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1 | INTRODUCTION

Throughout, G = (V , E ) refers to a simple loopless graph and n denotes the number of vertices in G when the graph
in question is clear. Standard graph theory notation is used throughout, but we make the following definitions explicit.

We denote by G [X ] the subgraph of G induced by X ⊆ V (G ) . A clique is a set Q ⊆ V (G ) such that G [Q ] is
a complete graph. The edge clique cover number of a graph G , denoted ecc(G ) , is the minimum number of complete
subgraphs of G whose union contains every edge of G . This parameter, also known as the intersection number of a
graph, was introduced by Erdős, Goodman, and Posa [1]. In addition to being an interesting parameter in its own right,
it is also related to a parameter known as the competition number of a graph, introduced by Cohen [2] in the study of
food webs.

We begin with the following problem:

Problem 1.1 (Chen, Jacobson, Kézdy, Lehel, Scheinerman, Wan [3]) If G is a claw free graph, is ecc(G ) ≤ n?

As evidence, it was shown in [3] that the answer is “yes” in the special case of quasi-line graphs (graphs where the
neighborhood of any vertex can be partitioned into two cliques), a question which was of interest from the point of
view of competition numbers of graphs. Recently, Javadi and Hajebi [4] have given an affirmative answer to Problem
1.1 when α (G ) ≥ 3. Their result relies heavily on Chudnovsky and Seymour’s structure theorem for claw-free graphs
(see [5]), which only applies to graphs with α (G ) ≥ 3. Since their techniques cannot be extended to the case of
α (G ) = 2, Problem 1.1 is reduced to the following conjecture, which is the focus of our study in this paper:

Conjecture 1 If G is a graph with α (G ) = 2, then ecc(G ) ≤ n .

Our work is organized as follows. Section 2 contains our main results on ecc(G ) , where we improve upon the
previously best known bound of ecc(G ) ≤ cn4/3 log1/3 n if α (G ) = 2, given by Javadi, Maleki, and Omoomi in [6]1. We
also show how our results can be used to obtain even better bounds for fractional edge clique covers. In Section 3, we

1We note that an upper bound of 2(1 − o (1))n is cited in [4], which is claimed to have been shown in a manuscript written by one of the authors of that
paper. However, this manuscript does not appear to be available in publication and no explicit proof is given elsewhere.
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consider the dual problem of packing edges with respect to cliques. In Section 4, we present some basic observations
about graphs of independence number 2 and use them to derive properties that any minimal counterexample to
Conjecture 1 must have, if one exists. Finally, in Section 5, we examine ecc(G ) for some interesting subclasses of
graphs with independence number 2; in particular, we consider forbidden induced subgraphs, the complete joins of
graphs, and graphs with bounded diameter.

2 | IMPROVED UPPER BOUNDS

2.1 | Edge clique cover number

We begin with the following simple lemma.

Lemma 2.1 If α (G ) ≤ 2 and x is a vertex of G , N (x ) induces a clique in G .

Given a graph G , we say that an edge e ∈ E (G ) is a dominating edge if every v ∈ V (G ) is adjacent to an end of e .
The proof of our main result relies on the two following lemmas:

Lemma 2.2 If G with α (G ) ≤ 2 has no dominating edge, then ecc(G ) ≤ n .

Proof The hypothesis on G implies that the ends of any edge of G belongs to some N (x ) . Hence the collection of all
non-neighborhoods constitutes a family of n cliques (by Lemma 2.1) that cover all edges of the graph.

Lemma 2.3 Let G be a graph with α (G ) = 2. For an edge e ∈ E (G ) , α (G − e) > α (G ) if and only if e is not a dominating
edge.

Proof Let x and y be the endpoints of e . First we prove that if e is not a dominating edge, then α (G − e) > α (G ) .
Since e is not a dominating edge, there exists a vertex v ∈ V (G ) such that xv < E (G ) and yv < E (G ) . Thus, in
graph G − e the set {x , y ,v } is an independent set. Therefore, α (G − e) ≥ 3 > 2 ≥ α (G ) . Now, we prove that if e
is a dominating edge, then α (G − e) = α (G ) . Since for every v ∈ V (G ) , v is adjacent to at least one of x or y , no
independent set of size 3 can contain x and y in G − x y . Thus, α (G − e) = α (G ) .

In [6], it is shown that there is a constant c such that ecc(G ) ≤ cn4/3 log1/3 n if α (G ) = 2. By applying Lemmas
2.2 and 2.3, we obtain the following general theorem, which implies a linear upper bound for ecc(G ) in terms of n .
Recall that the vertex cover number of a graph G , denoted β (G ) , is the cardinality of a smallest set of vertices which
is incident to every edge of G .

Theorem 2.4 Let G be a graph with α (G ) = 2. If G ′ is a minimal spanning subgraph with α (G ′) = 2, then ecc(G ) ≤
n + β (G − E (G ′)) .

Proof Let D = E (G ) \E (G ′) and letGD = (V (G ),D ) (or, equivalently, GD = G −E (G ′)). As a consequence of Lemma
2.3, every edge of D is a dominating edge in G . By minimality, no edge remaining in G ′ is a dominating edge of G ′. By
Lemma 2.2, G ′ has an edge clique cover C of size at most n . Since the only edges of G which are not covered by C
are those in D , we are left to find a set of at most β (GD ) cliques which cover D in G .

