, a vertex x_i^- connects to vertices in V^+ as it is obtained from a switching on x_i .

Circular coloring of signed graphs

Discussion 0000000

Homomorphism of signed graphs

Double Switching Graphs

Figure: Signed graphs (C_4, e) and $DSG(C_4, e)$

Theorem [R.C. Brewster and T. Graves 2009] Given signed graphs (G, σ) and (H, π) , $(G, \sigma) \rightarrow (H, \pi) \Leftrightarrow (G, \sigma) \xrightarrow{s.p.} \text{DSG}(H, \pi).$

つへで 8/51

- Circular coloring of graphs
- Homomorphism of signed graphs

2 Circular coloring of signed graphs

- Circular chromatic number
- Signed indicators
- Tight cycle argument
- 3 Results on some classes of signed graphs
 - Signed bipartite planar graphs
 - Signed d-degenerate graphs
 - Signed planar graphs

4 Discussion

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Circular chromatic number

Circular coloring of signed graphs

Given a signed graph (G, σ) with no positive loop and a real number r, a circular r-coloring of (G, σ) is a mapping $f: V(G) \to C^r$ such that for each positive edge uv of (G, σ) ,

 $d_{(\mathrm{mod}\ r)}(f(u),f(v)) \geq 1,$

and for each negative edge uv of (G, σ) ,

$$d_{(\mathrm{mod}\ r)}(f(u),\overline{f(v)}) \geq 1.$$

The circular chromatic number of (G, σ) is defined as

 $\chi_{c}(G, \sigma) = \inf\{r \geq 1 : (G, \sigma) \text{ admits a circular } r\text{-coloring}\}.$

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Circular chromatic number

Refinement of 0-free 2k-coloring of signed graphs

Definition [T. Zaslavsky 1982]

Given a signed graph (G, σ) and a positive integer k, a 0-free 2*k*-coloring of (G, σ) is a mapping $f : V(G) \to \{\pm 1, \pm 2, \dots, \pm k\}$ such that for any edge uv of (G, σ) , $f(u) \neq \sigma(uv)f(v)$.

Proposition

Assume (G, σ) is a signed graph and k is a positive integer. Then (G, σ) is 0-free 2k-colorable if and only if (G, σ) is circular 2k-colorable.

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Circular chromatic number

Equivalent definition

Note that for $s,t\in [0,r)$, $d_{(\mathrm{mod}\ r)}(s,t)=\min\{|s-t|,r-|s-t|\}.$

• A circular *r*-coloring of a signed graph (G, σ) is a mapping $f: V(G) \rightarrow [0, r)$ such that for each positive edge uv,

$$1 \leq |f(u) - f(v)| \leq r - 1$$

and for each negative edge uv,

either
$$|f(u) - f(v)| \le \frac{r}{2} - 1$$
 or $|f(u) - f(v)| \ge \frac{r}{2} + 1$.

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><12/51

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Circular chromatic number

Equivalent definition: (p, q)-coloring of signed graphs

For
$$i, j, x \in \{0, 1, \dots, p-1\}$$
, we define
 $d_{(\text{mod } p)}(i, j) = \min\{|i-j|, p-|i-j|\} \text{ and } \bar{x} = x + \frac{p}{2} \pmod{p}.$

• Assume p is an even integer and $q \leq \frac{p}{2}$ is a positive integer. A (p,q)-coloring of a signed graph (G,σ) is a mapping $f: V(G) \rightarrow \{0, 1, \dots, p-1\}$ such that for any positive edge uv,

$$d_{(\mathrm{mod}\ p)}(f(u),f(v))\geq q,$$

and for any negative edge uv,

$$d_{(\mathrm{mod}\ p)}(f(u),\overline{f(v)}) \geq q.$$

The circular chromatic number of (G, σ) is

$$\chi_{c}(G,\sigma) = \inf\{\frac{p}{q} : (G,\sigma) \text{ has a } (p,q)\text{-coloring}\}.$$

Discussion 0000000

Circular chromatic number

Signed circular clique

Circular chromatic number of signed graphs are also defined through graph homomorphism.

