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Abstract
A tropical graph (H, c) consists of a graph H and a (not necessarily proper) vertex-colouring c of H.

For a fixed tropical graph (H, c), the decision problem (H, c)-Colouring asks whether a given input
tropical graph (G, c1) admits a homomorphism to (H, c), that is, a standard graph homomorphism
of G to H that also preserves vertex-colours. We initiate the study of the computational complexity
of tropical graph homomorphism problems. We consider two settings. First, when the tropical graph
(H, c) is fixed; this is a problem called (H, c)-Colouring. Second, when the colouring of H is
part of the input; the associated decision problem is called H-Tropical-Colouring. Each (H, c)-
Colouring problem is a constraint satisfaction problem (CSP), and we show that a complexity
dichotomy for the class of (H, c)-Colouring problems holds if and only if the Feder-Vardi Dichotomy
Conjecture for CSPs is true. This implies that tropical graph homomorphism problems form a rich
class of decision problems. In contrast, we were successful in classifying the complexity of at least
certain classes of H-Tropical-Colouring.

1 Introduction
A homomorphism h of graph G to graph H is a mapping h : V (G) → V (H) such that adjacency is
preserved by h, that is, the images of two adjacent vertices of G must be adjacent in H. If such a
mapping exists, we note G → H. For a fixed graph H, given an input graph G, the decision problem
H-Colouring (whose name is derived from the proximity of the problem to proper vertex-colouring)
consists of determining whether G → H holds. Problems of the form H-Colouring for some fixed
graph H, are called homomorphism problems. A classical dichotomy theorem of Hell and Nešetřil [14]
states that if H contains a loop or is bipartite, H-Colouring is polynomial-time solvable; otherwise, it
is NP-complete.

Tropical graphs. As an extension of graph homomorphisms, homomorphisms of edge-coloured graphs
have been studied, see for example [1, 2, 3]. In this paper, we consider the variant where the vertices are
coloured. We initiate the study of tropical graph homomorphism problems, in which the vertex sets of the
graphs are partitioned into colour classes. Formally, a tropical graph (G, c) is a graph G together with a
(not necessarily proper) vertex-colouring c : V (G)→ C of G, where C is a set of colours. If |C| = k, we
say that (G, c) is a k-tropical graph. Given two tropical graphs (G, c1) and (H, c2) (where the colour set
of c1 is a subset of the colour set of c2), a homomorphism h of (G, c1) to (H, c2) is a homomorphism of G
to H that also preserves the colours, that is, for each vertex v of G, c1(v) = c2(h(v)). For a fixed tropical
graph (H, c), problem (H, c)-Colouring asks whether, given an input tropical graph (G, c1), we have
(G, c1)→ (H, c).

The homomorphism factoring problem. Brewster and MacGillivray defined the following related
problem in [4]. For two fixed graphs H and Y and a homomorphism h of H to Y , the (H,h, Y )-
Factoring problem takes as an input, a graph G together with a homomorphism g of G to Y , and asks
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for the existence of a homomorphism f of G to H such that f = h ◦ g. This problem can be seen as a
special case of (H, c)-Colouring, where the colouring c corresponds to a homomorphism to Y . In other
words, (H, c)-Colouring corresponds to (H, c,K+

|C|)-Factoring where K+
|C| is the complete graph on

|C| vertices with all loops (and with C the set of colours used by c). (Note that in [4], loops were not
considered.)

Constraint satisfaction problems (CSPs). Graph homomorphism problems fall into a more general
class of decision problems, the constraint satisfaction problems, defined for relational structures. A rela-
tional structure S over a vocabulary (a vocabulary is a set of pairs (Ri, ai) of relation names and arities)
consists of a domain V (S) of vertices together with a set of relations corresponding to the vocabulary,
that is, Ri ⊆ V (S)ai for each relation Ri of the vocabulary. Given two relational structures S and T over
the same vocabulary, a homomorphism of S to T is a mapping h : V (S)→ V (T ) such that each relation
Ri is preserved, that is, for each subset of V (S)ai of Ri in S, its image set in T also belongs to Ri. For
a fixed relational structure T , T -CSP is the decision problem asking whether a given input relational
structure has a homomorphism to T .