Let v ∈ V (G ) be any vertex and denote by Dv = {vu1, . . . ,vuk } the edges of D incident to v . Since u1, . . . ,uk
are non-neighbors of v in G ′, they form a clique in G ′ by Lemma 2.2, and thus form a clique in G as well. Let Kv =
{v ,u1, . . . ,uk }; clearly Kv covers Dv . IfW is a vertex cover for GD , then every edge of D is incident to some vertex
w ∈W . It then follows that {Kw : w ∈W } covers D , and so D can be covered by at most β (GD ) cliques as desired.
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Corollary 2.5 If G is a graph with α (G ) = 2, then ecc(G ) ≤ n + δ (G ) .

Proof Let G ′, D , and GD be as in the proof of Theorem 2.4. Recalling that every edge in D is a dominating edge in
G , it follows that, for any vertex v ∈ V (G ) , every edge of D is incident to a vertex of NG′ [v ]. Let v be a vertex of
minimum degree. If some edge of D is incident to v , dG′ (v ) ≤ δ (G ) − 1 and so NG′ [v ] is a vertex cover for GD of
cardinality at most (δ (G ) − 1) + 1 = δ (G ) . On the other hand, if no edge of D is incident to v , then in fact NG′ (v )
suffices for our vertex cover, which also has cardinality at most δ (G ) .

Corollary 2.6 If G is a graph with α (G ) = 2, then ecc(G ) ≤ 2n − c
√
n log n for some absolute constant c > 0.

Proof Again, let G ′, D , and GD be as in the proof of Theorem 2.4. If the vertices x , y , z form a triangle in GD , then
{x , y , z } is an independent set in G ′. By our choice of G ′ to have α (G ′) = 2, it follows that GD is triangle-free. It
is known that every triangle-free graph has an independent set of size Ω (

√
n log n) [7]. Since the complement of an

independent set is a vertex cover, we get an upper bound of n − c
√
n log n for the size of a vertex cover of GD , and so

G has an edge clique cover of size at most 2n − c
√
n log n .

Corollary 2.6 makes explicit use of the lower bound known on the Ramsey number R (3, t ) (the minimum value of
n such that every n-vertex graph contains either a clique of size 3 or an independent set of size t ). It is worth noting
that this bound was shown to be tight by a famous theorem of Kim [8], and so any significant improvement to the
bound given in Corollary 2.6 will almost certainly require a different approach than that of Theorem 2.4.

2.2 | Fractional edge clique covers

Consider the fractional version of the problem. A graph G has a fractional edge clique cover of size k if there exists a
set of cliques Q and a real-valued weight function w such that

1. w (Q ) ≥ 0 for all Q ∈ Q,
2.

∑
Q : e∈E (G [Q ])

w (Q ) ≥ 1 for each e ∈ E (G ) , and

3.
∑
Q∈Q

w (Q ) = k .

The fractional edge clique cover number of a graph G , denoted eccf (G ) and first studied in [9], is the smallest k
such that G has a fractional edge clique cover of size k . The proof of Theorem 2.4 is easily modified to give an upper
bound on eccf (G ) which is an improvement on its integer counterparts.

Theorem 2.7 If G is a graph with α (G ) = 2, then eccf (G ) ≤ 3
2 n .

Proof Let G , G ′, and D be as in the proof of Theorem 2.4. As before, we begin with an edge clique cover of G ′ of
size at most n . Instead of taking a vertex cover for D , we take the set {Kv | v ∈ V (G ) }. Note that each edge of D is
covered twice by {Kv }. Thus, by assigning weight 1 to the cliques covering G ′ and weight 1

2 to each Kv , we obtain
the desired result.
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3 | EDGE PACKING WITH RESPECT TO CLIQUES

A set of edges E ′ ⊆ E (G ) is called an edge packing with respect to cliques (which we will simply call a packing for
the remainder of this work) if for any two distinct edges e1, e2 ∈ E ′, no clique of G contains both e1 and e2. The
packing number of G , denoted pack(G ) , is the maximum size of a packing of G . Since no clique of G can cover two
edges of a packing, ecc(G ) ≥ pack(G ) . Indeed, it is easy to see that if we consider the edge clique cover problem
as an integer program, then the edge packing problem is its dual. It thus easily follows that pack(G ) ≤ packf (G ) =
eccf (G ) ≤ ecc(G ) , where packf (G ) is the value of an optimal solution to the linear relaxation of the edge packing
integer program.

We begin with two simple observations.

Proposition 3.1 If F is a packing of G and v ∈ V (G ) , then v is incident to at most α (G ) edges that belong to F .

Proof Denote by GF = (V , F ) the graph G restricted to F . The neighborhood of v in GF must form an independent
set in G , as otherwise two packed edges would belong to a common triangle.

This leads us to an easy to obtain upper bound on pack(G ) in the case where α (G ) = 2.

Proposition 3.2 If G is a graph with α (G ) = 2, then pack(G ) ≤ n .

Proof By Proposition 3.1, each vertex v has at most 2 incident packed edges. By a handshaking argument, pack(G ) ≤
n .

One may tempted to conjecture that, should a counterexample exists to Conjecture 1, it should have very large
packing number. The following theorem shows, perhaps somewhat surprisingly, that graphs with α = 2 and maximum
possible packing number actually satisfy Conjecture 1.