For integers $p \ge 2q > 0$ such that p is even, the signed circular clique $\mathcal{K}_{p;q}^{s}$ has vertex set $[p] = \{0, 1, \dots, p-1\}$, in which

- ij is a positive edge if $q \le |i j| \le p q$;
- *ij* is a negative edge if $|i-j| \leq \frac{p}{2} q$ or $|i-j| \geq \frac{p}{2} + q$.

Circular coloring of signed graphs

Discussion 0000000

Circular chromatic number

Signed circular clique

Lemma

Given a signed graph (G, σ) and a positive even integer p, a positive integer q with $p \ge 2q$, (G, σ) has a (p, q)-coloring if and only if $(G, \sigma) \xrightarrow{s.p.} K_{p;q}^s$.

Hence the circular chromatic number of (G, σ) is

$$\chi_c(G,\sigma) = \inf\{\frac{p}{q} : p \text{ is even and } (G,\sigma) \xrightarrow{s.p.} K_{p;q}^s \}.$$

Lemma

If
$$(G, \sigma) \xrightarrow{s.\rho.} (H, \pi)$$
, then $\chi_c(G, \sigma) \leq \chi_c(H, \pi)$.

Lemma

Given even positive integers p, p', if $\frac{p}{q} \leq \frac{p'}{q'}$, then $K_{p;q}^s \xrightarrow{s.p.} K_{p';q'}^s$.

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Circular chromatic number

Signed circular clique

Let $\hat{K}_{p;q}^{s}$ be the signed subgraph of $K_{p;q}^{s}$ induced by vertices $\{0, 1, \dots, \frac{p}{2} - 1\}$. Notice that $K_{p;q}^{s} = \text{DSG}(\hat{K}_{p;q}^{s})$. The circular chromatic number of (G, σ) is also

$$\chi_c(G,\sigma) = \inf\{\frac{p}{q} : p \text{ is even and } (G,\sigma) \to \hat{K}^s_{p;q} \}.$$

Figure: K^s_{8;3}

Circular coloring of signed graphs

Discussion 0000000

Circular chromatic number

Circular chromatic number of cycles

For a non-zero integer ℓ , we denote by C_{ℓ} the cycle of length $|\ell|$ whose sign agrees with the sign of ℓ .

Proposition

$$\chi_c(C_{2k}) = \chi_c(C_{-(2k+1)}) = 2; \ \chi_c(C_{2k+1}) = \frac{2k+1}{k}; \chi_c(C_{-2k}) = \frac{4k}{2k-1}.$$

Observe that the signed graph $\hat{K}^s_{4k;2k-1}$ is obtained from C_{-2k} by adding a negative loop at each vertex.

Circular coloring of signed graphs

Discussion 0000000

Circular chromatic number

C_{2k+1} -coloring and C_{-2k} -coloring

Proposition

- Given a graph $G, G \to C_{2k+1}$ if and only if $\chi_c(G) \leq \frac{2k+1}{k}$;
- Given a signed bipartite graph (G, σ) ,

$$(\mathcal{G},\sigma) o \mathcal{C}_{-2k}$$
 if and only if $\chi_c(\mathcal{G},\sigma) \leq rac{4k}{2k-1}$.

Circular coloring of signed graphs

Discussion 0000000

Signed indicators

Signed indicator

Let G be a graph and let Ω be a signed graph.

- A signed indicator *I* is a triple *I* = (Γ, *u*, *v*) such that Γ is a signed graph and *u*, *v* are two distinct vertices of Γ.
- Replacing e of G with a copy of \mathcal{I} is the following operation: Take the disjoint union of Ω and \mathcal{I} , delete the edge e from Ω , identify x with u and identify y with v.
- Given a signed indicator *I*, we denote by *G*(*I*) the signed graph obtained from *G* by replacing each edge with a copy of *I*.
- Given two signed indicators \mathcal{I}_+ and \mathcal{I}_- , we denote by $\Omega(\mathcal{I}_+, \mathcal{I}_-)$ the signed graph obtained from Ω by replacing each positive edge with a copy of \mathcal{I}_+ and replacing each negative edge with a copy of \mathcal{I}_- .

