
Critically 3-frustrated signed graphs

Chiara Cappello1, Reza Naserasr2, Eckhard Steffen1, and Zhouningxin
Wang3

1Paderborn University, Department of Mathematics, Warburger Str. 100, 33098 Paderborn,
Germany.

2Université Paris Cité, CNRS, IRIF, F-75013, Paris, France.
3School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China.
Emails: {ccappello, es}@mail.uni-paderborn.de, reza@irif.fr, wangzhou@nankai.edu.cn

Abstract

Extending the notion of maxcut, the study of the frustration index of signed

graphs is one of the basic questions in the theory of signed graphs. Recently two of

the authors initiated the study of critically frustrated signed graphs. That is a signed

graph whose frustration index decreases with the removal of any edge. The main

focus of this study is on critical signed graphs which are not edge-disjoint unions

of critically frustrated signed graphs (namely indecomposable signed graphs) and

which are not built from other critically frustrated signed graphs by subdivision. We

conjecture that for any given k there are only finitely many critically k-frustrated

signed graphs of this kind.

Providing support for this conjecture we show that there are only two of such

critically 3-frustrated signed graphs where there is no pair of edge-disjoint negative

cycles. Similarly, we show that there are exactly ten critically 3-frustrated signed

planar graphs that are neither decomposable nor subdivisions of other critically

frustrated signed graphs. We present a method for building indecomposable criti-

cally frustrated signed graphs based on two given such signed graphs. We also show

that the condition of being indecomposable is necessary for our conjecture.

1 Introduction

In this paper, graphs are allowed to have multiedges and loops. For a graph G, let E(G)
and V (G) denote the set of edges and the set of vertices of G, respectively. A signed graph
(G, σ) is a graph G together with an assignment σ : E(G) → {+,−} called signature,
where {+,−} is viewed as a multiplicative group. An edge e of (G, σ) is called negative
if σ(e) = − and positive otherwise. The set of negative edges of (G, σ) is denoted by
E−

σ (G). We may simply write E−
σ if the underlying graph is clear from the context.
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Furthermore, if E−
σ (G) = ∅, then such a signature σ is called the all-positive signature,

and the corresponding signed graph is denoted by (G,+). Similarly, if E−
σ (G) = E(G),

then σ is called the all-negative signature, and the corresponding signed graph is denoted
by (G,−). For a signed graph (G, σ) and a subgraph H of G, with rather an abuse of
notation, we write (H, σ) to denote the signed graph (H, σ|

E(H)
).

Let G be a graph. For a vertex v ∈ V (G), the degree of v, denoted dG(v), or simply d(v)
when G is clear from the context, is the number of edges incident with v, where loops are
counted twice. For X ⊆ V , we denote by ∂G(X) an edge-cut in G, which is a set of edges
defined as follows: ∂G(X) := {xy ∈ E(G) : x ∈ X, y /∈ X}. The cardinality of an edge-cut
∂G(X) is denoted by dG(X), i.e., dG(X) = |∂G(X)|. In particular, when we work with
signed graphs without loops, if X = {v}, then in place of dG({v}) we write dG(v). Given
a signature σ on G, a refinement of the notation dG(X) for (G, σ) is defined as follows:

d−(G,σ)(X) := |∂G(X) ∩ E−
σ | and d+(G,σ)(X) := |∂G(X) \ E−

σ |.

An edge-cut ∂G(X) is said to be equilibrated under σ if d+(G,σ)(X) = d−(G,σ)(X). Whenever

it is clear from the context, we may omit the index “(G, σ)” of the notations introduced
above.
A cycle of G is a connected 2-regular subgraph. A cycle in (G, σ) is said to be positive
(respectively, negative) if it contains an even (respectively, odd) number of negative edges.
A signed graph (G, σ) is balanced if it contains no negative cycle and unbalanced otherwise.

For a signed graph (G, σ), switching at a vertex v ∈ V (G) is to multiply the signs of all
edges incident with v by −. For an edge-cut ∂(X), switching at ∂(X) is to switch at all
vertices in X. Furthermore, two signed graphs (G, σ) and (G, σ′) are switching equivalent
if one can be obtained from the other by a series of switchings at some vertices. In such
a case we may also say σ is switching equivalent to σ′. It has been proved by Zaslavsky
in [9] that two signatures on the same graph are switching equivalent if and only if they
induce the same set of negative cycles.
As being balanced is a desirable state, and since most signed graphs are not balanced,
there has been many measures to decide how far a signed graph is from being balanced.
See for example [2] and references therein. One of the basic parameters to measure this
is the frustration index of a signed graph (G, σ), denoted by ℓ(G, σ), which is defined as
follows:

ℓ(G, σ) = min
π

{|E−
π | : (G, π) is switching equivalent to (G, σ)}.

If ℓ(G, σ) = k, then (G, σ) is said to be k-frustrated. For a signed graph (G, σ), a signature
π is said to be a minimal equivalent signature of (G, σ) if (G, π) is switching equivalent
to (G, σ) and there is no equivalent signature π′ of σ such that E−

π′ ⊂ E−
π . In particular,

a minimum equivalent signature, or simply a minimum signature, of (G, σ) is a signature
π such that (G, π) is switching equivalent to (G, σ) and |E−

π | = ℓ(G, σ).

A subset E ′ of the edges of (G, σ) is said to be negative-cycle cover if for each negative
cycle C of (G, σ) we have E(C) ∩ E ′ ̸= ∅. A negative-cycle cover is minimal if no proper
subset of it is a negative-cycle cover. The next lemma, which is well known, and to our
knowledge first appears in [3], provides an equivalent definition of the frustration index
of signed graphs. For completeness we provide a short proof of the lemma.
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Lemma 1.1. Given a signed graph (G, σ) a subset E ′ of the edges of G is a minimal

negative cycle cover if and only if it is the set of negative edges of a minimal signature

equivalent to σ.

Proof. First, note that any signature, in particular a minimal signature, is a negative-cycle

cover. Let E ′ be the set of edges of a minimal negative-cycle cover. We claim that E ′ is

the set of negative edges of a minimal equivalent signature of (G, σ). To this end, observe

that (G − E ′, σ) is balanced and thus, it can be changed to (G − E ′,+) by switching at

a set X of vertices. Then, after switching at X, the set of negative edges of the resulting

signed graph has to be E ′. Otherwise, the set of negative edges is a proper subset of

E ′ and also a negative-cycle cover, contradicting the minimality of E ′. This also implies

that a negative-cycle cover provided by a minimal equivalent signature is minimal, as

otherwise, an included minimal negative-cycle cover would imply a smaller signature.