Using this terminology, a graph H is a relational structure over the vocabulary {(A, 2)} consisting of
a single binary relation A (adjacency). Hence, H-Colouring is a CSP. Further, (H, c)-Colouring is
equivalent to the problem C(H, c)-CSP, where C(H, c) is obtained from H by adding a set of k unary
relations to H (one for each colour class of the k-colouring c).

The Dichotomy Conjecture. In their celebrated paper [13], Feder and Vardi posed the following
conjecture.

Conjecture 1.1 (Feder and Vardi [13]). For every fixed relational structure T , T -CSP is polynomial-time
solvable or NP-complete.

Conjecture 1.1 became known as the Dichotomy Conjecture and has given rise to extensive work in
this area, see for example [5, 6, 9, 10, 11, 12]. If the conjecture holds, it would yield an interesting contrast
with the whole class NP, which is known (unless P=NP) to contain so-called NP-intermediate problems
that are neither NP-complete nor polynomial-time solvable [19].

The Dichotomy Conjecture remains a major open problem in the area of computational complexity
of decision problems. It was motivated by several earlier dichotomy theorems for special cases, such as
the one of Schaefer for binary structures [21] or the one of Hell and Nešetřil for undirected graphs, stated
as follows.

Theorem 1.2 (Hell and Nešetřil Dichotomy [14]). Let H be an undirected graph. If H has a loop or is
bipartite, then H-Colouring is polynomial-time solvable. Otherwise, H-Colouring is NP-complete.

Digraph homomorphisms. Digraph homomorphisms are also well-studied in the context of complexity
dichotomies. We will relate them to tropical graph homomorphisms. For a digraph D, D-Colouring
asks whether an input digraph admits a homomorphism to D, that is, a homomorphism of the underlying
undirected graphs that also preserves the orientation of the arcs.

In contrast with the dichotomy result of Theorem 1.2, no dichotomy theorem for D-Colouring
problems is known. In fact, the statement of the Dichotomy Conjecture was shown by Feder and Vardi [13]
to be equivalent to the following (seemingly weaker) statement for digraphs.

Conjecture 1.3 (Equivalent form of the Dichotomy Conjecture, Feder and Vardi [13]). For every bipar-
tite digraph D, D-Colouring is polynomial-time solvable or NP-complete.

Hence, it appears that obtaining a full dichotomy for D-Colouring problems should be very difficult.
In fact, even if one is obtained, the classification is expected to be highly nontrivial (see the discussion
in the book by Hell and Nešetřil [15], or the nontrivial dichotomy result when D is an orientation of a
cycle [8]).

In Section 3, similarly to its above reformulation (Conjecture 1.3), we will show that the Dichotomy
Conjecture has an equivalent formulation as a dichotomy for tropical homomorphisms problems. More
precisely, we will show that the Dichotomy Conjecture is true if and only if its restriction to (H, c)-
Colouring problems, where (H, c) is a 2-tropical bipartite graph, also holds. In other words, one can
say that the class of 2-tropical bipartite graph homomorphisms is as rich as the whole class of CSPs.
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Despite the fact that Conjecture 1.3 is wide open, many digraphs D are known such that D-
Colouring is NP-complete. Such a digraph of order 4 and size 5 is presented in the book by Hell
and Nešetřil [15]. Such oriented trees are also known, see [16]; the smallest such known tree has order 45.
A full dichotomy is known for oriented cycles [8]; the smallest such NP-complete oriented cycle has order
between 24 and 36 [7, 8]. Using these results, one can easily exhibit some NP-complete (H, c)-Colouring
problems. To this end, given a digraph D, we construct the 3-tropical graph T (D) as follows. Start with
the set of vertices V (D) and colour its vertices Blue. For each arc −→uv in D, add a path uxuxvv of length 3
from u to v in T (D), where xu and xv are two new vertices coloured Red and Green, respectively. The
following fact is not difficult to observe.

Proposition 1.4. For any two digraphs D1 and D2, we have D1 → D2 if and only if T (D1)→ T (D2).