Discussion 0000000

Signed indicators

Signed indicator

Assume $\mathcal{I} = (\Gamma, u, v)$ is a signed indicator and $r \ge 2$ is a real number.

- For a, b ∈ [0, r), we say the color pair (a, b) is feasible for I (with respect to r) if there is a circular r-coloring φ of Γ such that φ(u) = a and φ(v) = b.
- Define

$$Z(\mathcal{I}, r) = \{b \in [0, \frac{r}{2}] : (0, b) \text{ is feasible for } \mathcal{I} \text{ with respect to } r\}.$$

Lemma

Assume that $\mathcal{I} = (\Gamma, u, v)$ is a signed indicator, $r \ge 2$ is a real number and $Z(\mathcal{I}, r) = [t, \frac{r}{2} - t]$ for some $0 < t < \frac{r}{4}$. Then for any graph G,

$$\chi_c(G)=\frac{\chi_c(G(\mathcal{I}))}{2t}.$$

୍ରର୍ବ 20/51

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Signed indicators

Examples

 If Γ is a positive 2-path connecting u and v, and I = (Γ, u, v), then for any ε, 0 < ε < 1, and r = 4 − 2ε,

$$Z(\mathcal{I},r) = [0,2-2\epsilon] = [0,\frac{r}{2}-\epsilon].$$

• If Γ' is a negative 2-path connecting u and v, and $\mathcal{I}' = (\Gamma', u, v)$, then for any ϵ , $0 < \epsilon < 1$, and $r = 4 - 2\epsilon$,

$$Z(\mathcal{I}',r)=[\epsilon,\frac{r}{2}].$$

If Γ" consists of a negative 2-path and a positive 2-path connecting u and v, and I" = (Γ", u, v), then for any ε, 0 < ε < 1, and r = 4 − 2ε,

$$Z(\mathcal{I}'',r) = [\epsilon, \frac{r}{2} - \epsilon].$$

21/51

Circular coloring of signed graphs

Discussion 0000000

Signed indicators

Indicator construction S(G)

Given a graph G, a signed graph S(G) is built as follows.

Figure: $S(K_3)$

Figure: $S(C_5)$

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Signed indicators

Signed indicator

Lemma

Assume that \mathcal{I}_+ and \mathcal{I}_- are indicators, $r \geq 2$ is a real number and

$$Z(\mathcal{I}_+, r) = [t, \frac{r}{2}], Z(\mathcal{I}_-, r) = [0, \frac{r}{2} - t]$$

for some $0 < t < \frac{r}{2}$. Then for any signed graph Ω ,

$$\chi_c(\Omega) = \frac{\chi_c(\Omega(\mathcal{I}_+, \mathcal{I}_-))}{t}$$

<ロト < 回 ト < 巨 ト < 巨 ト ミ の < () 23/51

Circular coloring of signed graphs

Discussion 0000000

Tight cycle argument

Tight cycle argument

Assume (G, σ) is a signed graph and $\phi : V(G) \rightarrow [0, r)$ is a circular *r*-coloring of (G, σ) . The partial orientation $D = D_{\phi}(G, \sigma)$ of *G* with respect to a circular *r*-coloring ϕ is defined as follows: (u, v) is an arc of *D* if and only if one of the following holds:

- uv is a positive edge and $(\phi(v) \phi(u)) (\text{mod } r) = 1$.
- uv is a negative edge and $(\overline{\phi(v)} \phi(u))(\text{mod } r) = 1$.

