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Abstract

A routing in a graph G is a set of paths connecting each ordered pair of vertices. Load of
an edge e is the number of times it appears on these paths. The edge-forwarding index
of G is the smallest of maximum loads over all routings. Augmented cube of dimension
n, AQn, is the Cayley graph (Zn2 , {e1, e2, . . . , en, J2, . . . , Jn}) where ei’s are the vectors of

the standard basis and Ji =
n∑

j=n−i+1

ej. S.A. Choudum and V. Sunitha showed that the

greedy algorithm provides a shortest path between each pair of vertices of AQn. Min Xu
and Jun-Ming Xu claimed that this routing also proves that the edge-forwarding index
of AQn is 2n−1. Here we disprove this claim, by showing that in this specific routing
some edges are repeated nearly 4

3
2n−1 times (to be precise, b2n+1

3
c for even values of n and

d2n+1

3
e for odd values of n). However, by providing other routings, we prove that 2n−1 is

indeed the edge-forwarding index of AQn.

Key words: Augmented cubes; Edge forwarding index; HMS-routing; Optimal routing;
Interconnection networks

1. Introduction

Heydemann et al. [4] introduced the notation of the edge-forwarding index. Given a
connected graph G of order n, a routing R is a set of n(n− 1) elementary paths R(u, v)
specified for every ordered pair (u, v) of vertices of G. The load π(G,R, e) of an edge e
with respect to R is defined as the number of paths of R going through e. The edge-
forwarding index of G with respect to R, denoted π(G,R), is the maximum load of all
edges of G. The minimum edge-forwarding index over all possible routings is denoted by
π(G) and is called the edge-forwarding index of G. A routing for which π(G) is attained
is called optimal. If each path in R is a shortest path connecting its two ends, then the
routing R is said to be a minimal routing.

In [1], Choudum and Sunitha introduced the augmented cubes and studied them for
application in routing and broadcasting procedures. They provided several equivalent
definitions of these graphs. Here we present two definitions, an inductive definition and
a definition as a Cayley graph. Let Zn2 be the n-dimensional binary group and let x⊕2 y
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denote the binary sum of vectors x and y in Zn2 . The inductive definition of the augmented
cubes is as follows.

Definition 1. The augmented cubes of dimensions 1 and 2 are simply the complete graphs
on two and four vertices, respectively. For n ≥ 2 the augmented cube of dimension n,
denoted AQn, is a graph on Zn2 built from two copies AQ0

n−1 and AQ1
n−1 of AQn−1 as

follows: vertices of AQ0
n−1 (respectively AQ1

n−1) are viewed as elements of Zn2 by adding a
0 (a 1) as the first coordinate. A vertex 0x in AQ0

n−1 is adjacent, furthermore, to vertices
1x and (0x⊕2 J) in AQ1

n−1 where J is the all-1 vector in Zn2 .

Let Γ be an additive group, and let S be a symmetric subset of Γ (i.e., −S = S) such
that 0 is not in S. The Cayley graph (Γ, S) is the graph whose vertices are elements of Γ
where two vertices x and y are adjacent if x− y ∈ S.

When the binary group Zn2 is considered, then for any subset X we have X = −X.
Let en1 , e

n
2 , . . . , e

n
n be the vectors of the standard basis of Zn2 , thus eni is the binary vector

of length n whose ith-coordinate is 1 and all other coordinates are 0. For i ≥ 2, let Jni
be the binary vector of length n where the last i coordinates are 1 and the first n − i

coordinates are 0, i.e., Jni =
n∑

j=n−i+1

enj . Then the augmented cube of dimension n defined

above is known to be isomorphic to the following Cayley graph.

Proposition 2. [1] For every n ≥ 1, AQn is isomorphic to the Cayley graph (Zn2 , Sn),
where Sn = {en1 , en2 , . . . , enn, Jn2 , . . . , Jnn}.

When it is clear from the context, we write e1, e2, . . . , en and J2, . . . , Jn in place of
en1 , e

n
2 , . . . , e

n
n and Jn2 , . . . , J

n
n .

