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Abstract

We study homomorphism problems of signed graphs from a computational point of view. A signed
graph (G,Y) is a graph G where each edge is given a sign, positive or negative; ¥ C E(G) denotes
the set of negative edges. Thus, (G, ) is a 2-edge-coloured graph with the property that the edge-
colours, {4, —}, form a group under multiplication. Central to the study of signed graphs is the
operation of switching at a vertex, that results in changing the sign of each incident edge. We study
two types of homomorphisms of a signed graph (G, X)) to a signed graph (H,II): ec-homomorphisms
and s-homomorphisms. Each is a standard graph homomorphism of G to H with some additional
constraint. In the former, edge-signs are preserved. In the latter, edge-signs are preserved after the
switching operation has been applied to a subset of vertices of G.

We prove a dichotomy theorem for s-homomorphism problems for a large class of (fixed) target
signed graphs (H,II). Specifically, as long as (H,II) does not contain a negative (respectively a
positive) loop, the problem is polynomial-time solvable if the core of (H,II) has at most two edges,
and is NP-complete otherwise. (Note that this covers all simple signed graphs.) The same dichotomy
holds if (H,II) has no negative digons, and we conjecture that it holds always. In our proofs, we reduce
s-homomorphism problems to certain ec-homomorphism problems, for which we are able to show a
dichotomy. In contrast, we prove that a dichotomy theorem for ec-homomorphism problems (even
when restricted to bipartite target signed graphs) would settle the dichotomy conjecture of Feder and
Vardi.
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1. Introduction and terminology

Graph homomorphisms and their variants play a fundamental role in the study of computational
complexity. For example, the celebrated CSP Dichotomy Conjecture of Feder and Vardi [8], a major
open problem in the area, can be reformulated in terms of digraph homomorphisms or graph retractions
(to fixed targets). As a special case, the dichotomy theorem of Hell and Nesetfil [15] shows that there
are no NP-intermediate graph homomorphism problems. In this paper, we study homomorphisms
of signed graphs from an algorithmic point of view. We study two natural types of homomorphism
problems on signed graphs, one with switching and one without. For the former, we prove a dichotomy
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theorem for a large class of signed graphs, while for the latter we prove that a dichotomy would answer
the CSP Dichotomy Conjecture in the positive.

We begin by defining signed graphs and the two types of homomorphisms. We remark that we
have adopted the language of signed graphs for this paper, but readers familiar with edge-coloured
graphs will recognize that our work may be equivalently formulated in terms of edge-coloured graphs.
For example, the edge-coloured viewpoint is used in [25].

1.1. Signed graphs

A signed graph is a graph G together with a signing function o : E(G) — {+,—}. By setting
Y = 0~ !(—), we use the notation (G,Y) to denote this signed graph. The set ¥ of negative edges is
referred to as the signature of (G,%). In all our diagrams, these edges are drawn in red with dashed
lines. The other edges, which are positive, are drawn in blue with solid lines. Signed graphs were
introduced by Harary in [12], and studied in depth by Zaslavsky (see for example [26, 27, 28, 29, 30]).
The notion of distinguishing a set ¥ of edges can also be found in the work of Konig [18].

Signed graphs are different from 2-edge-coloured graphs with arbitrary colours, due to the fact
that {+, —} forms a group with respect to the product of signs. The most crucial of these differences
comes from the following definition of the sign of a cycle, or more generally, a closed walk. A cycle
or closed walk of (G, Y) is said to be negative if the product of the signs of all the edges (considering
multiplicities if an edge is traversed more than once) is the negative sign, and positive otherwise. A
(signed) subgraph of (G, X) is called balanced if it contains no negative cycle (equivalently no negative
closed walk, noting that each negative closed walk must contain a negative cycle). This notion of
balance was introduced by Harary [12] and a similar idea appears in the work of Konig [18]. A cycle
of length 2 is a digon. In our work, we do not consider multiple edges of the same sign, and thus we
only consider negative digons.

The second notion of importance for signed graphs is the operation of switching, introduced by
Zaslavsky [27]. To switch at a vertex v means to multiply the signs of all edges incident to v by —,
that is, to switch the sign of each of these edges. (In the case of a loop at v, its sign is multiplied twice
and hence it is invariant under switching.) Given signatures ¥ and ¥’ on a graph G, the signature X’
is said to be switching equivalent to ¥, denoted ¥ = ¥, if it can be obtained from ¥ by a sequence of
switchings. Equivalently, ¥ = X/ if their symmetric difference is an edge-cut of G.

Zaslavsky proved that two signatures ¥ and ¥’ of a graph G are switching equivalent if and only if
they induce the same cycle signs [27]. Inherent in the proof is an algorithm to test whether 3 and ¥’
are switching equivalent. For completeness, in Section 2.1, we offer an alternative certifying algorithm
obtained by generalizing a method from [12].

Each of the two types of homomorphisms studied in this paper capture, in particular, the concept of
proper vertex-colouring of signed graphs introduced by Zaslavsky [28] (as mappings to certain families
of signed graphs).

1.2. ec-homomorphisms

Recall that given two graphs G and H, a homomorphism ¢ of G to H is a mapping of the vertices
¢ : V(G) = V(H) such that if two vertices x and y are adjacent in G, then their images are adjacent
in H. We write G — H to denote the existence of a homomorphism or ¢ : G — H when we wish to
explicitly name the mapping. One natural extension of this idea to signed graphs is to additionally
require that homomorphisms preserve the sign of edges.

Definition 1.1. Let (G,X) and (H,II) be two signed graphs. An ec-homomorphism of (G,X) to
(H,1I) is a (graph) homomorphism ¢ : G — H such that for each edge e between two vertices x and y
in (G,X), there is an edge between o(x) and ¢(y) in (H,II) having the same sign as e.

When there exists such an ec-homomorphism, we write (G,%) =% (H,1I) or ¢ : (G, ) =% (H,II)
when we wish to explicitly name the mapping.



An ec-homomorphism r : (G,X) % (H,TI) is an ec-retraction if (H,TI) is a subgraph of (G, )
and r is the identity on (H,II). A signed graph (H,II) is an ec-core if for each ec-homomorphism
@ : (H,11) =% (H,TI), the mapping ¢ is an ec-automorphism. Every signed graph (H,TI) admits an
ec-retraction to a subgraph (H’,II") that is an ec-core. In fact, (H',II') is unique up to ec-isomorphism
and we call it the ec-core of (H,II) [14].