Theorem 3.3 If α (G ) = 2 and pack(G ) = n , then ecc(G ) = n .

Proof Let F be a packing of n edges. By Proposition 3.1, every vertex is incident to exactly two edges of F . For
u,v ∈ V , denote Nu,v = NG [u ] ∩ NG [v ]. We prove that for every uv ∈ F , Nu,v is a clique, and that the collection of
cliques {Nu,v : uv ∈ F } covers E (G ) .

Let v ∈ V (G ) be an arbitrary vertex, and let v1,v2 ∈ V (G ) be such that vv1,vv2 ∈ F (note that this implies that
v1v2 < E (G )). If vz ∈ E for some z , then z must be a neighbor of at least one of v1 or v2, for if not, {v1,v2, z } form
an independent set. We now argue that z is adjacent to exactly one of v1 and v2. Suppose that both v1z ,v2z ∈ E . Let
z1, z2 ∈ V (G ) be such that zz1, zz2 ∈ F . Note that z1, z2 must be distinct from v , as well as from v1,v2 – if vi = z j
for i , j ∈ {1, 2}, then vvi , zvi are both packed edges in the {v ,vi , z } triangle, a contradiction. If z1 is a neighbor of v ,
then as above, it must be also neighbor of v1 or v2. Suppose w.l.o.g. that z1v1 ∈ E . Then {v1,v , z , z1 } form a clique,
contradicting that vv1 and zz1 are both packed edges. Therefore, vz1, and by the same argument vz2, cannot be
edges, implying that {v , z1, z2 } is an independent set, a contradiction. Thus, no neighbor of v is a common neighbour
to both v1 and v2; in other words, Nv ,v1 \ {v } are all non-neighbors of v2. This implies that Nv ,v1 \ {v } is a clique (since
α (G ) = 2), and thus so is Nv ,v1 as claimed.

It remains to show that these cliques cover all edges of G . If vz ∈ E (G ) , where z < {v1,v2 }, then exactly one of
v1z and v2z is an edge of G , as argued above. In other words, every edge incident to v must lie either in the clique
Nv ,v1 or the clique Nv ,v2 . Thus {Nu,v : uv ∈ F } covers E (G ) .
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We note that infinite families of graphs satisfying the conditions of Theorem 3.3 exist. Javadi and Hajebi [4] show
that the pth power of the cycle C3p+1 has independence number 2 and edge clique cover number 3p + 1; it is easy to
check that pairs of vertices at distance p around such a cycle are adjacent in C3p+1 and these edges form a packing.
This also shows that the bound in Proposition 3.2 cannot be improved upon.

It may seem tempting to consider this as evidence in favour of the validity of Conjecture 1, as graphs with low
packing number might seem to be easier to cover with few cliques. However, ecc(G ) can be much greater than
pack(G ) – the completemultipartite graphK2,2,...,2 with n parts satisfies α (G ) = 2, pack(G ) = 4, and ecc(G ) = θ (log n)
for large enough n [9].

4 | TOWARD A MINIMUM COUNTEREXAMPLE TO CONJECTURE 1

We now establish a number of lemmas, stated in their most general form, which will allow us to simply state a number
of properties that any vertex-minimal counterexample to Conjecture 1 must possess, if such a graph exists.

Lemma 4.1 If G is a graph with α (G ) = 2 and u ∈ V (G ) is an arbitrary vertex, then

1. ecc(G ) = ecc(G − u) + k if d (u) = n − 1, where k denotes the number of isolated vertices in G − u ;
2. ecc(G ) ≤ ecc(G − u) + 1 if u is simplicial (i.e. if N (u) is a clique);
3. ecc(G ) ≤ ecc(G [N (u) ]) + ` + d (u) + 1 if 1 < d (u) < n − 1, where ` denotes the number of isolated vertices in

G [N (u) ];
4. ecc(G ) ≤ 2d (u) + 1 if ecc(G [N (u) ]) ≤ d (u) ;
5. ecc(G ) ≤ n if δ (G ) ≤ n−1

2 and ecc(G [N (u) ]) ≤ d (u) where u is a vertex of minimum degree.

Proof The proofs of the first two claims are left to the reader. To prove the third, let C be a minimal clique cover
of G [N (u) ] for some vertex u satisfying the given condition. By adding u to each C ∈ C, we obtain a collection of
cliques which covers all edges in G [N [u ] ]. By Proposition 2.1, N (u) is a clique, and so we are left only to cover those
edges from N (u) to N (u) . To do this, for each x ∈ N (u) we add the clique {x } ∪ (N (x ) ∩N (u)) . Altogether we have
at most ecc(G [N (u) ]) + d (u) + 1 cliques, as claimed. The fourth claim follows from the third, and the fifth from the
fourth.

Proposition 4.2 Let G be a graph with α (G ) = 2. If G contains distinct vertices x , y ∈ V (G ) such that N [x ] ⊆ N [y ],
then ecc(G ) ≤ ecc(G − y ) + 1.

Proof If there exists such x and y , note that Z = N (y ) \ N (x ) is a clique. The family of at most ecc(G − y ) cliques
covering the edges of G − y can easily be extended to the desired collection of ecc(G − y ) + 1 cliques by adding y to
every clique that contains x , and adding a new clique {y } ∪ Z to the collection.