Based on Cayley graph presentation of AQn a minimal routing Rn of AQn, originally
proposed in [1], is as follows: Given vertices X and Y to find a shortest path from X to
Y we find the first coordinate (i) at which X and Y differ. If X and Y also differ in the
following coordinate (i+ 1), then we define X1 = X + Jn−(i−1) (i.e., we change the values
at coordinates i and after), otherwise we define X1 = X + ei (i.e., we change the values
only at coordinate i). Continuing this process on the newly obtained vertex, we find a
shortest path to Y .

In [5], the authors studied the edge-forwarding index of the augmented cubes. Among
other results, they claimed that π(AQn) = 2n−1 and that this value is obtained by the
minimal routing Rn. Here we show that the latter claim is not correct, we show that the
edge-forwarding index of AQn with respect to Rn is nearly 4

3
2n−1 (to be precise, b2n+1

3
c

for even values of n and d2n+1

3
e for odd values of n). We then introduce a new optimal

routing that prove the claim π(AQn) = 2n−1.
To present our work, we first present in Section 2 the notion of an HMS-routing which

was defined by Gauyacq [3]. We show that the minimal routing Rn [1] is an HMS-routing.
But its edge-forwarding index is b2n+1

3
c for even values of n and d2n+1

3
e for odd values

of n. For n = 3, we give a routing of AQ3 whose edge-forwarding index is 4. However
we prove that any HMS-routing of AQ3 has an edge of load 6, i.e., the edge-forwarding
index of any HMS-routing of AQ3 is 6. For n ≥ 4, we give an HMS-routing of AQn whose
edge-forwarding index is 2n−1.
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2. HMS-routings in Cayley graphs

We would like to recall the HMS-routing defined in [3]. Let Γ be an additive group
which is commutative. Let S be a symmetric subset of Γ and (Γ, S) be the corresponding
Cayley graph. Let 0 denote the identity element of Γ. For each γ in Γ, the permutation
φγ of Γ defined by φγ(h) = γ + h is an automorphism of (Γ, S) (i.e. a bijection that
preserves adjacency). Furthermore, observe that if P is a path connecting vertices x and
y, then the image of P under φγ is a path connecting φγ(x) and φγ(y).

Given a Cayley graph G = (Γ, S), an HMS-routing R is a routing satisfying the
following. For every vertex v 6= 0 in Γ, the route R(0, v) is any shortest path from 0
to v. For an arbitrary pair of vertices x and y in Γ the route from x to y is defined by
R(x, y) = φx(R(0, y − x)).

We denote 00 · · · 0 by 0n. Next, we want to prove that the minimal routing Rn defined
in [1] is an HMS-routing.

Observation 3. Rn is an HMS-routing of AQn for every n ≥ 1.

Proof. We know from [1] that Rn provides a shortest path from 0 to x for any x ∈ Zn2 .
It remains to show that Rn(x, y) = φx(Rn(0, y − x)). But this follows from the fact that
vectors a and b of Zn2 differs in the same coordinates as the vectors φγ(a) and φγ(b). It
would then be enough to take a = x, b = y and γ = x (noting that x = −x in Zn2 ).

We recall some notations from [3]. Let (Γ, S) be a Cayley graph. If v = u + s with
s ∈ S, then assign the type s to the ordered pair (u, v), the type −s to the ordered pair
(v, u) and say that the edge {u, v} is of type s or of type −s. A path P = (u0, u1, . . . , uk)
in (Γ, S) is uniquely determined by its initial vertex u0 and the sequence (s1, s2, . . . , sk) of
the types of pairs of adjacent vertices. In other words, for 1 ≤ i ≤ k, ui = ui−1+si. Denote
by ts(P ) the number of times the generator s occurs in the sequence (s1, s2, . . . , sk). The
following theorem was observed by Gauyacq [3].

Proposition 4. [3] Let R be an HMS-routing in a Cayley graph (Γ, S). Let 0 be the
identity and e be an edge of type s in (Γ, S). The load of e for the routing R is

π(e) =
∑

v∈Γ,v 6=0

ts(R(0, v)) +
∑

v∈Γ,v 6=0

t−s(R(0, v)).

In the augmented cubes AQn, the identity is 0n and s = −s for any s ∈ S. We get
the following corollary immediately.

Corollary 5. Let R be an HMS-routing in AQn. The load of an edge e of type s for the
routing R is

π(e) = 2
∑

X∈V (AQn),X 6=0n

ts(R(0n, X)).