The complexity of determining the existence of homomorphisms has received much attention in the
literature. For classical undirected graphs, the complexity (for fixed targets) is completely determined
by the dichotomy theorem of Hell and Nesettil. Let H be a fixed graph. We define the decision problem
HoMm(H), also known as H-COLOURING.

HoMm(H)
Instance: A graph G.
Question: Does G — H?

Theorem 1.2 (Hell and Nesettil [15]). If a graph H is bipartite or contains a loop, then HOM(H) is
polynomial-time solvable; otherwise, it is NP-complete.

One of the questions we will consider in this work, is a possible extension of Theorem 1.2 for the
class of ec-homomorphism problems for signed graphs. To this end, let (H,II) be a fixed signed graph.
We define the following decision problem.

Ec-Hom(H, II)
Instance: A signed graph (G, X).
Question: Does (G, %) =5 (H,1I)?

The notion of ec-homomorphisms of signed graphs (and graphs with any number of edge-colours)
was studied in [1, 13, 22] from a non-computational point of view. See also [2, 3, 5, 20, 21] for studies
of the computational complexity of ec-homomorphism problems.

Throughout the paper we will exploit the following (immediate) connection between graph homo-
morphisms and ec-homomorphisms.

Observation 1.3. Let G and H be two graphs. Let ¢ : V(G) — V(H) be a vertex-mapping. The
following are equivalent.

(a) ¢ : G — H is a graph homomorphism.
(b) ¢:(G,0) =5 (H,0) is an ec-homomorphism.

(c) ¢:(G,E(G)) =5 (H,E(H)) is an ec-homomorphism.

1.8. Constraint satisfaction problems and homomorphisms

A more general setting for the study of HoM(H ) and Ec-HoM(H, IT) problems is the one of general
relational structures, where instead of binary relations we have relations of arbitrary arities. More
formally, a relational structure S over a given wvocabulary (a set of pairs (R;,a;) of relation names
and arities) consists of a domain V(S) of vertices together with a set of relations corresponding to the
vocabulary, that is, R; C V(S)% for each relation R; of the vocabulary. Given two relational structures
S and T over the same vocabulary, a homomorphism of S to T' is a mapping ¢ : V(S) — V(T such
that each relation R; is preserved; that is, for each element of R; in S, its image in T also belongs to
R; in T. We write S — T to denote the existence of such a homomorphism.

For a fixed relational structure T' (called the template), the constraint satisfaction problem for T
is the decision problem defined as follows.

Csp(T)
Instance: A relational structure S over the same vocabulary as T'.
Question: Does S — T'?



The class CSP then denotes the set of all problems of the type Csp(T). Motivated by Theorem 1.2,
Feder and Vardi [8] asked whether for every relational structure T, the problem Csp(T) is either
polynomial-time solvable or NP-complete (thus not NP-intermediate). This question has received
much attention and has become known as the Dichotomy Conjecture.

Conjecture 1.4 (Dichotomy Conjecture, Feder and Vardi [8]). For any relational structure T, Csp(T)
is either NP-complete or polynomial-time solvable.

Conjecture 1.4 remains a major open problem in computational complexity. Note that the Hell-
Nesettil dichotomy theorem for graph homomorphisms [15] solves Conjecture 1.4 for templates T
having just one symmetric binary relation. A number of equivalent formulations have been proposed.
In particular, Feder and Vardi have shown that Conjecture 1.4 would be answered positively by a
dichotomy theorem over the restricted subclass of CSP corresponding to (bipartite) digraph homo-
morphism problems [8], that is, templates with just one (not necessarily symmetric) binary relation.

In Section 3 of this work, we prove a similar result for ec-homomorphism problems of signed
(bipartite) graphs.

1.4. s-homomorphisms

We now turn our attention to a second type of homomorphism on signed graphs (introduced by
Guenin [11] and studied further by Naserasr, Rollovd and Sopena in [23, 24]). These homomorphisms
incorporate switching and (as we will see in Section 2.2) preserve the sign of cycles.

The notion of switching allows an extension of the theory of graph minors to signed graphs (in-
troduced by Zaslavsky [27]) which has a stronger interplay with colouring problems. A minor of a
signed graph is a graph obtained from a sequence of the following operations: (i) deleting vertices or
edges, (ii) contracting positive edges, and (iii) switching. Thus, the image of any negative cycle, unless
it is deleted, remains negative. Furthermore, observing that negative cycles of (G, E(G)) are exactly
the odd cycles of G, many colouring results on minor-closed graph families have been strengthened
using this notion of minor. The most notable one is a strengthening of Hadwiger’s conjecture proposed
by Gerards and Seymour in 1980: if (G, E(G)) contains no (K,, F(K,)) minor, then G is (n — 1)-
colourable (this is known as the Odd Hadwiger conjecture, see [16]). Note that the case n = 3 of this
conjecture is equivalent to claiming that all bipartite graphs are 2-colourable, whereas the original
Hadwiger conjecture only asserts the 2-colourability of forests. As discussed in [24], it is then natural
to study colouring through the following notion of homomorphisms of signed graphs.

Definition 1.5. Let (G,X) and (H,II) be signed graphs. An s-homomorphism of (G,X) to (H,1I) is a
mapping ¢ : V(G) — V(H) such that there exist a switching (G, %) of (G, %) and a switching (H,1I")
of (H,TI), such that ¢ : (G,%") <% (H,TU) is an ec-homomorphism.

When there exists such an s-homomorphism, we write (G,%) - (H,TI), or ¢ : (G, %) - (H,TI)
when we wish to explicitly name the mapping.

In the above definition, note that we may always assume that II' = II, since we can perform
the necessary switchings on (G, X)) instead of (H,II). Thus we can, and will, choose a specific fixed
signature for H in our proofs.

As in the case of ec-homomorphisms, an s-homomorphism of signed graphs is also a homomor-
phism of the underlying graphs. We prove in Section 2.2 that s-homomorphisms preserve the essential
structures of signed graphs, namely adjacency and the sign of cycles. The concept of s-homomorphism
was defined by Guenin in [11], where the author used this notion to capture a packing problem. Re-
cently, the theory of s-homomorphisms was more extensively developed in [24] (see also [9, 23, 25]
for subsequent studies). A related notion of homomorphisms of edge-coloured graphs where there is
a switching operation is studied in [4, 20, 21]. See also [17] for homomorphisms of digraphs where a
similar switching operation is allowed.