Proposition 4.3 LetG be a graphwith α (G ) = 2. IfG contains non-adjacent vertices x , y ∈ V (G ) such thatN (x ) ( N (y )
and ecc(G − y ) ≤ n − 1, then ecc(G ) ≤ n .

Proof Since α (G ) = 2 and x and y are non adjacent, every other vertex is adjacent to either x or y . Since N (x ) ⊆
N (y ) , this gives thatV (G ) = {x , y } ∪N (y ) . Note also that if there is an isolated vertex in the graph induced by N (y ) ,
then N (y ) is just a clique plus an isolated vertex. With the addition of x and y , G can be edge covered with four
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cliques. Since we may easily assume that G has at least 4 vertices, we need only consider the case when every vertex
in N (y ) has a neighbor in N (y ) .

Let A = N (y ) \ N (x ) , which is non-empty by assumption. Denote by B the set of vertices in N (x ) which have a
neighbor in A, and let C = N (x ) \B . Since A is non-empty and α (G ) = 2, C is a clique. Let C1,C2, ...Cp , with p ≤ n −1,
be the collection of cliques which covers all edges of G \ y . For every i such that Ci does not contain x , we add y to
the clique Ci (it is still a clique since y dominates every vertex but x ). We also add a new clique {y } ∪ C . We claim
that this collection of at most n cliques is an edge cover of G . Every vertex a in A is adjacent to some edge in N (y ) ,
so it must be contained in some clique Ci that cannot contain x (since x and a are not adjacent), and therefore the
edge y a will be covered by the new clique Ci ∪ {y }. Every vertex b ∈ B is adjacent to some vertex a in A so the edge
ab must be contained in some clique that cannot contain x , so similarly the new clique with y will contain the edge
yb . Since we added the clique {y } ∪ C the collection is an edge cover as claimed.

Proposition 4.4 Let G be a graph with α (G ) = 2. If G contains non-adjacent vertices x , y such that N (x ) = N (y ) and
ecc(G − {x , y }) ≤ n − 2, then ecc(G ) ≤ n .

Proof As in the proof of Proposition 4.3,V (G ) = {x , y } ∪ N (y ) and we may assume that every vertex in N (y ) has a
neighbor in N (y ) . Let G ′ be the graph induced by N (y ) . If G ′ is complete then G satisfies the theorem. Assume then
that x ′ and y ′ are non adjacent vertices inG ′. Now apply induction toG ′ and get a family of cliques C1,C2, ...Cp , with
p ≤ n − 2 that cover all edges of G ′. We add x to every clique that contains x ′, and y to every clique that contains
y ′ (note that no clique contain both x ′ and y ′). Denote by X (resp. Y ) be the set of neighbors of x ′ (resp. y ′) in G ′.
Because α (G ) = 2, X \Y and Y \ X induce cliques. It is easy to check that adding the cliques {x } ∪ (Y \ X ) and
{y } ∪ (X \Y ) gives a collection of at most n cliques that cover every edge.

Lemma 4.5 Let G be a graph with α (G ) = 2. If X is a clique such that |X | ≥ n+1
2 and ecc(G − X ) ≤ |G − X |, then

ecc(G ) ≤ n .

Proof Let |X | = k . If v ∈ V (G − X ) has a neighbor in X , let Gv be the graph induced by v and all its neighbors in
X . The collection of all Gv ’s covers all edges from X to G − X , and so G has an edge clique cover of size at most
(n − k ) + (n − k ) + 1 ≤ 2n − 2 n+12 + 1 = n .

Lemma 4.6 If G is a graph with α (G ) = 2, X ⊂ V (G ) is a vertex cut, and ecc(G [X ]) ≤ |X | < n−1
3 , then ecc(G ) ≤ n .

Proof Let |X | = k . Since α (G ) ≤ 2, G − X must have exactly 2 connected components (call them A and B ) and each
much be a complete graph. Let X = {x1 . . . , xk }, let Ai = G [xi ∪ (N (xi ) ∩V (A)) ], and let Bi = G [xi ∪ (N (xi ) ∩V (B)) ].
The collection of Ai ’s and Bi ’s are complete graphs which cover all edges from X to A∪B . By assumption, the edges of
G [X ] can be covered by at most k complete subgraphs. Finally, we must cover A and B . Note that if x1 is nonadjacent
to a vertex in B , then it must be complete to A (and vice versa). Thus, either A or B (possibly both) has already been
covered, and at most one more complete subgraph is needed. Thus E (G ) can be covered by 3k + 1 ≤ n complete
subgraphs.

Lemma 4.6 implies that any minimal counterexample to Conjecture 1 must have large connectivity. The following
lemma implies that in any minimal counterexample, if it exists, any two non-adjacent vertices must have a large com-
mon neighbourhood, and the one following it shows that the connectivity bound can be improved if one considers
only connected separators.



Charbit, Hahn, Kamiński, Lafond, Lichiardopol, Naserasr, Seamone, Sherkati 7

Lemma 4.7 Let G be a graph with α (G ) = 2 and let u,v ∈ V (G ) be a pair of non-adjacent vertices. If ecc(G [N (u) ∩
N (v ) ]) ≤ |N (u) ∩ N (v ) | and |N (u) ∩ N (v ) | ≤ n−2

5 , then ecc(G ) ≤ n .