1.1 Critically k-frustrated signed graphs

As computing the frustration index of a signed graph (G,−) is equivalent to computing the
size of a maximum cut of G, the problem of computing ℓ(G, σ) for an input signed graph
(G, σ) is an NP-hard problem [1]. This motivates the study of the structure of signed
graphs with high frustration index. For example, a basic observation is that the existence
of k edge-disjoint negative cycle in (G, σ) implies ℓ(G, σ) ≥ k. To better understand the
structural properties of signed graphs with the frustration index being at least k, the
notion of critically k-frustrated signed graphs is introduced in [5]. This notion is formally
defined as follows.

Definition 1.2. A signed graph (G, σ) is critically k-frustrated if ℓ(G, σ) = k and for

each edge e ∈ E(G), we have ℓ(G− e, σ) = k − 1.

We note that critically k-frustrated signed graphs can be characterized in the following
way.

Theorem 1.3. [5] Let k be a positive integer and (G, σ) be a k-frustrated signed graph.

The following statements are equivalent.

(1) (G, σ) is critically k-frustrated.

(2) For each edge e ∈ E(G), there exists a minimum signature σ′ of (G, σ) such that

σ′(e) = −.

(3) If |E−
σ | = ℓ(G, σ), then every positive edge of (G, σ) is contained in an equilibrated

edge-cut under σ.

Note that, given a critically k-frustrated signed graph (G, σ) with σ being a minimum
signature, for each edge-cut ∂(X) it holds that d−(X) ≤ d+(X).
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Given positive integers k, k1, . . . , kt such that k =
∑t

i=1 ki, a critically k-frustrated signed
graph (G, σ) is said to be (k1, . . . , kt)-decomposable if E(G) can be partitioned into t parts
E1, E2, . . . , Et such that for each i, i ∈ {1, 2, . . . , t}, the signed subgraph (G[Ei], σ) is crit-
ically ki-frustrated. If (G, σ) is (k1, . . . , kt)-decomposable for some t ≥ 2, then we simply
say it is decomposable. A critically frustrated signed graph that is not decomposable is
said to be indecomposable.

Observation 1.4. Let (G, σ) be a critically k-frustrated signed graph. If for k1, . . . , kt

with k =
∑n

i=1 ki we find edge-disjoint signed subgraphs (Gi, σ) of (G, σ) such that (Gi, σ)

is ki-frustrated for i ∈ [t], then E(G) =
⋃

i∈[t] E(Gi) and thus (G, σ) is (k1, . . . , kt)-

decomposable.

In particular, a critically k-frustrated signed graph containing k edge-disjoint negative

cycles is the union of all these negative cycles.

Note also that, if a critically k-frustrated signed graph (G, σ) contains two parallel edges
e1 and e2 having different signs, then each equilibrated cut of (G, σ) is also an equilibrated
cut of (G− {e1, e2}, σ). Hence, by Theorem 1.3, the following observation holds.

Observation 1.5. Let (G, σ) be a critically k-frustrated signed graph. If (G, σ) contains

a loop, then the loop is negative and (G, σ) is decomposable. If (G, σ) contains two parallel

edges of different signs, then (G, σ) is decomposable.

Since a decomposable signed graph relies on the structures of its critical subgraphs, in
the following, we choose to focus on critically frustrated signed graphs which are not
decomposable. In particular, from here on, the signed graphs that we consider have no
loop and no parallel edges of different signs.
Another graph operation to preserve the property of being critically frustrated is the
following (modified) notion of subdivision as introduced in [5]. For a signed graph (G, σ)
and a positive integer t, a t-multiedge between two vertices x, y of G is a set of t edges
connecting x and y, denoted by Exy. As we have assumed above (and from here on)
that there are no parallel edges of different signs, all the edges of a t-multiedge Exy are
of the same sign and, depending on this sign, it will be referred to as an all-positive or
all-negative t-multiedge.
Given a signed graph (G, σ) and an all-positive (resp. all-negative) t-multiedge Exy of
(G, σ), let (G′, σ′) denote the signed graph obtained from (G − Exy, σ) by adding a new
vertex v, and adding two t-multiedges Exv and Evy, so that both Exv and Evy are all-
positive (resp. Exv is all-negative and Evy is all-positive). We say that (G′, σ′) is obtained
from (G, σ) by subdividing at a multiedge Exy. If a signed graph (H, π) (not isomorphic
to (G, σ)) is obtained by subdividing at a series of multiedges of (G, σ), then we say that
(H, π) is a (proper) subdivision of (G, σ). Equivalently we may say (H, π) is a (G, σ)-
subdivision. Observe that, up to a switching, the signature in (H, π) is determined by the
sequence of subdivisions and the signature of (G, σ).
If a signed graph (G, σ) is not a proper subdivision of any signed graph, then we say that
(G, σ) is irreducible. Note that, if (G, σ) is decomposable, then all its subdivisions are
also decomposable. See Figure 1 for examples.
The importance of this generalized notion of the subdivision in the study of critically
frustrated signed graphs is highlighted in the following proposition.
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Figure 1: An example of possible subdivisions.

Proposition 1.6. [5] For a signed graph (G, σ) and a subdivision (G′, σ′) of it, we have:

(i). ℓ(G, σ) = ℓ(G′, σ′); (ii). (G, σ) is critically frustrated if and only if (G′, σ′) is critically

frustrated.

Hence, without loss of generality, we can always limit our study to the class of irreducible
signed graphs. It follows that for k ≥ 2 every irreducible critically k-frustrated connected
signed graph (G, σ) satisfies that d(v) ≥ 3 for each v ∈ V (G).

Let L(k) be the family of irreducible critically k-frustrated signed graphs and let L∗(k)
be the family of irreducible indecomposable critically k-frustrated signed graphs.

Theorem 1.7. [5] We have L(1) = L∗(1) = {C−1}, L(2) = {C−1 ∪ C−1, 2C−1, (K4,−)}
and L∗(2) = {(K4,−)}.

Here C−1 is the signed graph on one vertex with a negative loop, C−1∪C−1 is two disjoint
copies of it, and 2C−1 is the signed graph on one vertex with two negative loops on it.
Note that if (H, π) is a (K4,−)-subdivision, then ℓ(H, π) = 2. The following is one of the
first structural results on k-frustrated signed graphs.

Theorem 1.8. [6] If a k-frustrated signed graph contains no (K4,−)-subdivision, then it

contains k edge-disjoint negative cycles.

We have seen that each of the families L∗(1) and L∗(2) is quite small and is precisely
described. For k ≥ 3, we conjecture the following.

Conjecture 1.9. The set L∗(k) is finite for any positive integer k.