Arcs in $D_{\phi}(G, \sigma)$ are called tight arcs of (G, σ) with respect to ϕ . A directed cycle in $D_{\phi}(G, \sigma)$ is called a tight cycle with respect to ϕ .

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Tight cycle argument

Tight cycle argument

Lemma

Let (G, σ) be a signed graph and let ϕ be a circular *r*-coloring of (G, σ) . If $D_{\phi}(G, \sigma)$ is acyclic, then there exists an $r_0 \lneq r$ such that (G, σ) admits an r_0 -circular coloring.

Notice that assume $D_{\phi}(G, \sigma)$ is acyclic and among all such ϕ , $D_{\phi}(G, \sigma)$ has minimum number of arcs, then $D_{\phi}(G, \sigma)$ has no arc.

Lemma

Given a signed graph (G, σ) , $\chi_c(G, \sigma) = r$ if and only if (G, σ) is circular *r*-colorable and every circular *r*-coloring ϕ of (G, σ) has a tight cycle.

Circular coloring of signed graphs

Discussion 0000000

Tight cycle argument

Tight cycle argument

Proposition

Any signed graph (G, σ) , which is not a forest, has a cycle with s positive edges and t negative edges such that

$$\chi_c(G,\sigma) = \frac{2(s+t)}{2a+t}$$

for some non-negative integer a.

Corollary

Given a signed graph (G, σ) on *n* vertices, $\chi_c(G, \sigma) = \frac{p}{q}$ for some $p \leq 2n$ and *q*.

- Circular coloring of graphs
- Homomorphism of signed graphs
- 2 Circular coloring of signed graphs
 - Circular chromatic number
 - Signed indicators
 - Tight cycle argument
- 8 Results on some classes of signed graphs
 - Signed bipartite planar graphs
 - Signed d-degenerate graphs
 - Signed planar graphs

Results on some classes of signed graphs

Discussion 0000000

Classes of signed graphs

Given a class \mathcal{C} of signed graphs,

$$\chi_{c}(\mathcal{C}) = \sup\{\chi_{c}(G,\sigma) \mid (G,\sigma) \in \mathcal{C}\}.$$

- \mathcal{SBP} the class of signed bipartite planar simple graphs,
- SD_d the class of signed *d*-degenerate simple graphs,
- \mathcal{SP} the class of signed planar simple graphs.

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Signed bipartite planar graphs

Signed bipartite planar graphs

Let Γ_1 be a positive 2-path connecting u_1 and v_1 . For $i \geq 2$,

29/51

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Signed bipartite planar graphs

Signed bipartite planar graphs

Figure: Γ_4

Figure: Γ_5

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Signed bipartite planar graphs

Results on signed bipartite planar graphs with girth condition

- χ_c(SBP₆) ≤ 3. (Corollary of a result that every signed bipartite planar graph of negative girth 6 admits a homomorphism to (K_{3,3}, M) [R. Naserasr and Z. Wang 2021+])
- $\chi_c(SBP_8) \leq \frac{8}{3}$. (Corollary of a result that C_{-4} -critical signed graph has density $|E(G)| \geq \frac{3|V(G)|-2}{4}$ [R. Naserasr, L-A. Pham and Z. Wang 2020+])

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Signed d-degenerate graphs

Signed *d*-degenerate graphs

Proposition

For any positive integer *d*,
$$\chi_c(\mathcal{SD}_d) = 2\lfloor \frac{d}{2} \rfloor + 2$$
.

Sketch of the proof:

• First we show that every $(G, \sigma) \in SD_d$ admits a circular $(2\lfloor \frac{d}{2} \rfloor + 2)$ -coloring.

For the tightness,

- For odd integer d, we consider the signed complete graphs $(K_{d+1}, +)$.
- For d = 2, we consider the signed graph Γ_n built before.
- For even integer d ≥ 4, we construct a signed d-degenerate graph (G, σ) such that χ_c(G, σ) = d + 2.