Proof For two non-adjacent vertices u,v ∈ V , let Nu = N (u) \ N (v ) , Nv = N (v ) \ N (u) and Nuv = N (u) ∩ N (v ) .
We denote the cardinalities of these sets by nu = |Nu |, nv = |Nv |, nuv = |Nuv |. By Lemma 2.1, G [Nu ∪ {u }] and
G [Nv ∪ {v }] are cliques inG . By assumption, nuv cliques coverG [Nuv ]. Consider the remaining edges to be coverered
– (Nu ,Nv ), (Nu ,Nuv ), (Nv ,Nuv ), (Nuv , {u,v }) –where (A,B) denotes the set of edges between two setsA,B ⊂ V (G ) .
Let C yx denote the clique induced by {x , y } ∪ (N (x ) ∩Ny ) , where x ∈ Nuv , y ∈ {u,v }. There are nuv such cliques for
each of y = u and y = v , and the collection of these cliques cover the edges (Nu ,Nuv ), (Nv ,Nuv ) , and (Nuv , {u,v }) .
To cover the remaining edges of (Nu ,Nv ) , we choose the smaller of Nu and Nv (without loss of generality Nu ), and
for each z ∈ Nu use the clique induced by {z } ∪ (N (z ) ∩ Nv ) . In total, the number of cliques used to cover E (G ) is
2 + nuv + 2nuv +min{nu , nv } ≤ 2 + n−2

5 + 2(n−2)
5 + 1

2

(
n − n−2

5 − 2
)
≤ n .

Lemma 4.8 Let G be a graph with α (G ) = 2. If G contains a minimal vertex cut S such that G [S ] is disconnected, then
ecc(G ) ≤ n

2 + 4.

Proof Suppose a subset S of V (G ) separates G into two cliques and is disconnected. If S induces a disconnected
graph, then this graph has exactly two connected components whichmust be cliques. ThenG consists of four pairwise
disjoint cliques, say S0, S1, S2, S3, with S = S0 ∪ S2 and V (G ) \ S = S1 ∪ S3 and (Si , Si+2) = ∅ (addition modulo 4).
Observe that S1 ∪ S3 is also a separating set of G and one of the two separating sets has at most half of the vertices
of G . Without loss of generality, assume it is S . Further, each of the cliques Si is the union (as described above) of
two sets of vertices, those adjacent to all of Si+1 and those adjacent to all of Si−1. Let us denote these sets by S+i and
S−
i
. Clearly the sets Si ∪ S+i−1 and Si ∪ S

−
i+1 induce cliques in G and cover most of the edges of G , in particular all the

edges of the cliques induced by the Si . It remains to cover the edges between Si and S+i+1 and between Si and S−i−1.
This is quite easy since each vertex of Si only needs to cover the edges to at most one of S+

i+1 and S
−
i−1. The cliques

consisting each of a vertex x ∈ S∗
j
\ (S+

j
∩ S−

j
) for j = 0, 2, and its neighbors in Sj ∗1 ( ∗ ∈ {+,−}) cover the edges that

need to be covered and there are at most n2 of them. Thus, ecc(G ) ≤ n
2 + 4.

From Lemmas 4.1 to 4.8, we may deduce the following:

Theorem 4.9 If G is a minimal counterexample to Conjecture 1, then

1. ∆(G ) < n − 1;
2. δ (G ) ≥ n

2 − 1;
3. G contains no vertices x , y such that N (x ) ⊆ N (y ) or such that N [x ] ⊆ N [y ];
4. κ (G ) ≥ n

3 and any minimal vertex cut induces a connected subgraph of G ;
5. ω (G ) ≤ n

2 ;
6. for any pair u,v of nonadjacent vertices, nuv > n−2

5 ;

Furthermore, since the proofs of Lemmas 4.1 to 4.8 are all inductive, Theorem 4.9 holds when restricted to any
class G of graphs having some hereditary property P (in particular, for H -free graphs, which we consider in Section
5.3).
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5 | COVERINGS IN PARTICULAR GRAPH CLASSES

This final section considers ecc(G ) for particular classes of graphs when restricted to those satisfying α (G ) = 2.

5.1 | Bounded vertex cover number

A graph G is called tame if there exists a connected claw-free graph H with α (H ) ≥ 3 such that G is an induced
subgraph of H . In [4], it is shown that if G is a tame graph, then ecc(G ) ≤ n + 1, and further that ecc(G ) ≤ n if G is
not the union of 3 cliques. They note, specifically, that graphs with independence number 2 which are the union of 3
cliques are tame. Corollary 5.2 below provides a similar result for graphs which are the union of 3 cliques but which
may have arbitrary independence number, with only a small additional cost in the number of cliques required to cover
the edges. We begin by first proving a simple but more general lemma.

Lemma 5.1 IfV (G ) can be covered by k disjoint cliques of size n1 ≥ n2 ≥ . . . ≥ nk , then ecc(G ) ≤ k +
∑k
i=1 (i − 1)ni .