A special subclass S∗(k) of L∗(k) consists of those elements (G, σ) in L∗(k) satisfying that
for each integerm ≤ k, every criticallym-frustrated subgraph of (G, σ) is indecomposable.
A relaxation of Conjecture 1.9 is that the set S∗(k) is finite.

Conjecture 1.10. The set S∗(k) is finite for any positive integer k.

A restriction of Conjecture 1.9 to signed plane graphs is also of special interest. More
precisely, we ask:
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Conjecture 1.11. Every indecomposable critically k-frustrated signed plane graph has

exactly 2k facial cycles each of which is a negative cycle.

A similar conjecture on the structure of critically k-frustrated signed graphs is the follow-
ing.

Conjecture 1.12. Every critically k-frustrated signed graph (G, σ) satisfies ∆(G) ≤ 2k.

Moreover, ∆(G) = 2k can only happen if G consists of k negative cycles pairwise edge-

disjoint but all containing the same vertex.

In this work, we verify Conjectures 1.10 and 1.11 for k = 3. The case k = 3 of Conjec-
ture 1.9 will be addressed in a forthcoming paper. We show that the condition of being
indecomposable is necessary in Conjectures 1.11 and 1.9. To support Conjecture 1.12, we
prove it is true for a special class of signed graphs.

The rest of the paper is organized as follows. In Section 2 we show that the class S∗(3)
contains exactly two elements. In Section 3 we show that, up to decomposition and
subdivision, there exist ten critically 3-frustrated signed planar graphs. In Section 4
we present a construction of indecomposable critically frustrated signed graphs from two
given such signed graphs. Moreover, we provide an infinite family of decomposable (plane)
critically 3-frustrated signed graphs showing that in both Conjectures 1.9 and 1.11 the
assumption of being indecomposable is necessary even for k = 3. In Section 5, we give a
family of critically k-frustrated signed graphs having maximum degree at most 2k.

2 Characterization of the family S∗(3)

To characterize the elements of S∗(3), we use the following results.

Proposition 2.1. [5] Let (G, σ) be an irreducible critically k-frustrated signed graph for

some positive integer k. Then (G, σ) ∈ S∗(k) if and only if (G, σ) contains no pair of

edge-disjoint negative cycles.

Using this fact and the characterization of signed graphs in which every two negative
cycles intersect, provided in [7], the elements of S∗(k) can be characterized as follows.
This characterization is based on embedding of (signed) graphs on the projective plane.
Here the projective plane is viewed as a disk where the antipodal pairs of the boundary are
identified where the boundary is referred to as cross cap. A graph embedded in this plane
where two edges can only share a point on their end points is called projective planar,
or a projective plane graph when the embedding is fixed. See Figure 6 for examples of
projective plane graphs.

Theorem 2.2. [5] Let (G, σ) be a signed graph in S∗(k) where σ is a minimum signature

with E−
σ = {x1y1, . . . , xkyk}. Then we have the following.

(1) Either k = 1, in which case (G, σ) is a negative loop.

(2) Or k ≥ 2, G is a cubic projective plane graph where the edges passing through the

cross cap are those of E−
σ .
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Let (G, σ) ∈ S∗(k) with σ being a minimum signature. An embedding of (G, σ) into
the projective plane as described in Theorem 2.2 is called a canonical projective-planar
embedding of (G, σ).
Let (G, σ) ∈ S∗(k) be a canonically projective-planar embedded signed graph. When
the choice of the minimum signature σ is clear from the context, we will denote the
subgraph G − E−

σ of G by G′. Moreover, G′ will always be considered together with its
planar embedding that is implied from Theorem 2.2. The facial cycle of the outer face
of this plane graph G′ will be denoted by CO. One may observe that in G′ the vertices
x1, . . . , xk, y1, . . . , yk are all of degree 2 and they appear on CO in this cyclic order.
Given vertices u and v of CO, by Auv we denote the path on CO connecting u to v which
is in the clockwise direction starting at u and ending at v. When referring to a face of
G′ we do not consider the outer face. Thus a face F of G′ is also a face of (G, σ) in
the projective-planar embedding from which G′ is defined. The boundary of this face F ,
which must be a cycle, will be denoted by CF .
A face of G′ is said to be internal if its boundary shares no edge with CO. We note
that, since G′ is subcubic, the boundary of an internal face does not intersect CO at a
vertex either. In particular, the boundary of a face F which is not internal shares at least
two vertices with CO. We classify such faces depending on how many of those common
vertices are in the set R = {x1, ..., xk, y1, ..., yk}. More precisely, a face F is said to be an
i-face of G′ if CF contains i elements from the set R. Two faces F1 and F2 are said to be
adjacent on the boundary if V (CF1 ∩CF2 ∩CO) ̸= ∅. A face F of G′ is called a bridge-face
if the subgraph induced by CF ∩CO is disconnected. See Figure 2 for an example, noting
that curves represent paths that might contain more vertices.

F

Figure 2: A bridge-face F in G′

a1
a2

b1

b2

x1
x2

x3

F

Figure 3: Proposition 2.5

Note that in (G, σ), each edge-cut with negative edges contains at least two edges of CO.
Furthermore, based on the cyclic order of the elements of R on CO, we have the following
observation.

Observation 2.3. Let (G, σ) be a canonically projective-planar embedded signed graph

in S∗(k) for k ≥ 2. If an edge-cut ∂G(X) contains exactly two edges e1 and e2 of CO,

then d−(G,σ)(X) = min{|V (A1) ∩R|, |V (A2) ∩R|} where A1 and A2 are the two connected

components of CO − {e1, e2}.

Lemma 2.4. Let (G, σ) be a canonically projective-planar embedded signed graph in S∗(k)

for k ≥ 2. Assume that F is a bridge-face and let Aa1a2 and Ab1b2 be two connected
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components of CF ∩ CO such that Aa2b1 is a connected component in CO \ CF . Then

|V (Aa2b1) ∩R| ∈ {2, 2k − 2}.

Proof. Let e1 (resp. e2) be the edge in Aa1a2 (resp. Ab1b2) that has a2 (resp. b1) as an

endpoint. Let G′′ be the connected component of G′ − {e1, e2} containing a2 (and b1).

We first show that |V (Aa2b1) ∩ R| ̸∈ {3, 4, . . . , 2k − 3}. Otherwise, by Observation 2.3

the edge-cut ∂G(V (G′′)) must contain at least three negative edges, but it has only two

positive edges. This contradicts the fact that σ is a minimum signature.