The corollary shows that, for an HMS-routing, the load of an edge depends only on
its type. In a Cayley graph the problem of finding a shortest path from 0 to a vertex v
is equivalent to finding a minimum length generating sequence for the element v. The
problem of finding a minimum length generating sequence is known to be NP-hard [2].
More precisely, in [2] it is shown that given a set S of generators of the permutation group
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Sn, a permutation P and an integer k, to determine if P is generated using at most k
elements of S is NP-hard. Note that this is about finding a shortest path between two
vertices of a Cayley graph, but the complexity of the question is considered based on the
dimension of Γ rather than the number of elements of it. For the subject of our work, i.e.,
augmented cubes, it is shown in [1] that the greedy routing finds a shortest path between
given two vertices in time polynomial of the dimension of the augmented cube.

Since Rn is an HMS-routing, we will determine the edge-forwarding index of Rn by

calculating the number of times each generator appears in the set
⋃
X

R(0n, X), where

X can be any nonzero vertex of AQn. In the following, we will denote the number∑
X∈V (AQn)

ts(R(0n, X)) by |s| for short.

Theorem 6. For any positive integer n, we have π(AQn, Rn) = 2n+1

3
− (−1)n×2

3
.

Proof. Since AQ1, AQ2 are both complete graphs, π(AQ1, R1) = π(AQ2, R2) = 2 and the
formula holds.

If n = 3, by the definition of Rn, R(000, 001) = (e3
3), R(000, 010) = (e3

2), R(000, 011) =
(J3

2 ), R(000, 100) = (e3
1), R(000, 111) = (J3

3 ), R(000, 101) = (e3
1, e

3
3), R(000, 110) = (J3

3 , e
3
3).

So |e3
1| = 2, |e3

2| = 1, |e3
3| = 3, |J3

2 | = 1, |J3
3 | = 2. By the definition of the edge-forwarding

index of a routing and by Corollary 5, we get π(AQ3, R3) = 2|e3
3| = 6 = 24

3
− (−1)3×2

3
. For

example, the edge (000, 001) is used in 6 routes of R3 as depicted in Figure 1.

000 001e3
3 100 000 001e3

1 e3
3 111 000 001J3

3 e3
3

001 000e3
3 101 001 000e3

1 e3
3 110 001 000J3

3 e3
3

Figure 1: The 6 routes of R3 using the edge (000,001).

If n = 4, by the definition of Rn, we have R(0000, 0001) = (e4
4), R(0000, 0010) = (e4

3),
R(0000, 0011) = (J4

2 ), R(0000, 0100) = (e4
2), R(0000, 0111) = (J4

3 ), R(0000, 1000) = (e4
1),

R(0000, 1111) = (J4
4 ), R(0000, 0101) = (e4

2, e
4
4), R(0000, 0110) = (J4

3 , e
4
4), R(0000, 1001) =

(e4
1, e

4
4), R(0000, 1010) = (e4

1, e
4
3), R(0000, 1100) = (J4

4 , J
4
2 ), R(0000, 1011) = (e4

1, J
4
2 ),

R(0000, 1101) = (J4
4 , e

4
3), R(0000, 1110) = (J4

4 , e
4
4). So |e4

1| = 4, |e4
2| = 2, |e4

3| = 3, |e4
4| = 5,

|J4
2 | = 3, |J4

3 | = 2, |J4
4 | = 4. By the definition of the edge-forwarding index of a routing

and by Corollary 5, we get π(AQ4, R4) = 2|e4
4| = 10 = 25

3
− (−1)4×2

3
.

In general, for n ≥ 5 we show that in the routing Rn, the type enn appears 2n

3
− (−1)n

3

times. This completes our proof by considering Corollary 5. To this end, we first describe
the routing from 0 to X given by Rn based on the first two coordinates of X. For any
X ∈ V (AQn), either X ∈ V (AQ0

n−1) or X ∈ V (AQ1
n−1).

Case 1. X ∈ V (AQ0
n−1), then X = 0x2x3 · · ·xn, where x2x3 · · ·xn ∈ V (AQn−1).