By the above results on NP-complete D-Colouring problems and Proposition 1.4, we obtain a 3-
tropical graph of order 14, a 3-tropical tree of order 133, and a 3-tropical cycle of order between 72
and 108 whose associated homomorphism problems are NP-complete. Nevertheless, in this paper, we
exhibit (by using other reduction techniques) much smaller tropical graphs, trees and cycles (H, c) with
(H, c)-Colouring NP-complete.

List homomorphisms. Dichotomy theorems have also been obtained for a list-based extension of the
class of homomorphism problems, the list-homomorphism problems. In this setting, introduced by Feder
and Hell in [9], the input consists of a pair (G,L), where G is a graph and L : V (G) → 2V (H) is a
list assignment representing a set of allowed images for each vertex of G. For a fixed graph H, the
decision problem H-List-Colouring asks whether there is a homomorphism h of G to H such that
for each vertex v of G, h(v) ∈ L(v). Problem H-List-Colouring can be seen as a generalization of
H-Colouring. Indeed, restricting H-List-Colouring to the class of inputs where for each vertex v of
G, L(v) = V (H), corresponds precisely to H-Colouring. Therefore, if H-Colouring is NP-complete,
so is H-List-Colouring. For this set of problems, a full complexity dichotomy has been established in
a series of three papers [9, 11, 12]. We state the dichotomy result for simple graphs from [11], that is
related to our work. (A circular arc graphs is an intersection graph of arcs on a cycle.)

Theorem 1.5 (Feder, Hell and Huang [11]). Let H be a loopless graph. If H is bipartite and its comple-
ment is a circular arc graph, then H-List-Colouring is polynomial-time solvable. Otherwise, H-List-
Colouring is NP-complete.

Given a tropical graph (H, c), problem (H, c)-Colouring is equivalent to the restriction of H-List-
Colouring to instances (G,L) where each list function corresponds to one of the colour classes of c.
Next, we introduce a less restricted variant of H-List-Colouring that is also based on tropical graph
homomorphisms.

The H-Tropical-Colouring problem. Given a fixed graph H, we introduce the decision problem
H-Tropical-Colouring, whose instances consist of (1) a vertex-colouring c of H and (2) a tropical
graph (G, c2). Then, H-Tropical-Colouring consists of deciding whether (G, c1)→ (H, c).

Alternatively, H-Tropical-Colouring is an instance restriction of H-List-Colouring to in-
stances with laminar lists, that is, lists such that for each pair of distinct vertices v1, v2 ∈ V (G),
L(v1) = L(v2) or L(v1) ∩ L(v2) = ∅. (We remark that H-Tropical-Colouring, as well as H-List-
Colouring, can also be formulated as a CSP, where certain unary relations encode the list constraints:
so-called full CSPs, see [10] for details.)

Given the difficulty of studying (H, c)-Colouring problems as demonstrated in Section 3, the study
of H-Tropical-Colouring problems will be the focus of the other parts of this paper. This study is
directed by the following question.

Question 1.6. For a given graph H, what is the complexity of H-Tropical-Colouring?

Clearly, (H, c)-Colouring where each vertex receives the same colour, is computationally equivalent
to H-Colouring. Thereofore, by the Hell-Nešetřil dichotomy of Theorem 1.2, if H is loop-free and
non-bipartite, H-Tropical-Colouring is NP-complete. Furthermore, by the above formulation of H-
Tropical-Colouring as an instance restriction of H-List-Colouring, wheneverH-List-Colouring
is polynomial-time solvable, so is H-Tropical-Colouring.
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Hence, by Theorem 1.5, Question 1.6 remains to be studied for graphs that are bipartite and whose
complement is not a circular arc graph. These graphs still form a rich class including many trees, and all
even cycles of length at least 6.

Observe that for any induced subgraph H ′ of a graph H, one can reduce H ′-Tropical-Colouring
to H-Tropical-Colouring by assigning, in the input colouring of H, a dummy colour to all the
vertices of H−H ′. Hence, if H-Tropical-Colouring is polynomial-time solvable, then H ′-Tropical-
Colouring is also polynomial-time solvable. Conversely, if H ′-Tropical-Colouring is NP-complete,
so is H-Tropical-Colouring. Therefore, to answer Question 1.6, it is enough to consider minimal
graphs H such that H-Tropical-Colouring is NP-complete.

