When an optimal dominating set with given constraints exists
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Abstract

A dominating set is a set S of vertices in a graph such that every vertex not in S is adjacent
to a vertex in S. In this paper, we consider the set of all optimal (i.e. smallest) dominating sets
S, and ask of the existence of at least one such set S with given constraints. The constraints
say that the number of neighbours in .S of a vertex inside S must be in a given set p, and the
number of neighbours of a vertex outside S must be in a given set o. For example, if p is [1, k],
and o is the nonnegative integers, this corresponds to “[1, k]-domination.”

First, we consider the complexity of recognizing whether an optimal dominating set with
given constraints exists or not. We show via two different reductions that this problem is NP-
hard for certain given constraints. This, in particular, answers a question of [M. Chellali et al.,
[1, 2]-dominating sets in graphs, Discrete Applied Mathematics 161 (2013) 2885-2893] regarding
the constraint that the number of neighbours in the set be upper-bounded by 2. We also consider
the corresponding question regarding “total” dominating sets.

Next, we consider some well-structured classes of graphs, including permutation and interval
graphs (and their subfamilies), and determine exactly the smallest k such that for all graphs in
that family an optimal dominating set exists where every vertex is dominated at most k times.
We also consider the problem for trees (with implications for chordal and comparability graphs)
and graphs with bounded “asteroidal number”.
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1. Introduction

Let G = (V,E) be a graph. For S C V and a vertex v, let dg(v) denote the number of
neighbours of v in S. Let p and o be two sets of numbers such that 0 ¢ p. A (p, o)-dominating
set is a set S C V such that for every vertex v € V, we have dg(v) € pif v ¢ S, and dg(v) € o
if vesS. (See [15] 16])

An ordinary dominating set is then nothing other than a ([1,00),[0,00))-dominating set,
while a total dominating set is a ([1,00),[1,00))-dominating set. Finally, a [1,k]-dominating
set and a total [1, k]-dominating set, which are defined in [7], are respectively a ([1, k], [0, c0))-
dominating set and a ([1, k], [1, k])-dominating set. For a survey on domination the reader is
referred to the books [10] and [I1].
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We denote the size of the minimum (p, o)-dominating set by v, ,(G). By convention if no
(p, 0)-dominating set exists, v, »(G) is defined to be co. In the literature of dominating sets, the
following notation is used: (G) denotes (1 o) [0,00) (G), 7t(G) denotes V1 o0) [1,00)(G)5 V1,41 (G)
denotes Y1 4],0,00)(G), and finally ;11 1 (G) denotes (1 g 11,1 (G)-

In this paper, we consider (p,o)-sets which are (p,o)-dominating sets (i.e. the case when
0 & p) in a graph G. First, we note that for given sets p, p’, o and ¢’ satisfying p’ C p, 0 & pU p’
and ¢’ C o, we have 7, ,(G) < 7, o/(G), particularly we have v(G) < v(,+)(G). So, it is natural
to ask when the equality v(,,)(G) = 7(G) holds. Here, for certain (p,o)’s, we consider the
problem of recognizing when a graph G has an optimal dominating set which is also a (p,o)-
dominating set. The computational complexity of this question (i.e. whether v, ,(G) = v(G))
lies in the second level of the polynomial hierarchy, more specifically in 3o NIy, A special case
of this question was posed by [7], Question 8, where the authors ask to characterize graphs
for which 7y 9/(G) = 7(G). We show that for certain classes of (p, o), in particular for (p,o)
corresponding to [1, k|]-dominating sets for any fixed k& > 1, it is NP-hard to check whether
Yp,o = 7v- Hence, it is impossible to efficiently characterize graphs where ~y 1,k](G> = v(G) unless
P = NP. (For precise statement of our results, see Theorems and )

In Question 14 of [7], the authors ask the corresponding question about total [1, 2]-dominating
sets. In this paper, we consider the more general question of finding when ;1 4)(G) = 7(G)
for any fixed integer k > 1, showing that checking whether a graph has this property is also
NP-hard.

We note that our results regarding the complexity of v, ,(G) = 7(G) are a first step, because
the complexity for many (p, o) are not addressed in this paper. For example, p = [2,k] and
o =[0,00) is an interesting open case.

Question 1.1. Classify the complexity of checking v, +(G) = v(G) given a graph G as an input
for every possible (p, o) pair. In particular, what is the complexity of checking v,,(G) = v in
cases where 1 ¢ p?