Next we show that |V (Aa2b1)∩R| ≤ 1 is not possible either. That |V (Aa2b1)∩R| ≥ 2k−1

is not possible follows similarly. Suppose to the contrary that |V (Aa2b1) ∩ R| ≤ 1. In

CF − {e1, e2}, there is a path connecting a2 to b1 and let e be an edge of this path. By

criticality, there exists an equilibrated edge-cut ∂(X) containing e. Since each equilibrated

cut of (G, σ) contains at least two (positive) edges from CO and noting that e is also a

positive edge, we have d+(X) ≥ 3, and hence d−(X) ≥ 3. Moreover, by the choice of e,

at least one of the edges of Aa2b1 , say e′, is in ∂(X). Thus in total, at least two edges of

G′′ are in ∂(X). We now consider the following two edge-cuts: E1 = ∂(X) \ {e, e′} ∪ {e1}
and E2 = ∂(X) \ {e, e′} ∪ {e2}. Since |V (Aa2b1) ∩ R| ≤ 1, it follows that one of these

two edge-cuts say E1, has the same set of negative edges as ∂(X). However, E1 has fewer

positive edges than ∂(X), contradicting the minimality of σ.

Proposition 2.5. Let (G, σ) be a canonically projective-planar embedded signed graph in

S∗(k) for k ≥ 3. Then we have the following:

(i) Every bridge-face of G′ is a 0-face.

(ii) For i ≥ 3 there is no i-face in G′.

Proof. (i) Let F be a bridge-face of G′ and assume that CF ∩ CO consists of t connected

components (thus t ≥ 2). Let Aa1a2 and Ab1b2 be two connected components of CF ∩ CO

such that Aa2b1 is a connected component in CO \ CF . By Lemma 2.4, |V (Aa2b1) ∩ R| ∈
{2, 2k − 2}. If a connected component of CO \ CF contains 2k − 2 vertices from R,

then since |R| = 2k, there is only one other component in CO \ CF . Furthermore, this

component must contain the other two vertices of R. This in turn implies that F is a

0-face. Thus we may assume that each connected component of CO \CF contains exactly

two vertices from R.

Toward a contradiction and without loss of generality, assume that x1 ∈ R∩V (Aa1a2) and

x2, x3 ∈ R∩ V (Aa2b1), depicted in Figure 3. Let e1 be the edge on Aa1x1 incident with x1

and let e2 be the edge on Ab1b2 incident with b1. Then the set {e1, e2, x1y1, x2y2, x3y3} is

an edge-cut consisting of two positive edges and three negative edges, contradicting the

fact that σ is a minimum signature.

(ii) Suppose to the contrary that F is an i-face of G′ for i ≥ 3. By Claim (i), we know

that F is not a bridge-face. Therefore, by the symmetry of labeling, we assume that
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x1, x2, x3 ∈ V (CF ) ∩ R. Let e1 = vx1, e2 = x3u ∈ E(CF ∩ CO) such that v ̸∈ V (Ax1x2)

and u ̸∈ V (Ax2x3). Then the edge set {e1, e2, x1y1, x2y2, x3y3} is an edge-cut that contains

three negative edges but only two positive edges, a contradiction.

From now on, we focus on the family S∗(3). We give some structural properties of signed
graphs in S∗(3) in the following lemmas.

Lemma 2.6. Let (G, σ) be a canonically projective-planar embedded signed graph in S∗(3).

Then each face of G′ is either a bridge-face or an i-face for i ∈ {1, 2}.

Proof. By Proposition 2.5 (ii), if F is an i-face of G′, then i ∈ {0, 1, 2}. It remains to

show that there are no internal faces and that every 0-face is a bridge-face.

For the first claim, assume to the contrary that there exists an internal face F of G′. Note

that each equilibrated cut containing one edge of CF must have at least two (positive)

edges from CF and two (positive) edges from CO. However, there are only three negative

edges in (G, σ), contradicting the fact that each equilibrated cut has the same number of

positive and negative edges.

For the second claim, assume that F is a 0-face of G′ which is not a bridge-face. As

CF shares at least one edge with the outer facial cycle CO of G′, there is a face F ′ such

that CF ′ shares a common vertex with both CF and CO. Assume that F ′ is an i-face for

i ∈ {0, 1, 2}. Let e0 be a (positive) edge in the path CF ∩CF ′ . Let ∂(X) be an equilibrated

cut containing e0. Recall that any equilibrated cut must contain at least two edges of CO.

As (G, σ) ∈ S∗(3), ∂(X) contains exactly two edges of CO. Furthermore, one of these

two edges belongs to E(CO ∩ CF ) while the other is in E(CO ∩ CF ′). To complete the

proof, it suffices to show that |X ∩ R| ≠ 3, which would contradict the fact that ∂(X)

is an equilibrated cut. If F ′ is not a bridge-face, then by Proposition 2.5 there are at

most two elements of R in CF ′ , and consequently at most two elements of R in X (i.e.,

|X ∩R| ≤ 2). If F ′ is a bridge-face, then by Lemma 2.4 the number of elements of R in

each connected component of CO \ CF ′ is either 2 or 4. As either all of the vertices of a

connected component of CO \ CF ′ are contained in X or none of them is in X, |X ∩ R|
has to be an even number and clearly |X ∩R| ≠ 3.

Lemma 2.7. Let (G, σ) be a canonically projective-planar embedded signed graph in S∗(3).

If F is a bridge-face of G′, then CF ∩ CO has exactly three connected components. In

particular, there is at most one bridge-face.

Proof. As (G, σ) ∈ S∗(3), we have |R| = 6. As F is a bridge-face, CF ∩CO has at least two

components, and, by Lemma 2.4, has at most three components. It remains to show that

CF ∩ CO does not have exactly two components. Assume to the contrary that CF ∩ CO

has exactly two components, say Aa1a2 and Ab1b2 . Then one of Aa2b1 or Ab2a1 , say Aa2b1
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a2
x1

x2

b1

b2
x3

y1

y2

y3

a1

e0F

Figure 4: Case in Lemma 2.7

x1

x2

x3y1

y2

y3

e0

F2

F1

Figure 5: Case in Lemma 2.8

without loss of generality, has two elements from R, and the other, Ab2a1 in this case, has

four elements from R. See Figure 4 for a depiction.

Let e0 be an edge on the a2b1-path of CF which is internally vertex-disjoint from CO. Let

∂(X) be an equilibrated cut containing e0. As ∂(X) must contain two (positive) edges,

say e1 and e2, of CO, it has to be an edge-cut of size 6 and hence e0, e1, and e2 are the

only positive edges of it. Thus one of e1 or e2 is on Aa2b1 and the other is on Aa1a2 ∪Ab1b2 .