Proof Weproceed by induction on k . The statement is trivial when k = 1, so assume that k > 1 and that the statement
holds for all positive integers less than k . Let Q i be the clique of size ni in the vertex cover given by the statement of
the theorem, and let G ′ = G − Qk . Since G ′ can be covered by k − 1 cliques, ecc(G ′) ≤ k − 1 + ∑k−1

i=1 (i − 1)ni . We
extend this clique cover as follows. First, for each q ∈ Qk and i ∈ {1, . . . , k − 1}, add the clique q ∪ (NG (q ) ∩ Q i ) .
This adds (k − 1)nk cliques which cover all edges with exactly one end in Qk . Adding the clique Qk gives our desired
clique cover of size k +∑k

i=1 (i − 1)ni .

In the special case when k = 3, we obtain the following corollary, again noting that in the special case where the
graph is also claw-free, then a stronger upper bound of n + 1 is given in [4]. We make use of this result in Section 5.3
for a specific class of graphs whose vertices can be covered by three cliques.

Corollary 5.2 If χ (G ) can be properly 3-coloured with colour classes of size p ≥ q ≥ r , then ecc(G ) ≤ 2r + q + 3 and, in
particular ecc(G ) ≤ n + 3.

Note that a further corollary to Corollary 5.2 is that if G is a minimal counterexample to Conjecture 1, then either
χ (G ) ≥ 4 or every proper 3-colouring of G has colour classes of roughly equal size.

In light of the bound given in Corollary 2.6, we also note the following can be proven by a similar argument:

Corollary 5.3 If χ (G ) = 4, then ecc(G ) ≤ 3
2 n + 4.

5.2 | Fixed diameter

We show that any future work can be restricted to those graphs having diameter exactly 2.

Proposition 5.4 If G is a graph with α (G ) ≤ 2, then G has diameter at most 3.

Proof By contradiction, suppose that there is a vertex u and vertices vi , i = 1, 2, 3, 4 such that vi is at distance i from
u . The independent set u,v2,v4 contradicts the assumption of α (G ) = 2.

Theorem 5.5 If G is a graph with α (G ) = 2 and diam(G ) = 3, then ecc(G ) ≤ d n2 e + 1.
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Proof Let u,v ∈ V (G ) be at distance 3. Let Ni (u) denote the set of vertices at distance i from u in G . By Lemma 2.1,
the sets Ni (u) induce complete graphs for i = 1, 2, 3, since there are no edges between Ni (u) and Ni+2 (u) for i = 0, 1.
Further, the set N2 (u) ∪ N3 (u) induces a complete graph since if u3 ∈ N3 (u) and u2 ∈ N2 (u) are not adjacent, the
set {u,u2,u3 } is independent. Thus N2 (u) ∪ N3 (u) and N [u ] are two cliques which cover all edges of G except those
having one end in N1 (u) and the other in N2 (u) . Let A be the smaller of N1 (u),N2 (u) and let B be the other. Clearly
|A | ≤ n−2

2 and the cliques Cx induced by {x }∪ (N (x ) ∩B) for x ∈ A cover the remaining edges. Thus E (G ) is covered
by at most 2+ d n−22 e = d

n
2 e +1. Note that d

n
2 e +1 ≤ n whenever n ≥ 2, and that this is the case in a graph of diameter

3.

5.3 | Forbidden induced subgraphs

Recall that a graph G is called H -free if no induced subgraph of G is isomorphic to H . In this section, we give bounds
on ecc(G ) for a variety of H -free graphs, ultimately showing that Conjecture 1.1 holds when restricted to H -free
graphs if H is any graph on four vertices. To this end, we remind the reader of the graphs on four vertices which do
not contain three independent vertices, given in Figure 1.

2K2 P4 co-claw C4 paw diamond K4

F IGURE 1 4-vertex graphs with α ≤ 2

Proposition 5.6 If G is 2K2-free and α (G ) = 2, then ecc(G ) ≤ n .

Proof Let x and y be non-adjacent vertices. Since α (G ) = 2, {x , y } must dominate the graph. Let X = N (x ) \ N (y ) ,
Y = N (y ) \ N (x ) , and Z = N (x ) ∩ N (y ) . By Theorem 4.9 and the observation at the end of Section 4 that the
theorem applies to H -free graphs, we may assume that X andY are non-empty. Since α (G ) = 2, each of X andY is
a clique; since G is 2K2-free, X is complete toY . Thus X ∪Y is a clique. Let n′ denote the order of G − {x , y } −X −Y .
By induction, ecc(G − {x , y } − X −Y ) ≤ n′. The remaining edges may be covered by the cliques x ∪ X , y ∪Y , and
X ∪Y , and so the edges of G may be covered by at most n′ + 3 < n cliques.

Proposition 5.7 If G is P4-free and α (G ) = 2, then ecc(G ) ≤ n .

Proof It is well known (see, e.g., [10]) that any P4-free graph contains adjacent twins (that is, two verticeswith identical
closed neighbourhoods), and so the bound follows immediately from Lemma 4.2.

Proposition 5.8 If G is co-claw-free and α (G ) = 2, then ecc(G ) ≤ n .