A first question is to study the case of minimal graphs H for which H-List-Colouring is NP-
complete; such a list is known and it follows from Theorem 1.5. In particular, it contains all even
cycles of length at least 6. In Section 4, we show that for every even cycle C2k of length at least 48,
C2k-Tropical-Colouring is NP-complete. On the other hand,for every even cycle C2k of length at
most 12, C2k-Tropical-Colouring is polynomial-time solvable. Furthermore, for each graph H in the
above-mentioned list that is not a cycle, H-Tropical-Colouring is polynomial-time solvable.

In Section 5, we show that for every bipartite graph H of order at most 8, H-Tropical-Colouring
is polynomial-time solvable, but there is a bipartite graph H9 of order 9 such that H9-Tropical-
Colouring is NP-complete.

Finally, in Section 6, we study the case of trees. We prove that for every tree T of order at most 11,
T -Tropical-Colouring is polynomial-time solvable, but there is a tree T23 of order 23 such that
T23-Tropical-Colouring is NP-complete.

We remark that our NP-completeness results are finer than those that can be obtained from Proposi-
tion 1.4, in the sense that the orders of the obtained target graphs are much smaller. Similarly, we note
that the results in [4] imply the existence of NP-complete H-Tropical-Colouring problems, and H
can be chosen to be a tree or a cycle. However, similarly as in Proposition 1.4, these results are also
based on reductions from NP-complete D-Colouring problems, where H is obtained from the digraph
D by replacing each arc by a path (its length depends on D, but it is always at least 3). Thus, the
NP-complete tropical targets obtained in [4] are trees of order at least 133 and cycles of order at least 72,
which is much more than the ones exhibited in the present paper.

2 Preliminaries and tools
In this section we gather some necessary preliminary definitions and results.

2.1 Isomorphisms, cores
For tropical graph homomorphisms, we have the same basic notions and properties as in the theory of
graph homomorphisms. A homomorphism of tropical graph (G, c1) to (H, c2) is an isomorphism if it is
a bijection.

Definition 2.1. The core of a tropical graph (G, c) is the smallest (in terms of the order) induced tropical
subgraph (G′, c|G′) admitting a homomorphism of (G, c) to (G′, c|G′).

In the same way as for simple graphs, it can be proved that the core of a tropical graph is unique. A
tropical graph (G, c) is called a core if its core is isomorphic to (G, c) itself. Moreover, we can restrict
ourselves to studying only cores. Indeed it is not difficult to check that (G, c1) admits a homomorphism
to (H, c2) if and only if the core of (G, c1) admits a homomorphism to the core of (H, c2).

2.2 Formal definitions of the used computational problems
We now formally define all the decision problems used in this paper.
H-Colouring
Input: A (di)graph G.
Question: Does G have a homomorphism to H?
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H-List-Colouring
Input: A graph G and a list function L : V (G)→ 2V (H).
Question: Does G have a homomorphism f to H such that for every vertex x of G, f(x) ∈ L(x)?

(H, c)-Colouring
Input: A tropical graph (G, c1).
Question: Does (G, c1) have a homomorphism to (H, c)?

H-Tropical-Colouring
Input: A vertex-colouring c of H, and a tropical graph (G, c1).
Question: Does (G, c1) have a homomorphism to (H, c)?

T -CSP
Input: A relational structure S over the same vocabulary as T .
Question: Does S have a homomorphism to T?

2-SAT
Input: A pair (X,C) where X is a set of Boolean variables and C is a set of pairs of literals of X,
that is, variables of X or their negation.
Question: Is there a truth assignment A : X → {0, 1} such that each clause of C contains at least
one true literal?

3-SAT
Input: A pair (X,C) where X is a set of Boolean variables and C is a set of triples of literals of X,
that is, variables of X or their negation.
Question: Is there a truth assignment A : X → {0, 1} such that each clause of C contains at least
one true literal?