・ロト ・日ト ・ヨト ・ヨト

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Signed d-degenerate graphs

Signed *d*-degenerate graphs

イロト イポト イヨト イヨト

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Signed planar graphs

Signed planar graphs

Proposition

$$4+\frac{2}{3}\leq \chi_c(\mathcal{SP})\leq 6.$$

Figure: Mini-gadget (T, π) Figure: A signed Wenger Graph $\mathcal{W} = 34/51$

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Signed planar graphs

Signed planar graphs

 $\ell_{\phi;u,v}$: the minimum length of an interval which contains $\phi(u) \cup \phi(v)$.

Lemma

Let
$$r = \frac{14}{3} - \epsilon$$
 with $0 < \epsilon \leq \frac{2}{3}$. For any circular *r*-coloring ϕ of \tilde{W} , $\ell_{\phi;u,v} \geq \frac{4}{9}$.

Let Γ be obtained from \tilde{W} by adding a negative edge uv. Let $\mathcal{I} = (\Gamma, u, v)$.

Theorem

Let $\Omega = K_4(\mathcal{I})$. Then Ω is a signed planar simple graph with $\chi_c(\Omega) = \frac{14}{3}$.

Introduction

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Signed planar graphs

Sketch of the proof of the theorem

- First we show that Ω admits a circular $\frac{14}{3}$ -coloring. We find a circular $\frac{14}{3}$ -coloring ϕ of Γ such that $\phi(u) = \phi(v) = 0$ and then extend it to each of inner triangles.
- Let ϕ be a circular *r*-coloring of Ω for $r < \frac{14}{3}$. For any $1 \leq i < j \leq 4$, $\frac{4}{9} \leq d_{(\text{mod }r)}(\phi(v_i), \phi(v_j)) \leq \frac{r}{2} 1$. Assume that $\phi(x_1), \phi(x_2), \phi(x_3), \phi(x_4)$ are on C^r in this cyclic order.
 - $\ell([\phi(v_1), \phi(v_4)]) = \ell([\phi(v_1), \phi(v_2)]) + \ell([\phi(v_2), \phi(v_3)]) + \ell([\phi(v_3), \phi(v_4)]) \ge 3 \times \frac{4}{9} = \frac{4}{3} > \frac{r}{2} 1,$ • $\ell([\phi(v_4), \phi(v_1)]) \ge r - (\ell([\phi(v_1), \phi(v_3)]) + \ell([\phi(v_2), \phi(v_4)])) \ge$
 - $2 > \frac{r}{2} 1.$

Contradiction.

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Signed planar graphs

Results on signed planar graphs with girth condition

- $\chi_c(\mathcal{SP}_4) \leq 4$. (By the 3-degeneracy of triangle-free planar graph)
- χ_c(SP₇) ≤ 3. (Corollary of a result that every signed graph of mad < ¹⁴/₅ admits a homomorphism to (K₆, M) [R. Naserasr, R. Škrekovski, Z. Wang and R. Xu 2020+])

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Signed planar graphs

Signed circular chromatic number

For a simple graph G, the signed circular chromatic number $\chi_c^s(G)$ of G is defined as

$$\chi_c^{\mathfrak{s}}(G) = \max\{\chi_c(G,\sigma) : \sigma \text{ is a signature of } G\}.$$

Proposition

For every graph G, $\chi_c^s(G) \leq 2\chi_c(G)$.

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Signed planar graphs

Signed chromatic number of k-chromatic graph

Theorem

For any integers $k, g \ge 2$ and any $\epsilon > 0$, there is a graph G of girth at least g satisfying that $\chi(G) = k$ and $\chi_c^s(G) > 2k - \epsilon$.

Assume $k, g \ge 2$ are integers. We will prove that for any integer p, there is a graph G for which the followings hold:

- G is of girth at least g and has chromatic number at most k.
- There is a signature σ such that (G, σ) is not (2kp, (p + 1))-colorable.