As an example, consider the vertex-mapping ¢ : V(G) — V(H) in Figure 1. As defined, ¢ preserves
adjacency but not the sign of the edges. However, ¢ is an s-homomorphism of (G, X) to (H,II). Indeed,



there exists a switching of ¥ to ¥’ (defined in Figure 1) such that ¢ preserves edges and their signs. In
fact, several switchings of (G, X) exist such that the given vertex-mapping preserves edges and their
signs.

b (H,T0)

T

Figure 1: The mapping ¢ : V(G) — V(H) is defined by ¢(z) = a, ¢(y) = ¢(u) = b, o(v) = ¢(z) = c. After switching at
y and v, this is an edge and sign-preserving mapping. Switching at y and u is a second possibility.

As for ec-homomorphisms, a signed graph (H,II) is defined to be an s-core if for every s-homomorphism
@ : (H,1I) =5 (H,II), ¢ is an s-automorphism. The s-core of (H,II) is defined as before, indeed it is
again easy to prove that every signed graph (H,II) has an s-core that is unique up to s-isomorphism
and switching.

Let (H,II) be a fixed signed graph. We define the s-homomorphism decision problem for (H,II)
analogously as in the ec-case.

s-Hom(H,II)
Instance: A signed graph (G, X).
Question: Does (G, %) >+ (H,TI)?

A primary concern in this work is the computational complexity of the s-Hom(H,II) problem. By
Observation 1.3, we note that when II is switching equivalent to F(H) or to ), then s-HoM(H,II)
has the same complexity as HOM(H). To see this, given an input signed graph (G, ¥), we can decide
in polynomial time whether X is switching equivalent to F(G) or to () (see Proposition 2.1). Then,
the computational complexity of the problem is decided by Theorem 1.2. Prior to this work, the
only other known case of the problem’s complexity is the study of [9] about signed cycles, where it is
proved that s-HOM(Cyg, IT) is NP-complete if IT has an odd number of elements, and polynomial-time
solvable otherwise (note that s-HOM(Ca41,II) for k > 1 is always NP-complete). Here, we give a full
dichotomy characterization in the case where (H,II) is a simple signed graph. Indeed we prove an
even stronger result.

Theorem 4.2. Let (H,II) be a connected signed graph that does not contain all three of a negative
digon, a negative loop, and a positive loop. Then, s-HOM(H,II) is polynomial-time solvable if the
s-core of (H,II) has at most two edges; it is NP-complete otherwise.

We believe that a full dichotomy holds for s-homomorphism problems. In fact, we conjecture that
all cases not covered by Theorem 4.2 are NP-complete.

Conjecture 1.6. Let (H,II) be a connected signed graph. Then, s-HoM(H,II) is polynomial-time
solvable if the s-core of (H,II) has at most two edges; it is NP-complete otherwise.

Note that the polynomial half of Conjecture 1.6 is proved in the proof of Theorem 4.2, that is, the
polynomial case holds for all signed graphs.



1.5. Structure of the paper

The paper is organized as follows. In Section 2, we present preliminary results on both kinds of
signed graph homomorphism, some of which are fundamental for our subsequent proofs. In particular,
we show that the problem of testing the existence of an s-homomorphism between signed graphs can
be captured through a special construction, switching graphs, using ec-homomorphisms. In Section 3,
we prove the equivalence between a dichotomy for ec-homomorphism problems for bipartite signed
graphs and a dichotomy for all of CSP. We then prove our main result, Theorem 4.2, in Section 4.
Finally, in Section 5, we conclude with some remarks and questions.

2. Preliminaries

In this section, we give our algorithm for testing switching equivalence of two signatures, provide an
equivalent definition for s-homomorphisms, introduce the switching graph construction, and connect
our work to vertex-colourings of signed graphs.

2.1. A certifying algorithm for switching equivalence

The proof of the following proposition is a certifying algorithm obtained by generalizing a method
from [12].

Proposition 2.1. Given two signed graphs (G,%) and (G,Y'), it can be decided in polynomial time
whether ¥ = Y.

Proof. Let B = SAY/. We wish to test if there is an edge-cut (X, X) such that B = E(X, X). We
present a certifying algorithm that either finds such a cut or returns a cycle whose sign is different in
(G,Y) and (G,Y'). Let Wy, Wy, ..., W; be the components of G\ B. As all edges of each W; have the
same sign in both ¥ and ¥’, each component W; must be entirely contained by one side of the desired
edge-cut. Thus, the aim is to partition the components into two sets X and Y so that the edges of
B have one end in X and the other in Y. In other words, is it true that the graph resulting from
contracting each W; to a single vertex is bipartite? If yes, then the edges of the resulting bipartite
graph form the cut B. Switching on this cut transforms ¥ to X’. If no, then there is a cycle C in
G containing an odd number of edges from B. This cycle is positive in exactly one of ¥ or ¥’ (and
negative in the other), certifying that ¥ # 3. O

In the case that ¥ and ¥ are not switching equivalent, the certifying cycle C yields the following
corollary due to Zaslavsky (as mentioned in the introduction).

Corollary 2.2 (Zaslavsky [27]). Two signatures X3 and X' of the same graph are switching equivalent
if and only if they induce the same cycle signs.

2.2. An equivalent definition of s-homomorphisms

Both homomorphisms of classical graphs and ec-homomorphisms of signed graphs are vertex-
mappings that preserve adjacency (and the adjacency signs for the latter). Such a homomorphism
© naturally defines the associated mapping of the edges (see the book [14, page 4]).

In the case of s-homomorphisms, the edge-mapping ¢# may not be well-defined by the images of
the vertices alone (when there are negative digons or a vertices with two loops of opposite signs), as
©# may depend on the choice of switching. Recall the example of Figure 1. We had several possible
switchings of (G,Y) so that ¢ : V(G) — V(H) induces a sign-preserving mapping, and therefore %
depends on both the vertex-mapping and the particular switching of (G,X) one has chosen. Hence,
we will, when required, explicitly specify the associated mapping 7.