Suppose that R(0n−1, x2x3 · · ·xn) = (si1 , si2 , . . . , sij), then by the definition of Rn, we get
R(0n, X) = (0si1 , 0si2 , . . . , 0sij). (For any p ∈ {1, 2, . . . , j}, if sip = en−1

k then 0sip = enk+1;
if sip = Jn−1

k then 0sip = Jnk .)
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Case 2. X ∈ V (AQ1
n−1), there are two subcases.

Case 2.1. X ∈ V (AQ10
n−2), then X = 10x3 · · ·xn, where x3 · · ·xn ∈ V (AQn−2). Sup-

pose that R(0n−2, x3 · · · xn) = (si1 , si2 , . . . , sil), then by the definition of Rn, we get
R(0n, X) = (en1 , 00si1 , 00si2 , . . . , 00sil). (For any q ∈ {1, 2, . . . , l}, if siq = en−2

k then
00siq = enk+2; if siq = Jn−2

k then 00siq = Jnk .)
Case 2.2. X ∈ V (AQ11

n−2), then X = 11x3 · · · xn, where x3 · · ·xn ∈ V (AQn−2). Then
we know x̄3 · · · x̄n ∈ V (AQn−2). Suppose that R(0n−2, x̄3 · · · x̄n) = (si1 , si2 , . . . , sil), then
by the definition of Rn, we get R(0n, X) = (Jnn , 00si1 , 00si2 , . . . , 00sil).

We know there are 2n−2 vertices in AQn−2, so |en1 | = 2n−2. Similarly, |Jnn | = 2n−2.

Since en2 only appears in the set
⋃
X

R(0n, X), where X ∈ V (AQ0
n−1), we obtain |en2 | =

|en−1
1 | = 2n−3. Similarly, |Jnn−1| = 2n−3.

For 3 ≤ i ≤ n, eni = 0en−1
i−1 and eni = 00en−2

i−2 , so |eni | = |en−1
i−1 |+ 2× |en−2

i−2 |. Similarly, for
2 ≤ i ≤ n− 2, we get |Jni | = |Jn−1

i |+ 2× |Jn−2
i |.

Claim. For any i ∈ {1, . . . , n − 1} and l ∈ {2, . . . , n}, we have |eni | ≤ 2n−2, |Jnl | ≤
2n−2. But |enn| > 2n−2.

We prove the claim by induction. We already saw that for n = 3, 4, the claim holds.
Suppose the claim holds for n = k, where k ≥ 5. We want to prove that it also holds for
n = k + 1.

Clearly, both |ek+1
1 | and |ek+1

2 | satisfy the inequality. For i ∈ {3, . . . , k}, by the
induction hypothesis, |ek+1

i | = |eki−1| + 2 × |ek−1
i−2 | ≤ 2k−2 + 2 × 2k−3 = 2k−1. The

proof for |Jk+1
l | is similar, where l ∈ {2, . . . , k + 1}. By the induction hypothesis,

|ek+1
k+1| = |ekk|+ 2|ek−1

k−1| > 2k−2 + 2× 2k−3 = 2k−1.
For |enn|, as |e3

3| = 3, |e4
4| = 5 and considering |enn| = |en−1

n−1|+ 2× |en−2
n−2| (n ≥ 5), we get

|enn| = 2n

3
− (−1)n

3
. By the definition of the edge-forwarding index of a routing and by the

claim and Corollary 5, we conclude that π(AQn, Rn) = 2|enn| = 2n+1

3
− (−1)n×2

3
> 2n−1.

3. The optimal routing in augmented cubes

In this section, we will provide a minimal and optimal routing of AQn. First we prove
that no HMS-routing of AQ3 is optimal.

Proposition 7. Given an HMS-routing R of AQ3, we have π(AQ3, R) = 6.

Proof. Denote the minimal length generating sequence of X by D{X}. We present
the vertex X in AQ3 by the minimal length generating sequence: 001 = D{e3

3}, 010 =
D{e3

2}, 011 = D{J3
2}, 100 = D{e3

1}, 111 = D{J3
3}, 101 = D{e3

1, e
3
3} = D{J3

3 , e
3
2}, 110 =

D{e3
1, e

3
2} = D{J3

3 , e
3
3}. Each generator appears once in the set

⋃
X1
R(000, X1), where

X1 is the vertex with distance one to 000 in AQ3. But at least one generator from the set
{e3

1, e
3
2, e

3
3, J

3
3} appears twice in the set R(000, 101) ∪ R(000, 110). Thus, by Corollary 5,

the edge-forwarding index of any HMS-routing of AQ3 is 6.