In Section |3 we consider the question of whether v(G) = vp4(G) for special classes of
graphs, including permutation graphs (defined in Subsection and interval graphs. For these
two families of graphs we show that v(G) = 7}1,3)(G) and give examples of permutation graphs
and intervals graphs for which 7[172](G) > v(G). However we show that for the subclasses of
unit interval graphs and bipartite permutation graphs 7j;9(G) = v(G) also holds. We also
show that for arbitrary large &, there exist trees such that vy 4)(G) > v(G). Finally, we consider
the relationship between the asteroidal number of the graph (defined in Subsection and

Y(G) = v,1(G).

Related works: Our work fits into the general framework of (p, o)-sets of graphs, which was
first introduced by Telle in [I5]. (Our study restricts to the case where 0 ¢ p so that the set
is dominating.) Concerning (p, o)-dominating sets, in Telle’s thesis [I7], it is conjectured that
whenever 0 ¢ p, the problem of computing minimum (p, o)-dominating set for an arbitrary given
graph is NP-complete. He can prove this result for certain (p, o), most significantly whenever p
and o are both finite, and also for dominating induced matching (p = [1,00),0 = {1}), and for
independent n-dominating set (p = [n,00),0 = {0}). Previous to his work, NP-completeness
was proved for n-dominating set, with n > 2 (p = [n,00),0 = [0,00)), independent dominating
set (p = [1,00),0 = {0}), perfect dominating set (p = {1},0 = [0,00), and total dominating
set (p =[1,00),0 = [1,00)]). (See the references in [17]). Later [7] also showed that for [1,2]-
dominating set (i.e. p = [1,2],0 = [0,00)), the problem of minimum (p,o)-dominating set is
NP-complete.

We note that the problem of existence of a (p,o)-dominating set is easier than the corre-
sponding optimization problem, and for some of the above (p, o) it can be solved in polynomial



time. But for example, for independent [1,1]-dominating sets also known as “perfect codes”, i.e.
for p = {1},0 = {0}, the existence problem is also NP-complete (and even on the subclass of
cubic planar graphs [12]) because all perfect codes of a graph are of the same size.

On the other hand it is proved in [6l 13} [I8], among other results, that if each of the sets p
and o is either finite or is a complement of a finite set, and if G is a graph of bounded MIM-
widthEL cliquewidth, or treewidth, then the smallest (p,o)-set can be calculated in polynomial
time (with oo as an accepted answer when there is no such a set). For the definition of these
classes of graphs, we refer to the three papers just mentioned. The class of graphs of bounded
MIM-width in particular contains interval graphs and permutation graphs.

We note that special cases of (p, o)-dominating set has also been considered separately. The
concept of the [j, k]-domination number of a graph (which is Y1j,k),[0,00) UsSing our notation)
has been introduced by Chellali et al. in [7]. In [8] the author introduced the quasi-perfect
domination number of a graph which is the same as the [1, 2]-domination number of a graph. In
[7] the authors proved (1 9j(G) = 7(G) when G belongs to the family of claw-free graphs, Ps-free
graphs or caterpillar graphs. They also proved v 9)(G) = 7(G) for graphs with A(G) > n — 3,
where n is the number of vertices of G and A(G) is the maximum degree of G. Finally, the
authors of [7] posed some open questions at the end of their paper. Some of these questions
have been answered and investigated in [3} 9} [20]. More precisely, in [20], the authors considered
the problem of finding graphs for which '7[1,2]((;) = n and they showed that there are planar
graphs and bipartite graphs which satisfy this condition. They also proved that yj; o)(T) = n—k,
when T is a tree with k leaves and dr(v) > 4 for every non-leaf vertex v. In [9], the authors
gave a linear time algorithm to compute vj;,9/(T) as well as ;4 (T), for every tree T'. Then
they recursively generated all trees that do not have total [1,2]-set. A linear time algorithm for
computing 7y ;(7) for a tree 7' and a polynomial time algorithm for computing 7} ;)(G) for a
fixed j in a split graph G is given in [3].

In [I}, 2], the authors defined the set-restricted domination number of a graph, which is the
generalization of the [j, k]-domination number of a graph. The difference between that work and
our work is that different vertices have individual, probably different, constraints on the number
of their neighbours in the dominating set.

2. Complexity of checking whether v, , = v or whether ;1 1) = %

In this section, we provide two reductions from the 3-SAT problem to the existence of optimal
dominating sets with certain given (p, o) constraints.

Definition 2.1 (3-SAT problem). In the 3-SAT problem, the input is a 3-CNF formula over the
variables x1, ..., Xy, i.e., a conjunction (AND) of clauses, where each clause is a disjunction
(OR) of three literals, where a literal is a variable x; or the negation of the variable. The output
is YES/NO according to whether there exists a satisfying truth assignment, i.e., an assignment
of boolean values to the variables such that the formula becomes true.

Here are some properties that separate the two reductions:

e The corresponding (p,o)’s for which the two reductions work are different.