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Signed planar graphs

Augmented tree

- A complete *k*-ary tree is a rooted tree in which each non-leaf vertex has *k* children and all the leaves are of the same level.
- An *q*-augmented *k*-ary tree is obtained from a complete *k*-ary tree by adding, for each leaf *v*, *q* edges connecting *v* to *q* of its ancestors. These *q* edges are called the augmenting edges from *v*.
- For positive integers k, q, g, a (k, q, g)-graph is a q-augmented k-ary tree which is bipartite and has girth at least g.

Lemma [Alon, N., Kostochka, A., Reiniger, B., West, D., and Zhu, X 2016]

For any positive integers $k, q, g \ge 2$, there exists a (k, q, g)-graph.

Circular coloring of signed graphs

Results on some classes of signed graphs

k children

Signed planar graphs

Augmented tree

leaf

m level

イロト イヨト イヨト 41 / 51 Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Signed planar graphs

Construction of k-chromatic graph G

- *H*: (2kp, k, 2kg)-graph with underline tree *T*.
- ϕ : a standard 2kp-labeling of the edges of T.
- ℓ(v): the level of v, i.e., the distance from v to the root vertex in T. Let θ(v) = ℓ(v)(mod k).

For each leaf v of T, let $u_{v,1}, u_{v,2}, \ldots, u_{v,k}$ be the vertices on P_v that are connected to v by augmenting edges. Let $u'_{v,i} \in P_v$ be the closest descendant of $u_{v,i}$ with $\theta(u'_{v,i}) = i$ and let $e_{v,i}$ be the edge connecting $u'_{v,i}$ to its child on P_v . Let $s_{v,i} = \phi(e_{v,i})$ and let

•
$$A_{v,i} = \{s_{v,i}, s_{v,i} + 1, \dots, s_{v,i} + p\},\$$

•
$$B_{v,i} = \{a + kp : a \in A_{v,i}\},\$$

• $C_{v,i} = A_{v,i} \cup B_{v,i}$.

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Signed planar graphs

Construction of the signature σ on G

Note that $B_{v,i}$ is a *kp*-shift of $A_{v,i}$. Two possibilities:

• $A_{v,i} \cap A_{v,j} \neq \emptyset$ (then $B_{v,i} \cap B_{v,j} \neq \emptyset$)

$$d_{(\mathrm{mod}\ 2kp)}(\phi(e_{v,i}),\phi(e_{v,j})) \leq p.$$

•
$$A_{v,i} \cap B_{v,j} \neq \emptyset$$
 (then $B_{v,i} \cap A_{v,j} \neq \emptyset$)

$$d_{(\text{mod } 2kp)}(\phi(e_{v,i}), \overline{\phi(e_{v,j})}) \leq p.$$

Let *L* be the set of leaves of *T*. For each $v \in L$, we define one edge e_v on V(T) as follows:

- If $d_{(\text{mod }2kp)}(\phi(e_{v,i}), \phi(e_{v,j})) \leq p$, then let e_v be a positive edge connecting $u'_{v,i}$ and $u'_{v,j}$.
- If $d_{(\text{mod } 2kp)}(\phi(e_{v,i}), \overline{\phi(e_{v,j})}) \leq p$, then let e_v be a negative edge connecting $u'_{v,i}$ and $u'_{v,j}$.

43 / 51

Signed planar graphs

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 0000000

Proof for "(G, σ) is not circular $\frac{2kp}{p+1}$ -colorable"

Let (G, σ) be the signed graph with vertex set V(T) and with edge set $\{e_v : v \in L\}$, where the signs of the edges are defined as above.

- Assume f is a (2kp, p+1)-colorable of (G, σ) .
- As f is also a 2kp-coloring of the vertices of T, there is a unique f-path P_v . Assume that $e_v = u'_{v,i}u'_{v,j}$. By definition,

$$f(u'_{v,i}) = \phi(e_{v,i}) \text{ and } f(u'_{v,j}) = \phi(e_{v,j}).$$

• If e_v is a positive edge, then $d_{(\text{mod } 2kp)}(\phi(e_{v,i}), \phi(e_{v,j})) \leq p$. If e_v is a negative edge, then $d_{(\text{mod } 2kp)}(\phi(e_{v,i}), \overline{\phi(e_{v,j})}) \leq p$. Contradiction.