Next, we will provide a minimal routing for AQ3 whose edge-forwarding index attains
the lower bound of π(AQ3). But it is not an HMS-routing. However for n ≥ 4, the
optimal routing that we provide for AQn is also an HMS-routing.

Theorem 8. For n ≥ 2, there is a minimal routing Rn of AQn with π(AQn,Rn) = 2n−1.
Furthermore, for n ≥ 4 such a routing can be chosen to be also an HMS-routing.
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Proof. For n = 2, since AQ2 is the complete graph on four vertices, the unique minimal
routing uses each edge twice.

For n = 3 we know, by Proposition 7, that we cannot have an HMS routing with
edge-forwarding index equal to four. Thus we provide a minimal but not an HMS-routing
for AQ3 as follows: for any two adjacent vertices X, Y in AQ3, let R(X, Y ) = (X, Y ).
Each edge has thus already been used twice. It remains to provide a routing for pairs of
non adjacent vertices using each edge at most twice. Observe that the set of non adjacent
pairs are the edges of the complement of AQ3. This graph is disjoint union of two cycles
of length four. After choosing an orientation on these four cycles, we provide a routing
for this directed pairs which uses each edge of AQ3 at most once. Then given a routing
for the directed edge XY , we consider the reverse route for the directed pair Y X. Then
in this routing of non adjacent pairs each edge is either used twice or not used. In total
then each edge is used either two times or four times.

A choice of direction for non edges of AQ3 together with routing for these these pairs
is giving in Figure 2. In this figure, a gray directed edge shows a non edge of AQ3. A
black path of similar pattern then shows a routing for each of these directed non edges.
One can check that each edge of AQ3 connecting a vertex of one 4-cycle to a vertex of the
other 4-cycle is used exactly once and diagonal edges of the 4-cycles are not used. For
clarification the routings of this Figure are described below.
R(000, 101) = (000, 001, 101); R(101, 011) = (101, 111, 011);
R(011, 110) = (011, 010, 110); R(110, 000) = (110, 100, 000);
R(100, 001) = (100, 011, 001); R(001, 111) = (001, 110, 111);
R(111, 010) = (111, 000, 010); R(010, 100) = (010, 101, 100);

We note that there are more than one routing of AQ3 with edge-forwarding index 4,
we only provided an example.

����
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101

011

111

001100

010

110

000

Figure 2: Routing of a direction of non edges of AQ3

If n ≥ 4, then we will prove the theorem by the following method: first we find a
minimum length generating sequence for each element X ∈ AQn, X 6= 0n such that each
generator appears at most 2n−2 times in the generating sequences. Then given generating
sequence D(X) = {sj1 , sj2 , . . . , sjl}, we define R(0n, X) = (sj1 , sj2 , . . . , sjl). Finally, if we
defineRn to be the corresponding HMS-routing, then by Corollary 5, π(AQn,Rn) ≤ 2n−1.
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For n = 4 the minimum length generating sequence of the vertices of AQ4 are as
follows: D(0001) = {e4

4}, D(0010) = {e4
3}, D(0011) = {J4

2}, D(0100) = {e4
2}, D(0111) =

{J4
3}, D(1000) = {e4

1}, D(1111) = {J4
4}, D(0101) = {e4

2, e4
4}, D(0110) = {e4

2, e
4
3},

D(1001) = {e4
1, e

4
4}, D(1010) = {e4

1, e
4
3}, D(1100) = {J4

4 , J
4
2}, D(1011) = {e4

1, J
4
2},

D(1101) = {J4
4 , e

4
3}, D(1110) = {J4

4 , e
4
4}. Some of the routings are depicted in Fig-

ure 3. We can check that each generator appears at most four times in the generating
sequences of vertices of AQ4.

0000 0100e4
2 0000 0111 0110J4

3 e4
4

0000 1000 1010e4
1 e4

3 0000 1111 1100J4
4 J4

2

Figure 3: Some routings of AQ4 starting from 0000.