Next, we show that one may view an s-homomorphism as a vertex-mapping ¢ with an associated
edge-mapping ¢# that preserves the important structures in signed graphs: the adjacency of vertices
and the signs of cycles.



Theorem 2.3. Let (G,X) and (H,II) be signed graphs. Then ¢ : V(G) — V(H), with a given
associated mapping ¢* : E(G) — E(H), is an s-homomorphism (G,%) - (H,II) if and only if
¢ : G —= H is a homomorphism of the underlying graphs and, for every cycle C' of G, the sign of C in
(G,X) is the same as the sign of the closed walk p* (C) in (H,II).

Proof. First assume that ¢ is an s-homomorphism of (G,X) to (H,II). Then, by the definition, ¢
is an ec-homomorphism of (G,Y’) to (H,II) for some signature ¥’ that is switching equivalent to X.
Clearly, the sign of C' in (G,¥’) is the same as the sign of ¢#(C) in (H,II), but it is also the same as
the sign of C in (G, X) since ¥ and ¥’ are switching equivalent.

Now, suppose that the condition holds for each cycle. Let ¥ be the inverse image of II by .
Our claim is that ¥’ and ¥ are switching equivalent; this would prove that ¢ is an s-homomorphism
of (G,X) to (H,II). To prove our claim, using Corollary 2.2, it is enough to show that each cycle has
the same sign in (G, X) and (G,%’). But this is indeed the case, as they both are the same as the sign
of ¢#(C) in (H,II), one by the condition of the theorem, the other from the definition of 3. O

Returning to the example in Figure 1, the vertex-mapping g with g(u) = b,g(v) = g(2) = ¢, g(x) =
g(y) = a maps only one edge g3 to the negative digon. In light of Theorem 2.3, we must have
# —
97 (93) = hs.

2.3. Switching graphs

We now describe a construction that is crucial in our proofs.

Definition 2.4. Let (G,X) be a signed graph. The switching graph of (G, X) is a signed graph denoted
P(G,X) and constructed as follows.

(i) For each vertex u in V(G) we have two vertices ug and uy in P(G,X).

(i1) For each edge e between u and v in G, we have four edges between u; and v; (i,5 € {0,1}) in
P(G,Y), with the edges between u; and v; having the same sign as e and the edges between u;
and v1_; having the opposite sign as e (i € {0,1}). (In particular, loops do not change sign.)

See Figures 2 and 4 for examples of signed graphs and their switching graphs. The notion of
switching graph was defined by Brewster and Graves in [4] in a more general setting related to per-
mutations (they used the term permutation graph). Their work built on that of Klostermeyer and
MacGillivray [17] who used a similar definition in the context of digraphs. The construction is also
used in [25]. Zaslavsky used a construction similar (but different) to that of switching graphs [28].

Let (G,X) be a signed graph and (G,Y’) be any switching equivalent signed graph, that is, ¥ =
Y. A fundamental property of P(G,X) is that it contains as a subgraph both (G,X) and (G,Y').
That is, it contains as a subgraph all signed graphs that are switching equivalent to (G,%). The
following proposition allows us to transform questions about s-homomorphisms to the setting of ec-
homomorphisms.

Proposition 2.5. Let (G,X) and (H,II) be two signed graphs. The following are equivalent.
(a) (G,%) = (H,1I),
(b) (G,X) <% P(H,I),
(¢c) P(G,%) =5 P(H,TI).

Proof. (a) <= (b): Let the vertices of H be {vy,vs,...,v,} and let the corresponding paired vertices
in P(H,II) be v; o and v; 1 for i = 1,2,...,n. Suppose (G,X) — (H,II). Thus, there is a signed
graph (G,Y') with ¥’ = ¥ and an ec- homomorphlsm ¢: (G, Y =5 (H,10).



Let E(X,X) = XAY be the edge-cut certifying the switching equivalence of the two signatures.
Define 1 : (G, %) <% P(H,TI) by

[ v ifp(u)=v, andu e X
v(u) = { vi1 feu)=v,andue X ’

It is straightforward to verify that v is an ec-homomorphism.

For the converse, we have P(H,TI) - (H,TI) (switching on the edges between the two copies of
(H,II) and projecting v; j — v; is an s-homomorphism).

(b) <= (c): First observe that (G,¥) C P(G,¥). Thus, P(G,¥) <% P(H,I) implies (G, %) =%
P(H,II). On the other hand, suppose that ¢ : (G,%) =% P(H,I) is an ec-homomorphism. We
construct an ec-homomorphism v : P(G, %) <% P(H,TI) as follows: if p(u) = v; j, then ¥(ug) = v; ;
and w(ul) = Vi,1—j- O

As s-cores of signed graphs are our fundamental object of study, we remark that Theorem 15
of [4] characterizes the s-cores of signed graphs in terms of switching graphs. (There is a technical
requirement we must make on the P(G,¥) construction in order to apply the following theorem. If
for some vertex v of G, vy and v; have the same sets of positive and negative neighbours in P(G, X)),
then we delete vertex vy from P(G, ). This corresponds to the case where the multiset of colours of
incident edges of a loop-free vertex v are invariant under switching, that is, v is an isolated vertex, or
v is incident only with negative digons.)

Theorem 2.6 (Brewster and Graves [4, Theorem 15)). Let (G, %) be a signed graph. Then, (G,X) is
an s-core if and only if P(G,X) is an ec-core.

2.4. Signed graph vertez-colourings

Zaslavsky introduced and studied vertex-colourings of signed graphs in a series of papers [28, 29, 30].
In this section, we formulate these colourings in the language of homomorphisms of signed graphs to
particular targets. These targets play the same role (for signed graph colourings) that complete graphs
play for colourings of classical graphs. (Recall that a homomorphism of a graph to the complete graph
K}, corresponds to a proper k-vertex-colouring.)

In fact, Zaslavsky defined two types of colouring. Let k be a positive integer. A proper k-colouring
of a signed graph (G, X) is a vertex-mapping ¢ : V(G) — {0,%1,...,+k} with the property that for
any two adjacent vertices v and v of G, ¢(u)-o(e) # ¢(v) where e is an edge incident with v and v and
o(e) is its sign. Thus, two vertices joined by a positive edge cannot receive the same colour, while two
vertices joined by a negative edge cannot receive opposite colours. Further, the colouring is zero-free
if it maps no vertex to 0.