?Maximum Induced Matching width, introduced in[T9], is a measure of how well it is possible to decompose
a graph along vertex cuts with bound on the size of maximum induced matching on the bipartite graph of edges
crossing the cut. It is a stronger notion than cliquewidth and treewidth, but many problems are tractable on
graphs of bounded MIM-width.



e Curiously, in the first reduction, we have v, , = v exactly when the formula is satisfiable,
whereas in the second reduction, we have v, , = 7 exactly when the formula is not satis-
fiable. So in complexity theory terms, the first reduction is a Karp reduction to v, , = 7,
whereas the second reduction is a Karp reduction to v,, # v (and a Cook reduction to

Voo =)
e The first reduction proves hardness also for the subclass of bipartite graphs.

e The first reduction also gives corresponding results concerning optimal total dominating
sets, not only optimal dominating sets.

e The first reduction is via the 1-in-3-SAT problem defined below.

2.1. First reduction

Definition 2.2 (1-in-3-SAT problem). In the 1-in-3-SAT problem, the input is a 3-CNF for-
mula, and the YES/NO output is given according to whether there exists an assignment such
that for every clause exactly one literal is true.

Schaefer [14] proved that 1-in-3-SAT is NP-complete:

Definition 2.3. Define the function f mapping 3-CNF formulas to 3-CNF formulas according
to the following rule. It maps C1 A --- A\ Cyy, over the variables x+,...,x, to

CiaNCiagANCig AN NCpi ACraACp3
over the set of variables

{xh... ,$n}U{t17"‘ ,tm}U{U17"‘ 7Um}U{U1,"' 7Um}u{w1,"' 77~Um}7
where if C; =14V 15V 1§ we have:
Cip ==l Vit Vo,
Cipp = lé Vou; Vv,
Ci3 = —dg Vo Vw;.
The mapping f defined above is a valid reduction in the following sense:

Proposition 2.4. [1]] For every 3-CNF ¢, f(p) is a YES instance of 1-in-3-SAT if and only
if © is a YES instance of 3-SAT.

For our purposes, the following observation will be very useful.
Remark 2.5. For every 3-CNF ¢, f(p) is always a YES instance of 3-SAT, but not necessarily
a YES instance of 1-in-3-SAT.

Corollary 2.6. Problem 1-in-3-SAT is NP-complete even if we are given the promise that the
3-CNF input to the 1-in-3-SAT problem is a YES instance of 3-SAT.

Next we introduce our main mapping from 3-CNF formulas to graphs.

Definition 2.7. Given a 3-CNF ¢ = C1\---NCy, on variables x1,- -+ ,x, and a positive integer
k, we build the graph G\ as follow:

V(Gep) = U(XZ UX;UY; UZ,UW;)U{er, - ,emb,
i=1



where X’L = {:E’ily"' 7m’ik}7 Y@ = {fila'” afik}7 }/Z = {yip'“ 7yi2k}z ZZ = {Z’L} and WZ =
{wiy,wi, }. Also
E(G%k) = U?zlEh

where

k

Ei = U {x’ij yigjfgxij y’igj,]_ ) x’ij yi2j71 ) xij yizj}
j=1

k 2
U U{xijzi,@jzi} U U{w%zz}
Jj=1 Jj=1
k
U U{xijcl : x; in clause Cp}
j=1
k
U U{Ei].cl : T in clause Cp}.
j=1

In the above, when j =1, by yi,; _, we mean y;,, .

Figure 1: The Construction of G 3.

Ezample 2.8. Let ¢ = (x1 Vxa Vx3) A (T2 V 23V T4) A (2 V 23V 24). The corresponding graph
G3 is shown in Figure[l]

Theorem 2.9. For every k > 1, and (p,o) such that {1,k} C p C [1,2k — 1] U [2k + 1,3k —
1J U [k + 1,00) and {1,k} C o, given a bipartite graph G it is NP-hard to check whether
Yp.o(G) = v(G), and it is NP-hard to check whether vy1 1)(G) = 1(G). (In particular, checking
V1,6 (G) = v(G) is also NP-hard.)

Proof. 1t is easy to see that the graph G = G, is bipartite: One part consists of X;’s, X’s,
and W;’s, and the other part consists of the rest of the vertices.