For n = 5, the minimum length generating sequence of the vertices of AQ5 are as
follows: D(00001) = {e5

5}, D(00010) = {e5
4}, D(00011) = {J5

2}, D(00100) = {e5
3},

D(00111) = {J5
3}, D(01000) = {e5

2}, D(01111) = {J5
4}, D(00101) = {e5

3, e
5
5}, D(00110) =

{e5
3, e

5
4}, D(01001) = {e5

2, e
5
5}, D(01010) = {e5

2, e
5
4}, D(01100) = {J5

4 , J
5
2}, D(01011) =

{e5
2, J

5
2}, D(01101) = {J5

4 , e
5
4}, D(01110) = {J5

4 , e
5
5}, D(10000) = {e5

1}, D(10001) =
{e5

1, e
5
5}, D(10010) = {e5

1, e
5
4}, D(10011) = {e5

1, J
5
2},D(10100) = {e5

1, e
5
3}, D(10111) =

{e5
1, J

5
3}, D(11000) = {J5

5 , J
5
3}, D(11111) = {J5

5}, D(10101) = {e5
1, e

5
3, e

5
5}, D(10110) =

{e5
1, e

5
3, e

5
4}, D(11001) = {J5

5 , J
5
3 , e

5
5}, D(11010) = {J5

5 , J
5
3 , e

5
4}, D(11100) = {J5

5 , J
5
2},

D(11011) = {J5
5 , e

5
3}, D(11101) = {J5

5 , e
5
4}, D(11110) = {J5

5 , e
5
5}. Again it can be readily

checked that each generator appears at most 8 times.
For n ≥ 6, we recursively build minimum length generating sequence for the ver-

tices of AQn based on the minimum length generating sequence of vertices of AQn−1 and
AQn−2. Let X ∈ V (AQn), either X ∈ V (AQ0

n−1) or X ∈ V (AQ1
n−1). If X ∈ V (AQ0

n−1),
then X = 0x2x3 · · · xn, where x2x3 · · · xn ∈ V (AQn−1). Assume that D(x2x3 · · ·xn) =
(si1 , si2 , . . . , sij), then let D(X) = (0si1 , 0si2 , . . . , 0sij). When X ∈ V (AQ1

n−1), we con-
sider two subcases. Either X = 10x3 · · · xn, or X = 11x3 · · ·xn. If X = 10x3 · · ·xn,
assuming that D(x3 · · · xn) = (si1 , si2 , . . . , sil), we set D(X) = (en1 , 00si1 , 00si2 , . . . , 00sil).
If X = 11x3 · · ·xn, then assuming that D(x̄3 · · · x̄n) = (si1 , si2 , . . . , sil), we set D(X) =
(Jnn , 00si1 , 00si2 , . . . , 00sil).

It remains to show that each generator appears at most 2n−2 times. It is easy to
see that both en1 and Jnn appear exactly 2n−2 times. Similarly, both en2 and Jnn−1 appear
exactly 2n−3 times. For 3 ≤ i ≤ n, |eni | = |en−1

i−1 | + 2 × |en−2
i−2 |. By induction we have

|en−1
i−1 | ≤ 2n−3 and |en−2

i−2 | ≤ 2n−4, thus |eni | ≤ 2n−2. Similarly, for 2 ≤ i ≤ n − 2, we have
|Jni | = |Jn−1

i |+ 2× |Jn−2
i | and the inequality follows from similar induction.

Corollary 9. The edge-forwarding index of the augmented cube of dimension n (n ≥ 2)
is 2n−1.

Proof. The lower bound π(AQn) ≥ 2n−1 is proved in [5]. We sketch the proof for the sake
of completeness. Consider the inductive definition of AQn. There are two vertex disjoint
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copies of AQn−1, connected by 2n edges. The number of paths connecting vertices from
one copy to vertices in the other copy is 22n−1, each such path must use at least one edge
connecting the two parts, thus at least one of such edges being used at least 2n−1 times.
The upper bound follows from Theorem 8.

Remark The proof of Theorem 6 of [5] has the correct ideas but it misses the simple
fact that AQ1 doesn’t satisfy the formula. More precisely, π(AQ1) = 2 but 21−1 = 1.
However, the wrong formula “π(AQ1) = 21−1 = 1” is used in their inductive proof.
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