Noting that each bridge-face is a 0-face by Proposition 2.5 (i) and Aa2b1 contains two

elements from R, X has at most two vertices of R and, therefore, ∂(X) contains at most

two negative edges, contradicting the fact that it is an equilibrated cut.

Finally, by Lemma 2.4, as each of the connected components of CO \ CF must contain

either two or four elements of R, and since there are three connected components, each

of them contains exactly two elements of R and thus there is no other bridge-face.

Lemma 2.8. Let (G, σ) be a canonically projective-planar embedded signed graph in S∗(3).

Let F1 and F2 be an i1-face and an i2-face of G′, respectively. If F1 is adjacent to F2 on

the boundary, then either (i) i1 + i2 ≥ 3 or (ii) one of F1 and F2 is a bridge-face.

Proof. Assume that neither of F1 and F2 is a bridge-face. By Lemma 2.6 i1 + i2 ≥ 2, and

it remains to prove that i1 + i2 ̸= 2. Assume to the contrary that i1 + i2 = 2. Let e0 be

an edge on the path CF1 ∩ CF2 . See Figure 5. Each equilibrated cut containing the edge

e0 must have two more (positive) edges of CO say e1 and e2. It follows as before that e1

is on CF1 ∩ CO and e2 is on CF2 ∩ CO. Since i1 + i2 = 2, a similar argument implies that

X can contain at most two vertices from R, leading to a contradiction with ∂(X) being

an equilibrated cut.

We are now ready to give the full description of S∗(3).

Theorem 2.9. The class S∗(3) consists of two signed graphs, depicted in Figure 6.
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Figure 6: S∗(3)

Proof. We consider the following three cases:

• G′ has a bridge-face F . By Lemma 2.7, F is the only bridge-face of G′ and CO \
CF consists of three components each of which has exactly two elements from R.

Furthermore, it follows from Lemma 2.8 that the vertices of R are the only vertices

on each of these components, as otherwise an additional vertex (not in R) would

result in an i1-face and an i2-face with i1 + i2 ≤ 2 which are adjacent to each other,

a contradiction. This leads to the projective planar graph of Figure 6a (left).

• G′ has at least one 1-face (and no bridge-face). Let F1 be a 1-face of G′. As G′

has no bridge-face, by Lemma 2.6, it has no 0-face. Furthermore, by Lemma 2.8,

each of the two faces adjacent to F1 on the boundary are 2-faces. As there are only

six vertices in R, and as there is no internal face by Lemma 2.6, there is only one

remaining face. Furthermore, this face is a 1-face. Let G′′ be the graph obtained

from G′ by suppressing all vertices of R and note that G′′ is cubic and planar.

It then follows from Euler’s formula that |V (G′′)|− 3
2
|V (G′′)|+5 = 2, i.e., |V (G′′)| =

6. But there are only two cubic graphs on 6 vertices: K3,3 and the 3-prism. As K3,3

is not planar, G′′ is the 3-prism. As each 1-face of G′ is adjacent to two 2-faces of

G′, both of the triangles of G′′ correspond to faces of the same type in G′. More

precisely, either each corresponds to a 1-face or each corresponds to a 2-face. The

former case leads to the projective planar graph of Figure 6a (right). In the latter

case, we consider the middle edge of the 3-path and we observe that this edge cannot

be in an equilibrated cut.

• Each face of G′ is a 2-face. Hence, G′ has exactly three 2-faces. Similar to the

previous case we consider the graph G′′ obtained from G′ by suppressing all vertices

of R. It follows from Euler’s formula that G′′ has four vertices and noting that G′′

is cubic, hence, it must be K4. Thus (G, σ) is the signed graph in Figure 6b.

11



We note that the two signed graphs in Figure 6a are switching-isomorphic and thus up

to switching isomorphism S∗(3) consists of two signed graphs.

Note that the signed graph Ĝ2 of Figure 6b is a signed Petersen graph.

3 Critically 3-frustrated signed planar graphs

Let P∗(3) denote the class of irreducible indecomposable critically 3-frustrated signed
planar graphs. In this section, we show that each signed plane graph in the class P∗(3)
has exactly six negative facial cycles and no positive facial cycles. Using this we conclude
that there are ten non-isomorphic signed graphs (with respect to switching isomorphism)
in P∗(3). They are depicted in Figure 10.
We will need the next lemma that follows from the description of L∗(2).

Lemma 3.1. Let C1, C2, and C3 be three negative cycles of a signed graph (G, σ). If

E(C1)∩E(C2)∩E(C3) = ∅, then the signed subgraph induced by C1, C2, and C3 contains

either a (K4,−)-subdivision or two edge-disjoint negative cycles.

Proof. Since E(C1) ∩ E(C2) ∩ E(C3) = ∅, the frustration index of the signed subgraph

induced by C1∪C2∪C3 is at least 2. Hence, it contains a critically 2-frustrated subgraph.

The statement then follows from Theorem 1.7.

Noting that each edge of a plane graph belongs to exactly two facial cycles, we have the
following observation, which implies that any element of P∗(3) has at most six negative
facial cycles.

Observation 3.2. Every critically k-frustrated signed plane graph has at most 2k negative

facial cycles. Moreover, if there are 2k negative facial cycles, then they are the only facial

cycles.

Next, we show that each signed plane graph in P∗(3) has exactly six negative facial cycles.
In fact, we prove this for a larger class of critically 3-frustrated signed graphs which are
not necessarily irreducible.

Theorem 3.3. Let (G, σ) be an indecomposable critically 3-frustrated signed plane graph.

Then (G, σ) consists of six negative facial cycles.

Proof. Since (G, σ) is not decomposable, by Theorem 1.8 (G, σ) contains a (K4,−)-

subdivision (H, σ) as a subgraph. Let e1 be an edge of E(G \ H), noting that it is

not an empty set because ℓ(G, σ) = 3. Without loss of generality, we assume that σ is a

minimum signature where e1 is assigned to be negative. We observe that the other two

negative edges of E−
σ is on the (K4,−)-subdivision (H, σ).

To prove the theorem it suffices to show that each facial cycle of (G, σ) contains at most one

negative edge. That is because, this together with the fact that ℓ(G, σ) = 3 would imply

the existence of six negative facial cycles. The claim then follows from Observation 3.2.

12



As there are only two negative edges in (H, σ), say e2 and e3, no facial cycle of (H, σ)

contains two negative edges. Thus in (G, σ) no facial cycle contains three negative edges.