Proof The assumptions onG imply thatG is the disjoint union of isolated vertices, paths, and cycles of length at least
4. If G has an isolated vertex, then G has a universal vertex and the result follows from Lemma 4.1.1 by an inductive
argument. If some connected component of G is a path, then let x be an end of the path and y a neighbour; in this
case, NG (y ) ( NG (x ) , and the result follows from Proposition 4.3. The final case to consider is that G is a collection
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of disjoint cycles. It follows that χ (G ) ≤ 3, and G can be 3-coloured with colour classes of size p ≥ q ≥ r , where r
equals the number of odd cycles in G . If 2r + q + 3 ≤ n , then ecc(G ) ≤ n by Lemma 5.2. Suppose that 2r + q + 3 > n .
Since q ≤ 1

2 (n − r ) , it follows that 3r +6 > n . Combining this bound with the fact that n ≥ 5r , we have that n < 15 and
so r < 3. If r = 2, then G must be the disjoint union of two 5-cycles. If r = 1, then n ≤ 8 and G is a 5-cycle or 7-cycle,
and if r = 0 then G is a 4-cycle. It is easy to check that each of these three graphs satisfy ecc(G ) ≤ n , completing the
proof.

Rather than considering the cases of C4, the paw, and the diamond separately, we prove a stronger result on
P2 ∪ P3-free graphs (where P2 ∪ P3 denotes the complement of the disjoint union of a 2-vertex path and a 3-vertex
path), noting that P2 ∪ P3 contains each of C4, the paw, and the diamond as an induced subgraph.

F IGURE 2 P2 ∪ P3

Theorem 5.9 If G is P2 ∪ P3-free and α (G ) = 2, then ecc (G ) ≤ n .

Proof LetG be a minimal counterexample. As mentioned at the end of Section 4, Theorem 4.9 holds when restricted
to H -free graphs; for the rest of this proof we let H = P2 ∪ P3. In particular, we may assume that G has no universal
vertex, and that G contains no pair of vertices u,v such that N (u) ⊆ N (v ) or N [u ] ⊆ N [v ]. We may also assume, by
Lemma 2.2, that G has a dominating edge x y . Let us denote by X ,Y , Z the sets X = N (x ) \ N (y ) ,Y = N (y ) \ N (x ) ,
and Z = N (x ) ∩ N (y ) . Note that X andY are cliques.

It is easy to see that because the graph is H -free, every vertex in X has at most one neighbour inY and vice versa.
Moreover if a vertex u ∈ X has no neighbour in Y then N [u ] ⊆ N [x ], a contradiction. Thus, X and Y have same
order and the edges between X andY form a perfect matching x1y1, x2y2, . . . , xp yp .

Let z be a vertex in Z . It is easy to see that if z is not adjacent to yi then it is not adjacent to xi , since the graph
is H -free. Furthermore, z must be adjacent to every other xj and yj since α (G ) = 2. This implies that Z can be
partitioned (Z0, Z1 . . . Zp ) , where Z0 is the set of vertices in Z adjacent to every vertex in X ∪Y and Zi the set of
vertices in Z adjacent to every vertex in X ∪Y except xi and yi . Note, moreover, that for every i ≥ 1, Zi is a clique
since α (G ) = 2 and xi is a non neighbour of the vertices in Zi . Figure 3 represents the graph at this point of the proof;
we proceed by cases on possible values of p .
Case 1: p ≥ 4
We claim that Z is a clique. Let i and j be distinct integers between 0 and p , and let r , s be distinct integers in
{1, . . . , p } \ {i , j }. The vertices {x , yr , xs } induce a P3 which dominates Zi ∪ Z j , and so Zi ∪ Z j is a clique, and thus so
is Z . We may then cover the edges of G with all cliques of the form{xi , yi } ∪ Z \ Zi together with the three cliques
{x , y } ∪ Z , {x } ∪ X and {y } ∪Y .

Case 2: p = 3
Let i be an integer between 1 and p , and let r , s be distinct integers in {1, . . . , p } \ {i }. The vertices {x , yr , xs } induce
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x1

x2

x3

xp

y1

y2

y3

yp

x y

X Y

Z1

Z2

Z3

Zp

Z0

Z

F IGURE 3 The structure of a minimal counterexample to Theorem 5.9.

a P3 which dominates Zi ∪ Z0, and so (as in Case 1), Zi ∪ Z0 is a clique. In particular, if Z0 is non-empty, then each
element of Z0 is a universal vertex in G , a contradiction. Thus, we may assume that Z0 = ∅.

Let t = n − 8 be the number of vertices in Z . If G [Z ] has no isolated vertex, then it is possible to cover all the
edges of G [Z ] with t cliques by induction. We add the edge x y to every clique to get a family of t cliques that cover
all edges within the graph induced by Z ∪ {x , y }. On the other hand, if Z has an isolated vertex u , then it has exactly
one since α (G ) = 2. We can then cover the edges of G [Z ] by t − 1 cliques by induction, add the edge x y to each of
those cliques, and add the triangle x yu to get a family of t cliques that cover all edges within the graph induced by
Z ∪ {x , y }. We finally add the two cliques {x } ∪ X and {y } ∪Y and the following six cliques to obtain our desired
edge cover: {x1, y1 } ∪ Z2, {x1, y1 } ∪ Z3, {x2, y2 } ∪ Z1, {x2, y2 } ∪ Z3, {x3, y3 } ∪ Z1, {x3, y3 } ∪ Z2.

Case 3: p = 2
By a similar argument as in Case 2, we use the P3 induced by {x , y1, x2 } to deduce that Z0 is a clique. Also by a similar
argument to that in Case 2, it is possible to cover the edges of G [Z ∪ {x , y }] with t = |Z | = n − 6 cliques. We add
the two cliques {x } ∪ X and {y } ∪Y and the following four cliques to obtain our desired edge cover: {x1, y1 } ∪ Z0,
{x1, y1 } ∪ Z2, {x2, y2 } ∪ Z0, {x2, y2 } ∪ Z1.