By the following Lemmas and v =~ = n(k + 1) under the promise that ¢ is a
YES instance of 3-SAT. By the next Lemmas and Yp,o and 7y ) are each greater
than n(k + 1) iff ¢ is a NO instance of 1-in-3-SAT. Proposition and Remark complete
the proof. O

We note that we do not claim that the decision problem 7, ,(G) = v(G) is NP-complete. We
only claim it is NP-hard. This is because we do not know if the decision problem is in NP: we do
not know of an efficiently checkable certificate that v, ,(G) = v(G) since we cannot efficiently
certify a lower bound on (G) (though an upper bound on 7(G) can be efficiently certified once
an dominating set is given). In particular, since the second reduction shows that the decision
problem 7, , = v(G) is co-NP-hard under Karp reductions for certain (p, c)’s some of which are
common with the (p,o)’s of Theorem this shows that for these common (p, 0)’s the problem
is not NP-complete unless NP = co-NP.

Lemma 2.10. If ¢ is a YES instance of 3-SAT, then v(Gy i) < vi(Gox) < n(k+1).

Proof. 1t is enough to show v;(G, ) < n(k+1). Choose a satisfying assignment for ¢. For each
i, if z; is true, include X; in the total dominating set; otherwise, include X;. Finally, add all z;’s
to the total dominating set. cq,..., ¢, are dominated since the assignment is satisfying, and all
other vertices are clearly dominated. The size of the set is obviously n(k + 1). O

Lemma 2.11. v(Gyr) > v(Gypx) = n(k +1).

Proof. Tt is enough to show (G, ) > n(k+1). To dominate the w;,’s for a fixed i, it is optimal
to choose z;. For each fixed i, there are 2k vertices Yi;, and each of the z;;’s dominate only two
of those 2k vertices. So if we choose [ of the z;;’s and " of the vi;’s, we have " 4+ 2l > 2k, which
implies I’ +1 > k. So at least k of the vertices in ¥; U X; U X; must be in the dominating set.
This implies at least n(k + 1) vertices in the whole dominating set. O

Lemma 2.12. If ¢ is a Yes instance of 1-in-3-SAT, with (p, o) as in statement of Theorem
then Vp.0(Gpk) < n(k+1). In particular, v 3 (Ger) < n(k +1).

Proof. Consider the total dominating set constructed in the proof of Lemma Clearly, it
dominates each vertex w;; only once, each z; exactly k times, each vertex y;; exactly once, and
each z;, and T;; exactly once. Furthermore, if each clause is satisfied by exactly one literal,
each ¢; is dominated by exactly k vertices. Thus, v, (G, k) < n(k+1). In particular we have
Vii1k) (Gpp) < n(k+1). O

Lemma 2.13. If ¢ is a NO instance of 1-in-3-SAT, with (p,o) as in statement of Theorem
then vp.0(Gpk) > n(k +1). In particular, vy 4)(Gyr) > n(k +1).

Proof. Consider a dominating set for G, ;. For each i, to dominate Wj, at least one vertex among
W; U Z; should be in the dominating set. For each ¢, to dominate Y;, by the same argument as
in Lemma at least k vertices among X; U X; UY; should be in the dominating set; and
the only case where k vertices is enough when we choose either all of X; or all of X;. So if the
dominating set consists of at most n(k + 1) vertices, no vertex ¢; is chosen, and the dominating

set encodes a satisfying truth assignment to the variables z1,...,x,. Since by assumption, one
clause must be satisfied by more than one literal, one of the vertices ¢; is dominated either 2k
or 3k times. This proves the claim of the lemma. ]

Remark 2.14. We note that whether a formula ¢ is a YES instance of 2-in-3-SAT is also
NP-complete even under the promise that ¢ is 3-SAT satisfiable. (To see this, negate all the
literals in Definition ) Therefore, by the same reasoning as above, if 1,2k € p, 1,k € o, and
k,3k ¢ p, then checking 7, » = 7 is NP-hard.



2.2. Second reduction
The following reduction, which is a modification of a known reduction from 3-SAT to domi-

nation number (see [10]).

Definition 2.15. Given a 3-CNF formula ¢ and k > 2, let M = k+ 1, and construct the graph

G:p . With vertex set

M n
V= {wyu | JU@ vz uy) uid,...d.)),

j=1 i=1

and edge set

1 WT )

=

Jod om0 o Jdmsd
{yjz],yjx!, x]T], we
1

)

M
E=J
j=1

U {:J:fcl7 s x; in clause Ci}

C=k

<.
Il
-

{Ezclj : T; in clause Cy}

C
C=k

<.
Il
—

{wel, ..., wel,}.

C
C=k

<.
Il
—

Ezample 2.16. Let o = (z1 Vo Va3) A (T2 Va3 VTg) A (z2 Va3V xy). The corresponding graph
G, 5 is shown in Figure

Figure 2: The Construction of G, 3.

Theorem 2.17. For every k > 2, and (p, o) such that {1,2} C p C [1,k] and {0} C o, given a
graph G, it is NP-hard to check whether v(G) = v,+(G).