It remains to show that no facial cycle of (G, σ) contains two negative edges. Assume to

the contrary that CF2 is such a facial cycle. As the negative edges cannot be e2 and e3,

and by the symmetry between these two labels, we may assume that e1 and e2 are the

negative edges of CF2 . Let CF1 and CF3 be the other facial cycles incident with e1 and e2,

respectively. Observe that e3 neither belongs to CF1 nor to CF3 , as otherwise (G, σ) would

have only two negative faces, contradicting the fact that it contains a (K4,−)-subdivision.

See Figure 7 for an illustration where a blue (or solid) xixj-connection presents an all-

positive path some of which could be of length 0, red (or dashed) connections each shows

a negative path (i.e., a signed path with a single negative edge), thus each of length at

least 1. We first claim that CF1 and CF3 have no common edge. Otherwise, a common

edge e′ together with e1 and e2 forms an edge-cut, and by switching at this edge-cut we

have a signature with only 2 negative edges.

F1 F2 F3

x1 x3 x5 x7

x2 x4 x6 x8

Figure 7: F1, F2 and F3

Let CF4 and CF5 be the two negative facial cycles of (G, σ) such that e3 ∈ E(CF4 ∩ CF5).

Observe that each of CF4 and CF5 must share at least one edge with either CF1 or CF3 .

Otherwise, we would have a set of three edge-disjoint negative cycles (for example, CF1 ,

CF3 , and CF4), by Observation 1.4 contradicting the assumption that (G, σ) is indecom-

posable. We now consider the following two cases.

F1 F2 F3

x1 x3 x5 x7

x2 x4 x6 x8

x9 x0

F4

F5

Figure 8: Case (1)

F1 F2 F3

x1 x3 x5 x7

x2 x4 x6 x8

x9 x0

F4

F5

Figure 9: Case (2)

Case (1): CF4 shares a common edge with (at least) one of CF1 and CF3 , and CF5 shares

a common edge with the other.

By symmetry, we assume that CF4 shares a common edge with CF1 , and hence CF5 shares

a common edge with CF3 . See Figure 8. Then there is an edge-cut crossing the faces
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F4, F1, F2, F3, F5, and F4 in this order containing two positive edges and three negative

edges, a contradiction with ℓ(G, σ) = 3.

Case (2): Each of CF4 and CF5 shares a common edge with the same CFi
for i ∈ {1, 3}.

By symmetry, assume that each of CF4 and CF5 shares a common edge with CF1 but none

with CF3 . See Figure 9. Therefore, CF3 is edge-disjoint from the negative facial cycles

CF1 , CF4 , and CF5 . Noting that each edge is in two faces, we have E(CF1) ∩ E(CF4) ∩
E(CF5) = ∅. Thus by Lemma 3.1, CF1 ∪CF4 ∪CF5 contains a critically 2-frustrated signed

graph. Note that such a critically 2-frustrated signed graph is edge-disjoint from CF3 .

Since CF3 is a negative facial cycle (i.e., a critically 1-frustrated signed graph), (G, σ) is

decomposable, a contradiction.

Corollary 3.4. If (G, σ) ∈ P∗(3), then (G, σ) is simple. Moreover, for each minimum

signature σ, every facial cycle contains exactly one negative edge.

Proof. By Observation 1.5, there is no loop in (G, σ) and no two parallel edges of different

signs. If there exist two parallel edges with the same sign, then in some planar embedding

of (G, σ) they induce a positive facial cycle, contradicting Theorem 3.3. The moreover

part is immediate from the fact that there are six facial cycles.

Now we are ready to describe the elements of the class P∗(3).

Theorem 3.5. The class P∗(3) consists of ten signed graphs, depicted in Figure 10.

Proof. Let (G, σ) ∈ P∗(3) with a planar embedding. By Theorem 3.3, in (G, σ) there are

six facial cycles all of which are negative. This determines the signature up to a switching.

So it remains to classify the underlying graphs G. Let n = |V (G)|, m = |E(G)|, and
f = |F (G)| where F (G) is the set of facial cycles of G. Note that f = 6 by Theorem 3.3.

By Euler’s formula and the fact that δ(G) ≥ 3, we have that n− 3
2
n+6 ≥ 2. Hence, every

irreducible indecomposable critically 3-frustrated signed planar graph contains at most 8

vertices. Note that any simple signed graph on at most four vertices has its frustration

index at most 2, thus n ≥ 5. Depending on the values of n we consider four cases. Noting

that in each case G has 6 faces, the number of edges is determined by Euler’s formula.

• n = 5, m = 9: The underlying graph is K−
5 as it has only one edge less than K5.

This graph has a unique planar embedding and in (G, σ) all facial cycles must be

negative. In Figure 10a one such signature is presented.

• n = 6, m = 10: Either G consists of one 5-vertex and four 3-vertices or it consists

of four 3-vertices and two 4-vertices. In the first case, G is isomorphic to W5,

see Figure 10b. In the second case, we consider two subcases: (1) The two 4-

vertices are not adjacent. In this case, these two 4-vertices are both adjacent to

all the remaining vertices, moreover, there are only two edges induced by the four
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Figure 10: The class P∗(3)
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3-vertices. See Figure 10c. (2) The two 4-vertices are adjacent. In this case, the

two 4-vertices share at most two common neighbors. Otherwise, a K3,3 is forced by

just counting degrees, contradicting planarity. The degree conditions then lead to

the unique example of Figure 10d.

• n = 7, m = 11: G consists of one 4-vertex and six 3-vertices. We consider the

graph G1 obtained from G by removing the 4-vertex. Note that G1 consists of

two 3-vertices and four 2-vertices, and moreover, G is planar and there is a planar

embedding such that the four 2-vertices are in a facial cycle. Then one of the

following must be the case for G1: (1) It consists of two 4-cycles sharing one edge,

see Figure 10e; (2) It consists of one 5-cycle sharing one edge with a triangle, see

Figure 10f; (3) It consists of two triangles connected by an edge, see Figure 10g.

• n = 8, m = 12: There is a total of five cubic 2-connected graphs, see for example

[4]. Of these, we have one Wagner graph which is not planar, and one obtained from

K3,3 by blowing up a vertex to a triangle. The other three form the full list of cubic

2-connected simple planar graphs on 8 vertices. They are depicted in Figures 10h,

10i, and 10j.

To complete the proof, we need to verify that each signed graph in the list is critically 3-

frustrated. That is to say, removing any edge in any of these signed graphs the remaining

subgraph has its frustration index being at most 2. To see this, we note that each of

these ten graphs is 2-edge-connected and each has only six facial cycles all of which are

negative. Thus once an edge is removed, we have five facial cycles, one of which (the new

facial cycle) is positive and the other four are negative. It can then be readily verified that

in each case these four negative facial cycles can be covered with 2 edges. By Lemma 1.1,

we are done.