We now formulate signed graph colourings as homomorphisms. Let k be a positive integer. The
signed graph (Zy, Ti) has vertex set {0,1,...,k} and edges consisting of a negative digon between all
pairs of distinct vertices and negative loops on {1,2,...,k}. The signed graph (Z;,T}) is obtained
from (Z, Tk ) by deleting 0 and its incident edges. See Figure 2 for examples. The following proposition
is immediate using Proposition 2.5.

Proposition 2.7. Let (G,X) be a signed graph. The following three statements are equivalent.
(a) (G,X) admits a proper k-colouring.
(b) (G.%) = (Zy, Tw).
(c) (G,%) =% P(Zk, Y}).

In addition, the following three statements are equivalent.

(d) (G,X) admits a proper zero-free k-colouring.



(e) (G.%) == (Z};,T}).
(f) (G.2) = P(Z;;, 1)

(Z3,73) P(Z3,73)
Figure 2: The graphs (Z1,T1), (Z5,T3) and (the ec-cores of) their switching graphs.

Since (Zy,Yy) and (Z;,Y}) do not contain positive loops, Theorem 4.2 is powerful enough to
classify the complexity of signed graph colourings. Specifically, for all positive k, the s-core of (Zy, Ti)
has at least three edges and thus the corresponding colouring problem is NP-complete. For zero-free
colourings, the s-core of (Z;,T5) consists of a single negative loop when k = 1, and at least three
edges for kK > 2. Hence, the corresponding colouring problem is polynomial-time in the former case

and NP-complete in the latter.

3. A dichotomy for ec-homomorphisms of bipartite signed graphs implies a dichotomy
for all of CSP

We now show the equivalence between the set of EC-HoM(H,II) problems where (H,II) is a signed
graph, and all of CSP. We will require the two following retraction decision problems in the reduction
proved below. Formally, let H be a fixed graph and (H,II), a fixed signed graph.

RET(H)
Instance: A graph G containing H as a subgraph.
Question: Is there a retraction of G to H?

EC-RET(H, II)
Instance: A signed graph (G, X) containing (H,II) as a subgraph.
Question: Is there a retraction 7 : (G,%) —% (H,TI)?
An alternating path is a (signed) path whose edges alternate negative and positive. Following

the construction of Feder and Vardi (Theorem 10 of [8]), and the development of these ideas in the
book [14, Chapter 5.3], we have the following theorem which shows that a dichotomy theorem for the



set of EC-HOM(H,II) problems would provide a positive answer to the Feder and Vardi Dichotomy
Conjecture.

Theorem 3.1. For each CSP template T, there is a signed graph (H,1I1) such that Ec-HoM(H,II) and
Csp(T) are polynomially equivalent. Moreover, (H,II) can be chosen to be bipartite and homomorphic
to an alternating path.

Proof. We follow the proof of Theorem 5.14 in the book [14] proving a similar statement for digraph
homomorphism problems. The structure of the proof in [14] is as follows. First, one shows that for
each CSP template T, there is a bipartite graph H such that the Csp(T") problem and the RET(H)
problem are polynomially equivalent. Next, it is shown that for each bipartite graph H, there is a
digraph H’ such that RET(H) and RET(H') are polynomially equivalent. Finally, it is observed that
H' is a core and thus RET(H’) and HOM(H') are polynomially equivalent. We will adapt this proof
to the case of ec-homomorphism problems of signed graphs.

The construction of H' from H in [14] is through the use of so-called zig-zag paths. For signed
graphs, we construct a similar collection of paths. This will allow us to construct a signed graph
(H’,T) from a bipartite graph H such that RET(H) and EC-RET(H’,II) are polynomially equivalent.
Our paths will have positive edges denoted by B and negative edges denoted by R. Hence, the path
BR?B3R consists of one positive edge, three negative edges, three positive edges and a negative edge.
The maximal monochromatic (constant signs) subpaths are called runs. Thus, the above path is the
concatenation of four runs: the first and last of length 1, and the middle two of length 3.

Given an odd integer ¢, we construct a signed path P consisting of £ runs. The first and the last run
each consist of a single negative edge. The interior runs are of length 3. We denote that last (rightmost)
vertex of P by 0. From P, we construct {—2 paths Py, ..., Py_s. Path P; (i = 1,2,...,¢—2) is obtained
from P by replacing the i*" run of length 3 with a run of length 1. We denote the rightmost vertex of
P; by 1.

Similarly, for an even integer k, we construct a second family of paths Q and Q;, (j =1,2,...,k—2).
The leftmost vertex of @ is 1 and the leftmost vertex of @); is j. The paths are described below:

P := RBR®..-R’B®*R Q = RB’R®..-B’R®B
—— —
-2 k—2
P, == RB® . R°BR®-.-B*R (iodd) Q; = RB*--RPBR*--R*B (jodd)
—_— Y —_— Y
i—1 L—i—2 j—1 k—j—2
P, = RB* --B*RB*---B*R (i even) Q; = RB>--B°RB®.---R’B (j even)
—_— N e Ve
i—1 l—i—2 j—1 k—j—2

We observe the following (see [14, page 156]):

1. The paths P and P; (i = 1,2,...£—2) each admit an ec-homomorphism onto an alternating path
of length ¢, (that is, a path consisting of ¢ runs each of length one: RBRB --- R).

2. The paths Q and Q; (j = 1,2,...k — 2) each admit an ec-homomorphism onto an alternating

path of length k.

P; =% Py implies i = i’

Qj = Q- implies j = j'.

P =5 P for all i.

Q= Q; for all j.

if X is a signed graph and z is a vertex of X such that f: X <% P;and f': X =5 Py fori # i/

with f(x) =i and f’(x) = ¢/, then there is an ec-homomorphism F : X % P with F(z) = 0.

8. if Y is a signed graph and y is a vertex of Y such that f: Y =% Q; and f': Y =% Q; for j # j'
with f(y) = j and f’(y) = j', then there is an ec-homomorphism F : Y % Q with F(y) = 1.