Proof. Given a 3-SAT formula ¢, w.l.o.g. we assume ¢ is not empty. We construct G = G;’k.
Then by Lemma we have 7, ,(G) = nM + 1. On the other hand, by Lemma v(G) =
nM iff ¢ is satisfiable. Therefore, v, (G,, ;) = V(G ), I ¢ is not satisfiable. This proves the
theorem. O

Lemma 2.18. For every nonempty formula ¢, k > 2, and (p,o) as in Theorem we have
Voo (G, ) =nM + 1.

Proof. If we choose w and all yg ’s as a set of dominating vertices of Gfp i clearly the size of the

set is nM + 1. Furthermore, every vertex outside the set is dominated by only 1 or 2 vertices,
and every vertex inside the set is not neighbour to any other vertex inside the set. Thus for
every (p, o) satisfying the condition of Theorem we have 7,5 (G}, ;) <nM + 1.

On the other hand, consider a general dominating set for G:o, - Of each triangle {yf , xf ,fg 1,

at least one vertex must be chosen to dominate yf . If the size of dominating set is at most nM,
this is all the vertices we can include in the dominating set without exceeding the size limit. But
since ¢ contains at least one clause, for each j, at least one xf or Ez must be chosen. Therefore
at least M, M > k, neighbours of w are chosen, so there is no (p,o)-dominating set of size at
most nM. O

Lemma 2.19. 'y(G:D w) = nM iff ¢ is a YES instance of 3-SAT.

Proof. By the argument of the previous lemma, any dominating set has size at least nM. And if
the size of the dominating set is nM, it includes exactly one vertex from each triangle {yf , xf , Ei .
Choosing a;{ or E{ instead of yl‘.j has the advantage of possibly dominating other vertices, so we
assume that for each j and i exactly one of :Uf or f{ has been chosen. Now w is covered, and
the CZ ’s are covered iff for every j, the chosen vertices correspond to a satisfying assignment to

3-SAT. Q.E.D. 0

3. Graphs for which v, =~

Definition 3.1. For a vertex v in a graph G, we define the open neighbourhood Ng(v) to be the
set of neighbours v, and the closed neighbourhood Ng[v] to be Ng(v) U {v}.

Definition 3.2. A vertex v belonging to a set S is said to have a private neighbour if there
exists a vertex uw € Ng(v) \ S such that u is not adjacent to any other member of S.

In some proofs we will use the following lemma regarding the existence of a private neighbour
for each element of a minimum dominating set.

Lemma 3.3. [}/ Let G be a graph with no isolated vertices. Then G contains an optimal
dominating set S such that each vertex in S has a private neighbour.

3.1. Permutation graphs
As defined in [5]:

Definition 3.4. A permutation graph is built as follows: let L; and Ly be two parallel lines
on the plane (we imagine L; on the top and Ly on the bottom). Let x1, 2, ,xy, be n distinct
points on Ly and y1,y2, - ,yn respectively be n distinct points on Ly, noting that these points
do not necessarily appear on the two lines from left to right in this order. A permutation graph
then has the n line segments [x;,y;| of the plane as vertices, and two vertices (i.e. segments)
are adjacent if the corresponding segments intersect. In other words, given a permutation o
on n elements, if we consider x1,...x, = [1,n] and y1,...,yn = o(1),...0(n). A permutation



graph is just the intersection graph of the lines [i,0(i)]. A bipartite permutation graph is a
permutation graph which is also bipartite. Given a verter v = [x;,y;] we may write t(v) = x;
and b(v) = y;.

In this section, we prove that 7|y 3y = 7 for permutation graphs. To prove this, we first prove
that in fact any minimum dominating set of a permutation graph is also a [1,4]-dominating set.
We then show that at least one such dominating set is also a [1, 3]-dominating set.

Lemma 3.5. Let G be a permutation graph and D be an optimal dominating set for G. For
each vertex v of G let S(v) = DN Ng(v). Then for each v we have |S(v)| < 4. Furthermore, if
|S(v)| = 4 then the subgraph induced by S(v) is a 4-cycle.