4 Constructions of critically k-frustrated signed graphs

In this section, we first introduce a method to build critically frustrated signed graphs
from two given critically frustrated signed graphs, and show that it preserves the property
of being indecomposable and irreducible. Secondly, we build an infinite family of decom-
posable irreducible critically 3-frustrated signed graphs. In particular, it implies that the
condition of being indecomposable in Conjectures 1.9 and 1.11 is necessary.

4.1 Construction of indecomposable critically frustrated signed

graphs

In this subsection, we build signed graphs in L∗(k) from two given indecomposable criti-
cally frustrated signed graphs, one being k1-frustrated and the other being k2-frustrated
such that k = k1 + k2 − 1.
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Definition 4.1. Let (G1, σ1) and (G2, σ2) be two signed graphs, and let xy be a negative

edge of (G1, σ1) and uv be a negative edge of (G2, σ2). We define H[(G1, σ1)xy, (G2, σ2)uv]

to be the signed graph obtained from disjoint union of (G1, σ1) and (G2, σ2) by deleting

edges xy and uv, and then adding a negative edge xu and a positive edge yv.

Proposition 4.2. Given integers k1, k2 ≥ 2, let (G1, σ1) ∈ L∗(k1) and (G2, σ2) ∈ L∗(k2)

be two signed graphs such that |E−
σ1
| = k1 and |E−

σ2
| = k2. Let xy be a negative edge of

(G1, σ1) and uv be a negative edge of (G2, σ2). Then H[(G1, σ1)xy, (G2, σ2)uv] ∈ L∗(k1 +

k2 − 1).

Proof. Let σ be the signature of H[(G1, σ1)xy, (G2, σ2)uv] and note that it has k1+ k2− 1

negative edges. We first verify that σ is a minimum signature by showing that there

is no edge-cut with more negative edges than positive ones. Suppose to the contrary

that there exists an edge-cut of H[(G1, σ1)xy, (G2, σ2)uv] with more negative edges than

positive ones. As σ1 (resp. σ2) is a minimum signature of (G1, σ1) (resp. (G2, σ2)), such

an edge-cut, say ∂(X), must contain the new negative edge xu. The vertices x and y are

not separated by ∂(X) because otherwise in the restriction of ∂(X) to (G1, σ1) we will

find a contradiction. Similarly, u and v are not separated by ∂(X). Then yv is also an

edge of ∂(X). However, in this case in one of the restrictions of ∂(X) to (G1, σ1) and

(G2, σ2) we find a contradiction.

Next we show that H[(G1, σ1)xy, (G2, σ2)uv] is critically frustrated. By Theorem 1.3,

it suffices to prove that each positive edge of H[(G1, σ1)xy, (G2, σ2)uv] belongs to an

equilibrated cut. For any positive edge e of E(G1, σ1), an equilibrated cut of (G1, σ1)

containing e is also an equilibrated cut of H[(G1, σ1)xy, (G2, σ2)uv] by replacing xy with

xu if needed. The same argument holds for positive edges of (G2, σ2). For the new positive

edge yv, ∂(V (G1)) is the required equilibrated cut. Note that H[(G1, σ1)xy, (G2, σ2)uv] is

irreducible because it has no vertex with exactly two neighbors.

It remains to show that H[(G1, σ1)xy, (G2, σ2)uv] is not decomposable. Assume to the

contrary that it is and suppose there is a (r1, . . . , rt)-decomposition (r1 + · · · + rt =

k1 + k2 − 1) into signed subgraphs Ĥ ′
1, . . . , Ĥ

′
t. We may furthermore assume that each

Ĥ ′
i is connected. Then they must be 2-connected because a critically frustrated signed

graph cannot have a bridge. Thus one of the Ĥ ′
i’s, say Ĥ ′

1, should contain both xu

and yv. Each of the others then should be a subgraph of either (G1, σ1) or (G2, σ2).

Without loss of generality, we assume Ĥ ′
2 is a subgraph of (G2, σ2). Let (H2, σ) = Ĥ ′

2,

and let (H1, σ) be the signed subgraph obtained from putting together all other Ĥ ′
i’s

(that is H[(G1, σ1)xy, (G2, σ2)uv]− (H2, σ)). This gives us an (l1, l2)-decomposition where

l1 = k1 + k2 − 1− r2 and l2 = r2.

Observe that l2 ≤ k2 − 1, because uv is not an edge of the critically l2-frustrated signed

graph (H2, σ) which is a subgraph of the critically k2-frustrated signed graph (G2, σ2). Let

(H ′, σ2) be the signed subgraph of (G2, σ2) by removing all edges of H2 (recall that uv is
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a negative edge of this signed subgraph). Observe that ℓ(H ′, σ2) ≤ k2 − l2, but moreover

if ℓ(H ′, σ2) = k2 − l2 then by Observation 1.4 (G2, σ2) is (l2, k2 − l2)-decomposable, a

contradiction. Thus ℓ(H ′, σ2) ≤ k2 − l2 − 1. Thus there exists a switching-equivalent

signature π of σ2 such that |E−
π (H

′)| = k2 − l2 − 1. Assume π is obtained by switching at

a set X of vertices of G2.

We consider two cases based on whether uv ∈ E−
π . If uv ∈ E−

π , then X contains either

both of u and v or none of them. We now consider a switching at the subset X∩V (H1) of

the vertices of (H1, σ). This switching does not change the signs of the edges in (G1, σ1)

part, thus there remain k1−1 negative edges in this part, noting that xy is not an edge in

E(H1 ∩G1). On {xu, yv} there would remain one negative edge. And on (H ′ − uv, π) we

have k2 − l2 − 1 negative edges. Altogether we have k1 + k2 − l2 − 2 negative edges in this

switching of (H1, σ), contradicting the fact that its frustration index is k1+ k2− l2− 1. If

uv ̸∈ E−
π , then X contains exactly one of u or v, by symmetry of switching on X or Xc,

we may assume u ∈ X. As in the previous case we consider a switching at the subset X

of the vertices of (H1, σ). Since u ∈ X and v ̸∈ X, both xu and yv are positive edges after

this switching. A similar calculation as before then counts the number of negative edges in

this switched signed graph to be k1+k2−l2−2, which leads to the same contradiction.

4.2 An infinite family of critically 3-frustrated signed graphs

As mentioned before, the family of critically 2-frustrated signed graphs consists of (K4,−)-
subdivisions and edge-disjoint union of two negative cycles. If we furthermore require that
they are irreducible, then there are only three such signed graphs: (K4,−), two disjoint
negative loops, and two negative loops on the same vertex. In other words, the set L(2)
of irreducible critically 2-frustrated signed graphs consists of only three elements even
without the added assumption of being indecomposable. However, that is not the case
for critically k-frustrated signed graphs for k ≥ 3. In this subsection, we show the next
result.