N e
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We note that alternating paths in signed graphs can be used to define height analogously to height
in directed acyclic graphs. Specifically, suppose (G,X) is a connected signed graph that admits an
ec-homomorphism onto an alternating path, say AP. Let the vertices of AP be hg, h1,...,h;. Observe
that each vertex in the path has at most one neighbour joined by a negative edge and at most one
neighbour joined by a positive edge. Thus, once a single vertex u in (G, X)) is mapped to AP, the image
of each neighbour of u is uniquely determined; by connectivity, the image of all vertices is uniquely
determined. In particular, as (G, X) maps onto AP, there is exactly one ec-homomorphism of (G, ) to
AP. (More precisely, if the path has odd length, there is an ec-automorphism that reverses the path.
In this case there are two ec-homomorphisms that are equivalent up to reversal.) We then observe
that if g : (G, %) =% AP with g being onto, h : (H,TI) =% AP, and f : (G,%) =% (H,TI), then for
all vertices u € V(G), g(u) = h(f(u)). This allows us to define the height of v € V(G) to be h; when
g(u) = h;. Specifically, vertices at height h; in (G, X) must map to vertices at height h; in (H,II).

For each problem T in CSP, there is a bipartite graph H such that Csp(T") and RET(H) are
equivalent [8, 14]. Let H be a bipartite graph with bipartition (A4, B), where A = {a,..., a4/} and
B = {b1,...,b|}. Let £ (respectively k) be the smallest odd (respectively even) integer greater than
or equal to |A| (respectively |B|). Recall that H has as its core a single edge, for which the HoM(H)
problem is polynomial. However, we are using the RET(H) problem and thus we require the retraction
to be the identity on H. We will now add some signed gadgets to the vertices of H to enforce that any
homomorphism from the copy of H in G to H itself must act as the identity on H. To each vertex
a; € A, attach a copy of P; identifying ¢ in P; with a; in A. To each vertex b; € B attach a copy of
Q;, identifying j in Q; with b; in B. Let all original edges of H be positive. Call the resulting signed
graph (H',II). See Figure 3 for an illustration.

Let G be an instance of RET(H). In particular, we may assume without loss of generality that
H is a subgraph of G, G is connected, and G is bipartite. Let (A’, B’) be the bipartition of G where
A C A’ and B C B’. To each vertex v of A’ \ A, we attach a copy of P, identifying v and 0. To the
vertices of AU B, we attach paths P; and @; as described above to create a copy of H'. We let the
original edges of G be positive. Call the resulting signed graph (G, X). In particular, note that (G, )
and (H',II) both map onto an alternating path of length £+ k + 1. The (original) vertices of G and H
are at height £ and ¢ + 1 for parts A and B respectively. In particular, by the eight above properties,
under any ec-homomorphism f : (G', %) =% (H’,TI) the restriction of f to G must map onto H with
vertices in A’ mapping to A and vertices in B’ mapping to B.

Using the eight properties of the paths above and following the proof of Theorem 5.14 in [14], we
conclude that G is a YES instance of RET(H) if and only if (G’, X) is a YES instance of EC-RET(H’, IT).

On the other hand, let (G’,X) be an instance of RET(H',IT). We sketch the proof from [14]. We
observe that (G’,¥) must map to an alternating path of length £ + k 4+ 1. The two levels of (G, %)
corresponding to H induce a bipartite graph (with positive edges) which we call G. The components
of the subgraph of (G’,X) obtained by removing the edges of G fall into two types: those which map
to lower levels and those which map to higher levels than G. Let C} be a component that maps to
a lower level. After required identifications, we may assume that C; contains only one vertex from G
(say v) and Cy must map to some P;. If P; is the unique P; path to which C; maps, then we modify G’
by identifying v and ¢. Otherwise, C; maps to two paths and hence to all paths. The resulting signed
graph has an ec-retraction to (H',II) if and only if G has a retraction to H. O

4. A dichotomy theorem for s-homomorphism problems

In this section, we prove a dichotomy theorem for s-homomorphism problems s-HoM(H, II) where
(H,II) belongs to the family S* consisting of those signed graphs not containing all three of a negative
digon, a positive and a negative loop. This includes a full dichotomy for all simple signed graphs.
We remark that, by Proposition 2.5, our theorem gives a dichotomy theorem for ec-homomorphism
problems EC-HOM(P(H,II)) where (H,II) (equivalently, P(H,II)) belongs to S*. Recall that by
Theorem 3.1, a full dichotomy for ec-homomorphism problems for all signed bipartite graphs would
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Figure 3: Construction of a signed target (H’,II) from a RET(H) problem.

imply a dichotomy theorem for all of CSP, and thus settle the Dichotomy Conjecture of Feder and
Vardi.

4.1. The indicator construction

We recall the indicator construction defined in [15]. Given our setting, we use the construction for
signed graphs, but it can be generalized to any number of edge-colours and any number of simultaneous
indicators (see [2]).

Let (H,II) be a signed graph. An indicator, ((I,A),1,7), is a signed graph (I, A) with two distin-
guished vertices 7 and j such that (I, A) admits an ec-automorphism mapping ¢ to j and vice-versa.
The result of the indicator ((I,A),1,7) applied to (H,II) is an undirected graph denoted (H,II)* and
defined as follows.

() V((H,I)") = V(H)

(ii) There is an edge from u to v in (H,II)* if there is an ec-homomorphism of (I, A) <% (H,TI) such
that ¢ — » and 7 — v.

Note that (H,II)* is a classical undirected graph. The notation reflects the fact that it is derived
from the signed graph (H,II). The indicator construction is a fundamental tool in proving NP-
completeness results.

Theorem 4.1 (Hell and Nesetfil [15]). The HoM((H,II)*) problem admits a polynomial-time re-
duction to Ec-HOM(H,II). In particular, if HoM((H,II)*) is NP-complete, then EC-HoM(H,II) is
NP-complete.

We remark that if one removes the requirement that ((I,A),,7) admits an ec-automorphism in-
terchanging ¢ and j, Theorem 4.1 still holds, but then (H,II)* has directed edges.

As an example, consider the signed graph (H,II) and the switching graph P(H,1I) in Figure 4. Let
(I, A) be a path of length 2 with endpoints ¢, 5 and middle vertex ¢, with ic positive and ¢j negative.
The result of the indicator ((I,A),,7) on P(H,II) is a directed graph P(H,II)*. However, one can
easily verify that in P(H,TI), if there exists ¢ : (I, A) =% P(H,II) with (i) = u and ¢(j) = v, then
there exists ¢’ : (I,A) =% P(H,TI) such that ¢’(i) = v and ¢/(j) = u. (Specifically, if p(c) = wy,
then use ¢’(¢) = wi—¢.) Thus, P(H,II)* is a symmetric digraph which we may view as an undirected
graph. Alternatively, take two copies of (I, A) and identify ¢ in the first with j in the second, and vice
versa. The result is an indicator ((I’,A’),4,7) consisting of a 4-cycle whose edges alternate positive
and negative, where ¢ and j are antipodal vertices. Now, the result of the indicator construction (with
respect to ((I’,A’),4,7)) is the undirected graph P(H,II)*. See Figure 4.