Proof. We partition the set of segments in S(v) into two sets S; and Sz according to the position
of their top points on L;, those on the left of v are in S; and those on the right are in S5. Observe
that since all vertices in S(v) are adjacent to v, the partition with respect to L; (insted of L;)
will be the same after exchanging the role of right and left. To prove the lemma we prove that
S1 and Sy are both of size at most two and that if any of them is of size 2, then its elements are
not adjacent. The proof is based on the fact that D is a dominating set of minimum size. Let u
be the vertex in S; whose top point is furthest away from that of v and let u’ be the vertex in S
whose bottom point is furthest away from that of v. Observe that v and u’ are not necessarily
distinct, and in fact if S; is a set of two adjacent vertices, then indeed u and u’ are the same
vertices. Now consider the set D’ which is obtained from D by removing elements of S7 —{u, v’}
and adding v. It is easily verified that D’ is also a dominating set of G. As D is a dominating
set of minimum size, we have |S1| < 3 and that if u = «’/, then |S;| < 2. Now suppose contrary
to our claim that |S1| = 3 or that v = «/ and |S1| = 2. Observe that since |S| > 4 we have
Sy # (. Let z be a vertex in S3. Observe that z intersects all elements of S;. Let ¢ be the
vertex of S; which is distinct from u and «/. Then ¢ is dominated by z and any neighbour of
it is dominated by one of u, v’ or z, meaning D — t is a dominating set, contradicting the fact
that D is a dominating set of a minimum size. O

Corollary 3.6. Given a permutation graph G, any dominating set of minimum size is also a
[1, 4]-dominating set.

Lemma 3.7. Let D be an optimal dominating set for a permutation graph G. Then each vertex
of D lies in at most one induced 4-cycle. In other words every pair of induced 4-cycles in D are
vertexr disjoint.

Proof. Suppose that v € D lies in a induced 4-cycle C. For the contrary suppose that there is
another induced 4-cycle C” which contains u. Let V(C) = {s1, 2,53, 54} and t(s1) < t(s2) <
t(s3) < t(s4). Since the induced graph on C, is a 4-cycle we have b(s3) < b(s4) < b(s1) < b(s2).
Without loss of generality suppose that u = s1. Since each vertex of C is adjacent to another
vertex of C' and they are in an optimal dominating set D, each of them should have at least one
private neighbour in D: let s} be the private neighbour of s;, 1 <14 < 4. It is easy to see that
the private neighbours of vertices of C' should be as shown in Figure

Now, let v/ € C’ be a vertex of C’ which is not a vertex of C. Since s; has the private
neighbour of s, v’ is adjacent to non of the s}, s, s5 and . Hence, one of the following three
cases can occur for u':
Case 1. t(v') < t(s4) and b(u') < b(s));
Case 2. t(s)) < t(u’) and b(s}) < b(u);
Case 3. t(s4) < t(u') < t(s}) and b(s3) < b(u') < b(s2).
If Case 1 happens, then since v’ and v = sy are in the 4-cycle C’, the other segments of C’
would intersect to s} and s, which is a contradiction with the fact that s§ and s are private



neighbours of s; and s3. Hence this case can not be occurred. Case 2 also can not occur: the
reason is similar to that of Case 1. If Case 3 occurs, then u/ can not have any private neighbour
and since u’ has a neighbour in D we conclude that D\ {u'} is also a dominating set which is a
contradiction. O

Figure 3: Private neighbours for the vertices of 4-cycle C' = {s1, s2, $3, $4}

We now prove that at least one minimum dominating sets must be a [1, 3]-dominating set.

Theorem 3.8. Let G' be a permutation graph, then v(G) = v1,3/(G). Moreover, there is a
permutation graph H for which y(H) < 71,2 (H).

Proof. Given a dominating set D of minimum size, let tp be the number of induced 4-cycles
C of D for which there exists some vertex v € V(G) \ D such that C = N(v) N D. Let
t = min{tp | D is ay-set}, and assume for contradiction that ¢ > 1. Let F be the set of
all minimum dominating sets for which tp = t. Recall that for each vertex v not in D, if
S(v) = N(v)N D is of size four, then it induces a 4-cycle. Assuming D is in F, there are exactly
t such 4-cycles. Let S(D) be vertices of these ¢ 4-cycles, and let v(D) be the vertex in S(D)
whose top is most left. Among all members of F let D’ be the one for which v(D’) is most left.
Let s1 be the top point of v(D’) and let s2, s3 and s4 be the top points of three other vertices
of the 4-cycle corresponding to v(D), the points s; being ordered from left to the right as shown
in Figure [4

L

Ly

Figure 4: A special 4-cycle appearing in the proof of Theorem

For simplification, we will use s1, s, s3, 54 to denote also the vertices corresponding to these
top points. As vertices of a 4-cycle are not isolated in D', and as D’ is a minimum dominating
set, each of these four vertices must have a private neighbour in V/(G)\ D'. Let s§ be the private
neighbour of s3 in V(G)\ D’. Observe that, based on the position of s3 in the 4-cycle, and as s§
is not adjacent to any of si, s2, s4, the top point of s4 is further left of the top point of s;. By
considering the positions of all five points as shown in Figure [l we observe that every private
neighbour of s; in V(G) \ D’ is also a neighbour of s;. Thus D* obtained from D’ by removing
s1 and adding sf is also a dominating set of minimum size. Now, if there exists some induced
4-cycle C in D*, all whose vertices adjacent to s1, then C is also contained in d’. By Lemma
V(C) N {s1,s2, 83,84} = 0. Therefore, there are at least six vertices of D* which are adjacent
to s1 € V(G) \ D*, which is a contradiction with Corollary However, since each vertex of
D’ (and D*) is at most in one special 4-cycle (Lemma we have tp- < t,r. But since ¢,
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is minimum it must be the case that s is also in a 4-cycle, but then s is a left top point of a
4-cycle which is to the left of s, contradicting the choice of s;.