- Circular coloring of graphs
- Homomorphism of signed graphs
- 2 Circular coloring of signed graphs
 - Circular chromatic number
 - Signed indicators
 - Tight cycle argument
- 3 Results on some classes of signed graphs
 - Signed bipartite planar graphs
 - Signed d-degenerate graphs
 - Signed planar graphs

Discussion

Mapping signed graphs to signed cycles

Let C_{ℓ}^{o+} be signed cycle of length ℓ where the number of positive edges is odd. Then $\chi_c(C_{\ell}^{o+}) = \frac{2\ell}{\ell-1}$.

Theorem

Given a positive integer ℓ and a signed graph (G, σ) satisfying $g_{ij}(G, \sigma) \ge g_{ij}(C_{\ell}^{o+})$ for $ij \in \mathbb{Z}_2^2$, we have $\chi_c(G, \sigma) \le \frac{2\ell}{\ell-1}$ if and only if $(G, \sigma) \to C_{\ell}^{o+}$.

Circular chromatic number of signed planar graphs

Question

Given a positive integer ℓ , what is the smallest value $f(\ell)$ (with $f(\infty) = \infty$) such that for every signed planar graph (G, σ) satisfying $g_{ij}(G, \sigma) \ge g_{ij}(C_{\ell}^{o+})$ and $g_{ij}(G, \sigma) \ge f(\ell)$ for all $ij \in \mathbb{Z}_2^2$, we have $\chi_c(G, \sigma) \le \frac{2\ell}{\ell-1}$.

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion

Jaeger-Zhang conjecture

When $\ell = 2k + 1$,

Jaeger-Zhang conjecture [C.-Q. Zhang 2002]

Every planar graph of odd-girth f(2k + 1) = 4k + 1 admits a circular $\frac{2k+1}{k}$ -coloring, i.e., C_{2k+1} -coloring.

- f(3) = 5 [Grötzsch's theorem];
- *f*(5) ≤ 11 [Z. Dvořák and L. Postle 2017][D. W. Cranston and J. Li 2020];
- 4k + 1 ≤ f(2k + 1) ≤ 6k + 1 [C. Q. Zhang 2002; L. M. Lovász, C. Thomassen, Y. Wu and C. Q. Zhang 2013];

Bipartite analogue of Jaeger-Zhang conjecture

When $\ell = 2k$,

Bipartite analogue of Jaeger-Zhang conjecture

Every signed bipartite planar graph of negative-girth f(2k) admits a circular $\frac{4k}{2k-1}$ -coloring, i.e., C_{-2k} -coloring.

- f(4) = 8 [R. Naserasr, L. A. Pham and Z. Wang 2020+];
 (f(2k) > 4k 2 when k = 2.)
- $f(2k) \le 8k 2$ [C. Charpentier, R. Naserasr and E. Sopena 2020].

Odd-Hadwiger Conjecture

Theorem [P.A. Catlin 1979]

If (G, -) has no $(K_4, -)$ -minor, then $\chi_c(G, +) \leq 3$.

The Odd-Hadwiger conjecture was proposed independently by B. Gerard and P. Seymour.

Odd-Hadwiger conjecture

If a signed graph
$$(G, -)$$
 has no $(K_{k+1}, -)$ -minor, then $\chi_c(G, +) \leq k$.

Question

Assuming (G, σ) has no $(K_{k+1}, -)$ -minor, what is the best upper bound on $\chi_c(G, -\sigma)$?

Circular coloring of signed graphs

Results on some classes of signed graphs

Discussion 000000

The end. Thank you!

<ロト < 回 ト < 巨 ト < 巨 ト 三 の < () 51 / 51