In the proofs below, we will use the indicator ((I, A), %, j) defined above for ease of explanation with
the understanding that the resulting graph P(H,II)* is an undirected graph (for either of the reasons
above).

12



Figure 4: A signed graph (G, ), the switching graph P(G,X), and the result of the indicator construction P(G,X)*.

4.2. The dichotomy theorem

We now prove our main theorem.

Theorem 4.2. Let (H,II) be a connected signed graph that does not contain all three of a negative
digon, a positive loop, and a negative loop. Then, s-HOM(H,II) is polynomial-time solvable if the
s-core of (H,II) has at most two edges; it is NP-complete otherwise.

Proof. Suppose that (H,II) is a connected signed graph that does not contain all three of a negative
digon, a positive loop, and a negative loop.

Polynomial cases.

Suppose that the s-core of (H,II) has at most two edges and at least one is a loop. It is straight-
forward to check that the s-core consists of either: a single vertex with a loop of each sign, or a single
vertex with a single loop.

If the s-core of (H,II) is a single vertex with both kinds of loops, then every signed graph trivially
maps to this graph. Thus, for the remainder of the proof, particularly the NP-complete cases below,
(H,1I) will not have a vertex with both kinds of loops.

If the s-core of (H, TI) is a single vertex with a single loop, (G, ¥) — (H,II) if and only if ¥ = E(G)
in the case where the loop is negative or ¥ = () in the case where the loop is positive (that is, (G, X)
can be switched so that all edges have the same sign as the loop in the s-core of (H,II)); this can be
checked in polynomial time by Proposition 2.1.

Thus, assume that the s-core of (H,II) is loop-free. First, suppose that there is a single edge joining
two vertices. (Note that a single positive edge is switching equivalent to a single negative edge.) This
is the case if and only if H is bipartite and all cycles of (H,II) are positive, that is, IT = (). Then,
(G,%) —%5 (H,TI) if and only if G is loop-free and bipartite, and all cycles of (G, X) are positive. All
conditions are easy to check (using Proposition 2.1 for the third one).

If the s-core of (H,II) consists of a single negative digon, (G,%) -+ (H,II) if and only if G is
loop-free and bipartite. This condition can again be checked in polynomial time.

There is no other signed graph with at most two edges that is an s-core.

NP-complete cases.
Assume that the s-core of (H,II) has at least three edges. We consider several cases.
Case (a): (H,II) contains a negative digon.
If H is loop-free, then H must contain an odd cycle, as otherwise the negative digon is the s-core.

Then, P(H,II) contains an odd cycle of the same length and sign, positive or negative. Restrict-
ing the input of Ec-HoMm(P(H,II)) to graphs with only positive (respectively negative) edges shows
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that Ec-HoM(P(H,II)) is NP-complete by the Hell-Nesetfil dichotomy of Theorem 1.2. Thus, by
Proposition 2.5, s-HoMm(H, II) is NP-complete.

On the other hand, suppose that (H,II) contains a loop. By the assumptions about (H,II) in the
statement of the theorem, all loops have the same sign. Let us assume that they are all negative (the
proof is symmetric if they are all positive). Let u,v be the vertices of a negative digon of (H,II), and
let w be a vertex with a loop. Since H is connected, there is a path P from v to w. Possibly after

interchanging the roles of u and v, we may assume without loss of generality that P = v, u, 1, z2,...,w
where u = w is allowed. Moreover, by switching, we may assume that each edge of P is positive. Let the
resulting signature be II'. Then, in P(H,II'), the cycle vo, ug, 1,0, 2,0 - - - , W0, W1, - - -, T2,1, L1,1, U1, Vo

is an odd cycle consisting of only positive edges. By assumption, (H,II) has no positive loops. Thus,
ECc-HoM(P(HII)) restricted to instances with only positive edges is NP-complete by the Hell-Nesettil
dichotomy of Theorem 1.2 and s-HoM(H, II) is NP-complete by Proposition 2.5. This settles Case (a).

Thus, for the remainder of the proof, assume that (H,II) has no negative digon.

Case (b): (H,II) contains a negative even cycle Cy, (k> 2).
Without loss of generality, we may assume (after appropriate switching) that in (H,II), the cycle

(5, contains 2k — 1 positive edges, say viva,vavs,...,v2x—1V2k, and a single negative edge varv;.
Construct the graph P(H,II). Let the paired vertices be v;¢ and v; 1 for ¢ € {1,...,2k}. Thus
V1,0,02,05 - - - s V2k,0, V1,0 and V11,V 1,. .., V2,1, 01,1 are two copies of C,, .

Let (I,A) be a path of length 2 on vertices {i, ¢, j} with a positive edge ic and a negative edge cj.
Let P(H,II)* be the result of the indicator construction on P(H,II) with respect to ((I,A),4, ). From
the comments above, we recall that P(H,II)* is an undirected graph. We will show that P(H,II)* is
loop-free and contains an odd cycle. Theorem 1.2 then implies that Hom(P(H,II)*) is NP-complete,
from which it follows that Ec-HoM(P(H,II)) is NP-complete by Theorem 4.1, and thus s-HoM(H, II)
is NP-complete by Proposition 2.5.

To see that P(H,II)* is loop-free, observe that an ec-homomorphic image f(I,A) of (I, A) where
f(#) = f(j) must be a negative digon or a pair of loops (one positive, one negative at a single vertex).
Since P(H,II) does not contain either structure, P(H,II)* is loop-free. Next, we observe that there
is a path v 9,v2,0,v3,1 that is a copy of (I, A) in P(H,II). Hence, there is an edge from vy to vs 1
in P(H,II)*. There is also a copy of (I, A) on vs 1,v2.1,vs,0, giving a path in P(H,II)*: vy, vs,1, V3,0
Continuing, we obtain a path of even length v; 9, vs 1,30, V5,1,V5,0,-..,V2k—1,1,V2k—1,0- Finally, the
path vog_1,0, V2,0, V1,0 is & copy of (I, A) in P(H,II). Hence, there is an edge from wvoi_1,0 to vy in
P(H,II)*. This implies the existence of the required odd cycle in P(H,II)*, completing Case (b). (See
for example Figure 4.)