To construct a permutation graph H with v(H) > V1,2] (H), consider the permutation graph
with nine vertices shown in Figure[5] Then, it is easy to see that H has three optimal dominating
set Dy = {ss, s¢, 7}, D2 = {s3, 55,57} and D3 = {s4, s5,s7}. None of them is a [1, 2]-set, since
each of the vertex ss3, s4 have three neighbours in D1, the vertex s4 has three neighbours in Do
and the vertex s3 has three neighbours in D3. Therefore (H) < v ,9)(H).

L

Ly

Figure 5: A permutation graph H with y(H) > ~j;,9)(H)

Proposition 3.9. For every bipartite permutation graph G, v(G) = v1,2(G).

Proof. Let D be an optimal dominating set for which every vertex in it has a private neighbour
in V(G)\ D (by Lemma[3.3] there exists such an optimal dominating set). We prove that D is a
Y(1,2-set. Recall that vertices of G' are line segments [z;,y;](1 < i < |V(G)|), where x; € Ly and
yi € Lp. Assume by contradiction that D is not a [ y-set. This means that there is a vertex
v = [z,y] € V(G) \ D and three vertices v1 = [z1,y1],v2 = [z2,y2],v3 = [x3,y3] of D, where
r1 < x9 < x3, such that v; € N(v),1 < i < 3. Since G is bipartite non of the vertices vy, ve, v3
are adjacent. Therefore, from the inequality r; < z2 < x3 we have y; < y2 < y3. Since v is
adjacent to all the vertices v, vs, v3, without loss of generality, we may assume that y3 < y and
z < 1 (see Figure [6]).

€T X1 xT9 I3

Ly

Ly

1 Y2 Ys Yy

Figure 6: A case in a bipartite permutation graph in which a vertex [z,y] is dominated three
times

Now, every private neighbour vy of v5 should be adjacent to v, so v4, v2 and v make a triangle,
which is a contradiction by the fact that G is bipartite. Hence, v2 could not have any private
neighbour, which is a contradiction. Hence D is a [1, 2]-set, as desired.

O

3.2. Interval graphs

Definition 3.10. An interval graph is a graph where each vertex is an (open) interval of a
given line, and two vertices are adjacent if they intersect. If furthermore all intervals are of unit
length then the graph is called a unit interval graph.

11



In this section we want to prove that for every interval graph G, v 3(G) = 7(G). Moreover
we give an example of an interval graph G for which the stronger equality (1 2(G) = 7(G) does
not hold. In addition we prove that for every unit interval graph G' we have v 3)(G) = (G).

Theorem 3.11. Let G be an interval graph, then v(G) = 7)1 31(G). Moreover there is an interval
graph H for which v(H) < yp,9)(H).

Proof. We prove that for every interval graph G, every optimal dominating set is a 7|y 3-set. For
the contrary suppose that D is an optimal dominating set and there exist a vertex v € V(G)\ D
and vertices s1, S2, S3, S4 in D, which all are adjacent to v, and are ordered increasingly according
to their left endpoints. For 1 < i < 4, let a; (resp. b;) be the left (resp. right) endpoint of s;.
Let a (resp. b) be the left (resp. right) endpoint of v. Since ay, as, as, as are ordered increasingly
and s1, So, S3, S4 1s contained in an optimal dominating set we conclude that b1, b, b3, by are also
ordered increasingly (because otherwise one interval for example s; € D will included in another
interval for example s; € D (j # i) which means that Ng[s;] C Ng[s;]. Hence, D\ {s;} is also
a dominating set, which is a contradiction). Since v adjacent to all si, s9, s3, 54, we have a < b;
and a4 < b. By these facts, it is easy to see that

N¢gl{s1,s2,s3,84}] € Ng[{s1,v, s4}].

This shows that (D U{v})\ {s2,s3} is also a domination set, whose cardinality is less than |D]|,
which is an contradiction. So, for every interval graph G, every optimal dominating set D is
also a 71 3-set.