Theorem 4.3. The set L(3) contains infinitely many irreducible critically 3-frustrated

signed graphs.

By adding a number of negative loops to the signed graphs of L(3), one gets examples for
any k as long as k ≥ 3.

Corollary 4.4. The set L(k) is infinite for any positive integer k ≥ 3.

In order to prove our statements, we first define a sequence of signed graphs as follows:
Let Ĝ0 be the signed graph obtained from K4 on vertices x, y, z, w by first assigning
negative signs to xw and yz, positive signs to the remaining four edges, and secondly
adding a positive edge xw and a negative edge yz. See Figure 11. Observe that Ĝ0

can be decomposed into three negative cycles: xwx (2-cycle), xyzx (3-cycle), and wyzw
(3-cycle).
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The signed graph Ĝt of the sequence is built from Ĝ0 as follows. We first introduce 2t
points by subdividing the positive edge connecting x and w, and two sets of t points by
subdividing each of xz and yw. Then we identify the 2t points of the xw-path with the
2t points, alternating between the points from xz and wy. See Figure 12 for the case of
t = 2.

Proof of Theorem 4.3. We shall prove this claim by showing that Ĝt ∈ L(3). Observe that
subdivisions of each of the three cycles given in decomposition of Ĝ0 gives a decomposition
of Ĝt. It implies that ℓ(Ĝt) = 3. What remains is to show that Ĝt is irreducible and
critically 3-frustrated.
That Ĝt is irreducible follows from the fact that in a subdivision of a graph, there is
always a vertex that has only two distinct neighbors. But there is no such vertex in Ĝt.
Now we provide a sketch of the proof of Ĝt being critically 3-frustrated. First, observe
that each edge incident with y (or z) is in an equilibrated cut ∂(y) (respectively, ∂(z)).
All other edges are the results of subdivisions (and then identifying some vertices). For an
edge uv where u is a vertex on the subdivision of xz and v is a vertex on the subdivision
of yw, the following six edges form an equilibrated cut: uv, the edge on the xz-path that
forms a triangle with uv, the edge on the yw-path that forms a triangle with uv and the
three negative edges. □

In fact, we can modify these signed graphs to get an infinite family of irreducible critically
3-frustrated signed planar graphs. For each Ĝt, we apply the following modification to
get Ĝ′

t. First, by modifying the embedding of Figure 12 and putting w on the outside of
the xyz-triangle, we may have an embedding with one cross which is the crossing of the
edge of the yw-path incident with w and the edge of the xz-path incident with z. Then
introduce a new vertex, say s at this crossing point to get the planar signed graph Ĝ′

t.
See Figure 13 for a depiction of Ĝ′

2. The only remaining point to verify is that each of
the new edges is in an equilibrated cut. Such two cuts are ∂({w, z}) and ∂({w, z, s}).
Therefore, we obtain the following result for planar graphs.

Theorem 4.5. There exist infinitely many irreducible critically k-frustrated planar signed

graphs for k ≥ 3.

We remark that even though the classes S∗(3) and P∗(3) are fully described in this work,
the full description of the class L∗(3) is far from clear. In particular, L∗(3) \ (S∗(3) ∪
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P∗(3)) ̸= ∅. Two examples of such signed graphs are given in Figure 14. The class L∗(3)
is shown to contain finitely many elements in forthcoming work.

Figure 14: Examples in L∗(3) neither in S∗(3) nor in P∗(3)

5 A support for Conjecture 1.12

In this section, we show that Conjecture 1.12 holds if we add the extra condition that
(G, σ) has no (K5,−)-minor. A signed graph (H, π) is a minor of (G, σ) if it is ob-
tained from (G, σ) by a sequence of the following operations: Deleting vertices or edges,
contraction of positive edges, and switching.
Our claim concludes from some known results on the frustration index of (K5,−)-minor-
free signed graphs.

Theorem 5.1. [8] Let (G, σ) be an Eulerian signed graph without (K5,−)-minor. Then

the maximum number of edge-disjoint negative cycles of (G, σ) is equal to its frustration

index.

Let (G, σ) be a (K5,−)-minor-free signed graph. Note that, by doubling each edge with
the respective sign, we obtain a new (K5,−)-minor-free signed graph which is Eulerian
and whose frustration index equals 2ℓ(G, σ). By applying Theorem 5.1 to this new signed
graph, we obtain the following result.

Theorem 5.2. Given a (K5,−)-minor-free signed graph (G, σ) there exists a set C of

negative cycles in (G, σ) such that each edge is in at most two cycles of C, and |C| =
2ℓ(G, σ).

Observe that if ℓ(G, , σ) = k, and if a set C of negative cycles in (G, σ) is such that each
edge is in at most two cycles of C, then size of C is at most 2k, that is because each
negative edge in a minimum signature can cover at most two of these cycles.
In the next theorem we show that when working with critically frustrated signed graphs
we can ask for each edge to be covered precisely twice.

Theorem 5.3. Let (G, σ) be a (K5,−)-minor-free signed graph which is critically k-

frustrated. Then there exists a set C of negative cycles in (G, σ) such that each edge of G

is in exactly two cycles of C, and |C| = 2k.
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Proof. Let (G, σ) be a (K5,−)-minor-free signed graph and assume it is critically k-

frustrated. By Theorem 5.2 there exists a set C of 2k negative cycles of (G, σ) such that

each edge is in at most two of them. What remains to prove is that each edge of G is in

exactly two cycles of C. Assume to the contrary that an edge e is not in two cycles of C,
thus it is either in none of them or only in one of them.

First, consider the case when e does not belong to any cycle of C. Then ℓ(G− e, σ) ≥ k =
1
2
|C|, contradicting the criticality of (G, σ).

Next, suppose that e belongs to exactly one cycle Ce of C. Since (G, σ) is critically k-

frustrated, ℓ(G− e, σ) = k − 1. Thus any set of negative cycles of (G− e, σ), where each

edge belongs to as most two cycles in it, is of order at most 2k−2. However, with e being

an edge of Ce but no other cycle in C, the set C \Ce is a set of 2k− 1 cycles of (G− e, σ)

which contains each edge at most twice, this contradiction completes our proof.

As the edges incident with each vertex v belong to at most 2k cycles, Conjecture 1.12 is
implied when (G, σ) has no (K5,−)-minor.

Corollary 5.4. Every (K5,−)-minor-free critically k-frustrated signed graph (G, σ) sat-

isfies ∆(G) ≤ 2k.
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