Case 4: p = 1
Again, we apply an inductive argument to get a family of cliques of size |Z | = n − 4 which covers all edges of
G [Z ∪ {x , y }]. Now, since x and y1 are non-adjacent vertices which are complete to Z0, there can be no P3 in
the complement of G [Z0 ] as G is H -free. In other words, Z0 must be a clique minus a matching. In particular, Z0 is
the union of two cliques A and B . Now we add the cliques A ∪ {xx1 }, A ∪ {y y1 }, B ∪ {x1y1 } B ∪ {x y } to obtain the
desired edge cover.
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Case 5: p = 0
In this case, x and y are universal vertices, a contradiction.

Finally, we note that any K4-free graph with α (G ) = 2 has at most 8 vertices, as R (3, 4) = 9. It is easily checked
that these graphs, presented as their graph6 strings in Figure 4 (see [11] for their complements), satisfy Conjecture 1.

@

A?

A_

BG

BW

Bw

CJ

CK

CL

CN

C]

Cˆ

DJk

DK[

DK{

DLo

DL{

DNw

D]{

D‘K

Dbk

EJaG

EJeg

EJnW

EJqw

EKlw

EK~o

ELpw

ELrw

ELv_

EL~o

E]~o

E‘NG

E‘NW

E‘]o

Eklw

FJvdw

FL]uW

FLr~o

FLvvO

F‘v‘w

Fb]lg

Fbg}w

FjaHw

FkYXw

G}UczW

G]ˆVLo

GJnTUK

F IGURE 4 The graph6 strings of those graphs satisfying ω ≤ 3 and α ≤ 2.

The results of this section imply the following:

Theorem 5.10 Let G be a graph with α (G ) = 2, and let H be any graph on four vertices. If G is H -free, then ecc(G ) ≤ n .

5.4 | Graph joins

LetG andG ′ be two graphs. the complete join ofG andG ′, denotedG ∨G ′ is the graph obtained by taking the disjoint
union of G and G ′ and adding all edges in between the two.

It is clear that α (G ∨G ′) = max(α (G ), α (G ′)) and in particular α (G ∨G ′) = 2 if α (G ) = α (G ′) = 2. Therefore, in
view of the conjectures examined here, one natural question is to ask whether ecc(G ∨G ′) ≤ ecc(G ) + ecc(G ′) .

The following theorem answers when G ′ is a particular graph. If H is a spanning subgraph of H ′, then we say that
H ′ is a spanning supergraph of H .

Theorem 5.11 Let G be a graph such that α (G ) = 2. If H is an induced subgraph of G and H ′ is any spanning supergraph
of H , then ecc(G ∨ H ′) ≤ ecc(G ) + |V (H ′) |

Proof Let x1, x2, . . . xn be the vertices of G such that x1, .., xk are the vertices of H in G . Let x ′1, . . . , x
′
k
the vertices

of H ′ labeled such that xi xj ∈ E (H ) → x ′
i
x ′
j
∈ E (H ′) . Let K1, . . .Kp be an optimal edge covering set of cliques for G.

For i = 1 . . . p , consider the following set of vertices in G ∨ H ′ :

K ′i = Ki ∪ {x
′
j such that xj ∈ Ki }.

Similarly for i = 1 . . . k define

K ′′i = {x
′
i } ∪ (G \ N [xi ]) ∪ {x

′
j such that x ′i x

′
j ∈ E (H

′) and x ′i x
′
j < E (H ) }

Weshow thatK ′′
i
is a clique. By Lemma2.1, (G\N [xi ]) induces a clique. Also, {x ′i }∪{x

′
j
such that x ′

i
x ′
j
∈ E (H ′) and x ′

i
x ′
j
<

E (H ) } induces a clique, because if for some j ′1 and j
′
2, x
′
j ′
1
and x ′

j ′
2
are non-neighbors, then xi , xj ′

1
and xj ′

2
form an in-

dependent set in H , a contradiction. Hence, K ′′
i
is a clique. This gives (p + k ) cliques which cover all edges of G ∨ H ′.
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6 | CONCLUSION

In this work we studied a conjecture that, if α (G ) = 2, then the edge clique cover number of G is at most |V (G ) | = n .
We have provided the first known linear bound of 2n − θ (

√
n log n) , and showed that under additional structural

conditions the conjecture holds. However, a deeper look into our proof of Theorem 2.4 suggests that perhaps the
upper bound provided by this theorem is nearly tight. The linear bound given in Corollary 2.6 relies on the lower bound
for the Ramsey number R (3, t ) , which is known to be tight (ignoring smaller order terms). By taking the complement
of a graph which attains this bound, we have a graph G with α (G ) = 2 and lowest possible clique number. By adding
a linear number of dominating edges, one may hope to construct an example where the proof technique of Theorem
2.4 is the optimal way of finding an edge clique cover. Currently, the only known technique for the construction of
such ingredient graphs is the random triangle-free process given by Kim [8]. The exploration of the details of this
technique and its applications to Conjecture 1 is left as an open direction for future research.
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