For the second part of the theorem consider the following example. Let H be an interval
graph with vertex set

V(H) ={(1,7),(2,3),(3,4), (4,5), (5,13), (6,14), (8,9),
(9,10), (10,11), (12,19), (15, 16), (16, 17), (17, 18)}

Interval graph H is shown in Figure

Figure 7: An interval graph H with v(H) > 7p,9)(H)

Then it is easy to see that H has two optimal dominating set Dy and Dy, where D =
{(1,7),(5,13),(12,19)} and Dy = {(1,7), (6,14), (12,19)}. None of them is a [1, 2]-set, since the
vertex (5,13) has three neighbours in D and the vertex (6,14) has three neighbours in D;.
Therefore v(H) < yp,9)(H). O

Theorem 3.12. For every unit interval graph G, v(G) = v1,9/(G).

Proof. Let D be a optimal dominating set. We prove that D is [ g-set. For the contrary
suppose that there exist s1, s2,$3 in D and v € V(G)\ D such that v adjacent to all s1, s2, s3. Let
{a1,a9,a3} ({b1,b2,b3}) be the set of left endpoints (right endpoints) of s1, s2, s3 and suppose
that {a,a2,a3} are ordered increasingly, therefore {b1,be,b3} are also ordered increasingly.
If a and b denote the left and right endpoints of v, respectively, then a < b; and a3z < b.
Therefore, |ag —b1| < b—a = 1. Since all intervals have unit length, we conclude that Ng[sa] C
N¢g(s1) U Ng(s3), which is a contradiction with the assumption that D be a optimal dominating
set. O
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3.8. Trees and superfamilies of permutation graphs and interval graphs
Theorem 3.13. For every integer k > 1, there exists a tree Ty such that vy 3 (Tk) > v(Tk)-

Proof. Let T}, be the tree shown in Figure [§] It is easy to see that the only optimal dominating
set consists of the parents of the leave. So, v(Tx) = k + 1 and 7}y ) > k + 1. O

Figure 8: A tree Ty with 7y g (Tx) > v(Tk)

Definition 3.14. A comparability graph is a graph with the verter set equal to the underlying
set of a finite partially ordered set, where two vertices are adjacent if they are comparable in the
partial order. A chordal graph is a graph where every cycle of length more than 3 has a chord,
i.e. the graph induced on the cycle has another edge also.

The above result shows that for other families like comparability graphs or chordal graphs,
which are superfamilies of trees, we cannot have ~; 3 = v for fixed k. Note that interval graphs
are a subfamily of chordal graphs, and permutation graphs are a subfamily of comparability
graphs.

Bipartite graphs are a subclass of comparability graphs, and the fact that a fixed k£ does not
work for comparability graphs is not surprising given our hardness result of Theorem for
bipartite graphs. Regarding chordal graphs, the following problem looks interesting.

Question 3.15. What is the complexity of checking v 4)(G) = v(G) for a given chordal graph
G?

3.4. Graphs with bounded asteroidal number

Definition 3.16. An independent set A of vertices of G is an asteroidal set if for each vertex
a € A, when we remove a and its neighbours from the graph G, the set A\ {a} is contained
i one connected component of the remaining graph. The asteroidal number of G, denoted
AT(G) is the mazimum cardinality of an asteroidal set of G. Graphs with AT(G) < 2 are called
asteroidal triple-free graphs, and include interval graphs, permutation graphs, and complements
of comparability graphs known as cocomparability graphs.

Theorem 3.17. For each integer k > 2, there exists a graph G with AT(G) = k and vy 1)(G) >
1(G).

Proof. Let k be a positive integer and G be the graph shown in the Figure [0 Then the set
Y ={y1,v2,...,yx} is an asteroidal set of size k. It can be shown, after checking the different
cases, that there is no asteroidal set of size kK + 1. On the other hand it is easily seen that
every optimal dominating set of G is of the form {x1,x9,..., 2k, a}, where a € {u,v,w} and
so 7(G) = k+ 1. Hence, for each optimal dominating set S, at least one of the vertices u
or v does not belong to S. Let v ¢ S, then u has more than k neighbours in S. Therefore,
V1,6 (G) > ¥(G) = k + 1. Moreover we can show that v 4)(G) = k + 2. Consider the set
S'={x1, 22, ..., 241, Yk, Y}, w}, then S is a [1, k]-dominating set of size k + 2. O

Question 3.18. Is it true that for every graph G with AT(G) < k, we have v j41)(G) = v(G)?
We have not yet found a graph G with AT(G) < k and v(G) # Y1,k+1)(G)-
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(TR Yo Y Y1 Y1 Yk U

"y(G) =k+1 and ’y[l,k](G) =k+2.

Figure 9: Graph G with AT(G) = k and 1 4)(G) # 7(G)
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