We now assume that (H,II) has no negative digon and all even cycles are positive. In particular,
IT = 0 if and only if all odd cycles (including loops) are positive. Similarly, Il = E(H) if and only if
all odd cycles are negative.

Case (c): (H,II) has an odd cycle C of length at least 3, but no loop with the same sign as C.

Let us assume that C' is positive and there is no positive loop. (The case where C is negative
and there is no negative loop can be handled symmetrically.) In P(H,II), there is a copy of C' (with
positive edges), but no positive loop. Hence, as in Case (a), EC-HOM(P(H,II)) is NP-complete and
thus, by Proposition 2.5, s-HoM(H, IT) is NP-complete, settling Case (c).

Case (d): For each odd cycle C in (H,II), there is a loop of the same sign as C.

If (H,II) is loop-free, then we conclude that it has no odd cycles, and by Case (b) all even cycles are
positive. Thus, (H,II) has an s-retraction to a single positive edge, contrary to our assumption that
the s-core has at least three edges. Hence, (H,II) must contain a vertex b with a positive loop. (The
case where it is negative is handled in the same way.) We claim that (H,II) also contains a vertex r
with a negative loop. Since (H,II) does not retract to a positive loop, it must contain a negative loop
or a negative cycle of length at least 3. Case (b) implies that such a cycle is odd, and Case (c) implies
that (H,II) must contain a negative loop. This establishes the claim.
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Figure 5: The (ec-cores of) switching graphs constructed from signed graphs on at most two edges.

By the connectivity of H, we can consider a path P from b to r; for simplicity, we switch (H,II)
in such a way that all the edges on P are positive, and let II' be the obtained signature. Let P =
(r =wo0),v1,v2,...,05—1, (vg = b). Construct P(H,II')* using the same indicator as in Case (b). Here
again, P(H,II")* has no loop since there is no negative digon. Then, P(H,II')* contains an odd cycle
that goes from ¢ = vg,0 to by = v, on vertices with even indices, moves to b; = v 1, and returns to
ro on vertices with odd indices, as follows.

keven v0,V2,1,v2,0,V4,1,V4,05- - Vk—4,0, Vk—2,1 Vk,0,
Vk,1yVk—1,0, Vk—1,1,---,03,0,V3,1, V1,0, V0,0

kodd wo0,v2,1,v2,0,V4,1,V4,05 -+, Vk—3,0, Vk—1,1, Vk,0,
Uk, 1, Vk—2,0, Vk—2,1, - - - » U3,0, U3,1, U1,0, V0,0

Thus, HoMm(P(H,II)*) is NP-complete. Applying successively Theorem 4.1 and Proposition 2.5, we
deduce that Ec-HOM(P(H,II)) and s-HoM(H, II) are NP-complete as well. This completes Case (d)
and the whole proof. O

Using Proposition 2.5, we can state our dichotomy of Theorem 4.2 in the setting of switching
graphs. The (ec-cores of the) switching graphs corresponding to signed graphs on at most two edges
are shown in Figure 5.

Corollary 4.3. Let (H,II) be a signed graph not containing all three of a negative digon, a positive
loop, and a negative loop. If the s-core of (H,II) has at most two edges, then EC-HoM(P(H,II)) is
polynomial-time solvable; otherwise, it is NP-complete.

5. Concluding remarks

We conclude the paper with several remarks and questions.

5.1. The smallest case not covered by Theorem 4.2

The cases that are not covered by our dichotomy theorem all contain a negative digon and both
kinds of loops. The smallest signed graph that belongs to this family (and is an s-core) is the signed
graph (D, II) on two vertices built from a negative digon by adding to its two vertices a positive loop
and a negative loop, respectively (see Figure 6).

Proposition 5.1. s-Hom(D,II) is NP-complete.

Proof. The signed graph P(D,II) and the indicator ((I,A),4,j) are shown in Figure 6. The result of
the indicator construction P(D,II)* is the subgraph of P(D,II) induced by the positive edges that are
not loops. Hence, it is K4 minus an edge, that is, the core is K3. The result follows. O
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(D, 1) P(D,1I) ((Z,A),4,4)

Figure 6: The signed graph (D, II), the corresponding switching graph P(D,II), and the indicator ((I,A),%,j).

5.2. List homomorphisms

For a fixed graph H, the list homomorphism problem for fixed H, denoted LiISTHOM(H ), is defined
over inputs consisting of pairs (G, L) where G is a graph and L is a list function assigning a list
L(v) C V(H) of possible target vertices to each vertex v of G. The problem asks whether there
is a homomorphism f : G — H such that f(v) € L(v) for all vertices v of G. The complexity of
ListTHoM(H) is known for all undirected graphs H. When H has no loops, Feder, Hell and Huang
proved that LIsTHOM(H) is NP-complete unless H is bipartite and is the complement of a circular arc
graph [6] (then it is polynomial-time solvable). For a signed graph (H,II), problem s-ListTHoM(H, IT)
can be defined analogously as for undirected target graphs, but in the context of s-homomorphisms.
We have the following consequence of Theorem 4.2.

Corollary 5.2. Let (H,II) be a loop-free signed graph with no negative digon. Then, s-LisTHOM(H, IT)
is polynomial-time solvable if IL = O (that is, (H,1I) is balanced) and H is a bipartite graph that is the
complement of a circular arc graph. Otherwise, s-LisTHOM(H,II) is NP-complete.

Thus, all polynomial-time cases happen when II = (), and in those cases the dichotomy is described
in [6]. When loops are allowed, a dichotomy for the case I = ( is described by Feder, Hell and
Huang [7]. We do not know whether in all other cases, s-LisTHOM(H, II) is again NP-complete.

5.3. Restricted instances

Another line of research is to study s-HoM(H, II) for special instance restrictions, such as signed
graphs whose underlying graph is planar or has bounded degree. Such studies were undertaken for
undirected graphs, see for example [10] for bounded degree graphs and [19] for planar graphs.
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