NAE 3-SAT
Input: A pair (X,C) where X is a set of Boolean variables and C is a set of triples of literals of X,
that is, variables of X or their negation.
Question: Is there a truth assignment A : X → {0, 1} such that each clause of C contains at least
one true literal and one false literal?
It is a folklore result that 2-SAT is polynomial-time solvable, a fact for example observed in [18]. On

the other hand, 3-SAT is NP-complete [17], and NAE 3-SAT is NP-complete as well [20] (even if the
input formula contains no negated variables).

2.3 Bipartite graphs
We now give several facts that are useful when working with homomorphisms of bipartite graphs.

Observation 2.2. Let H be a bipartite graph with partite sets A,B. If φ : G→ H is a homomorphism
of G to H, then G must be bipartite. Moreover, if G and H are connected, then φ−1(A) and φ−1(B) are
the two partite sets of G.

The next proposition shows that for bipartite target graphs, we may assume that no vertex in two
different partite sets are coloured with the same colour (but doing so we double the number of colours).

Proposition 2.3. Let (H, c) be a connected tropical bipartite graph with partite sets A,B, and assume
that vertices in A and B are coloured by c with colours in set CA and CB, respectively. Let c′ be the
colouring with colour set (CA × 0) ∪ (CB × 1) obtained from c with c′(x) = (c(x), 0) if x ∈ A and
c′(x) = (c(x), 1) if x ∈ B. If (H, c′)-Colouring is polynomial-time solvable, then (H, c)-Colouring is
polynomial-time solvable.

Proof. Let (G, c1) be a bipartite tropical graph. We may assume G is connected since the complexity of
(H, c)-Colouring and (H, c′)-Colouring stays the same for connected inputs. Let c′1 and c′′1 be the
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colourings obtained from c1 by performing a similar modification as for c′: c′1(x) = (c1(x), 0) if x ∈ A
and c′1(x) = (c1(x), 1) if x ∈ B, and c′′1(x) = (c1(x), 1) if x ∈ A and c′′1(x) = (c1(x), 0) if x ∈ B. Now it is
clear, by Observation 2.2, that (G, c1)→ (H, c) if and only if either (G, c′1)→ (H, c′) or (G, c′′1)→ (H, c′).
Since the latter condition can be checked in polynomial time, the proof is complete.

2.4 Generic lemmas for polynomiality
We now prove several generic lemmas that will be useful to prove that a specific (H, c)-Colouring
problem is polynomial-time solvable.
Definition 2.4 (forcing vertex). Let (H, c) be a tropical graph. A vertex of (G, c) is a forcing vertex if
all its neighbors are coloured with distinct colours.

This is a useful concept since in any mapping of a tropical graph (G, c′) to a target containing a
forcing vertex x, if a vertex of G is mapped to x, then the mapping of all its neighbors is forced. We have
the following immediate application:
Lemma 2.5. Let (H, c) be a tropical graph. If all vertices of H are forcing vertices, then (H, c)-
Colouring is polynomial-time solvable.
Proof. Choose any vertex x of the instance (G, c1), and map it to any vertex of (H, c) with the same
colour. Once this choice is made, the mapping for the whole connected component of x is forced. Hence,
try all O(|V (H)|) possibilities to map x, and repeat this for every connected component of G. (G, c1) is
a YES-instance if and only if every connected component has a mapping.

Lemma 2.6 (2-SAT). Let (H, c) be a tropical graph and let {S1, . . . , Sk} be a collection of independent
sets of H, each of size at most 2. Assume that for every tropical graph (G, c1) admitting a homomorphism
to (H, c), there exists a partition P = P1, . . . , P` of V (G) into ` ≤ k sets and a homomorphism f :
(G, c1) → (H, c) such that for every i ∈ {1, . . . , `}, there is a j = j(i) ∈ {1, . . . , k} such that all vertices
of Pi map to vertices of Sj. Then (H, c)-Colouring is polynomial-time solvable.
Proof. We reduce (H, c)-Colouring to 2-SAT. For every set Si, if Si contains only one vertex s, s
represents TRUE. If Si contains two vertices s, s′, one of them represents TRUE, the other FALSE (note
that if some vertex belongs to two distinct sets Si and Sj , it is allowed to represent, say, FALSE with
respect to Si and TRUE with respect to Sj). Now, given an instance (G, c1) of (H, c)-Colouring, we
build a 2-SAT formula over variable set V (G) that is satisfiable if and only if (G, c1)→ (H, c), as follows.

For every edge xy of G, assume that in f , x is mapped to a vertex of Si and y is mapped to a vertex
of Sj (necessarily if (G, c1) → (H, c) we have i 6= j since Si, Sj induce independent sets). Let Fxy be a
disjunction of conjunctive 2-clauses over variables x, y. For every edge uv between a vertex u in Si and a
vertex v in Sj , depending on the truth value assigned to u and v, add to Fxy the conjunctive clause that
would be true if x is assigned the truth value of u and y is assigned the truth value of v. For example:
if u = FALSE and v = TRUE add the clause (x ∧ y). When Fxy is constructed, transform it into an
equivalent conjunction of disjunctive clauses and add it to the constructed 2-SAT fomula. Now, by the
construction, if the formula is satisfiable we construct a homomorphism by mapping every vertex x to
the vertex of the corresponding set Si that has been assigned the same truth value as x in the satisfying
assignment. By construction it is clear that this is a valid mapping. On the other hand, if the formula is
not satisfiable, there is no homomorphism of (G, c1) to (H, c) satisfying the conditions, and hence there
is no homomorphism at all.

As a corollary of Lemma 2.6, we obtain the following lemma:
Lemma 2.7. If (H, c) is a bipartite tropical graph where each colour is used at most twice, then (H, c)-
Colouring is polynomial-time solvable.

Given a set S of vertices, the boundary B(S) is the set of vertices in S that have a neighbor out of S.
Lemma 2.8. Let (H, c) be a tropical graph containing a connected subgraph S of forcing vertices such
that:
(a) every vertex in B(S) is coloured with a distinct colour (let C(S) be the set of colours given to vertices
in B(S)), and (b) no colour of C(S) is present in V (G) \ S.
If (H − S)-List-Colouring is polynomial-time solvable, then (H, c)-Colouring is polynomial-time
solvable.
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Proof. Let S = V (G) \S. Let (G, c1) be an instance of (H, c)-Colouring. Consider an arbitrary vertex
v of G with c1(v) = i. Then, v must be mapped to a vertex coloured i. For every possible choice of
mapping v, we will construct one instance of (H − S)-List-Colouring. To construct an instance from
such choice, we first partition V (G) into two sets: the set VS containing the vertices that must map to
vertices in S (and their images are determined), and the set VS containing the vertices that must map to
vertices of S. We now distinguish two basic cases, that will be repeatedly applied during the consruction.
Case 1: vertex v is mapped to a vertex in S. If v has been mapped to a vertex x of S, since
x is a forcing vertex, the mapping of all neighbors of v is determined (anytime there is a conflict we
return NO for the specific instance under construction). We continue to propagate the forced mapping
as much as possible (i.e. until the forced images belong to S) within a connected set of G containing v.
This yields a connected set Cv of vertices of G whose mapping is determined, and whose neighborhood
Nv = N(Cv) \ Cv consists of vertices each of which must be mapped to a determined vertex of S. We
add Cv to VS . We now remove the set Cv from G and repeat the procedure for all vertices of Nv using
Case 2.
Case 2: vertex v is mapped to a vertex in S. We perform a BFS search on the remaining vertices
in G, until we have computed a maximal connected set Cv of vertices containing v in which no vertex
is coloured with a colour in C(S). Then, for every vertex x of Cv with a neighbor y that is coloured i
(i ∈ C(S)), by Property (a) we know that y must be mapped to a vertex in B(S), and moreover the
image of y is determined by colour i. Hence the neighborhood Nv = N(Cv) \Cv has only vertices whose
mapping is determined. We add Cv to set VS and apply Case 1 to every vertex in Nv.
End of the procedure. Once V (G) has been partitioned into VS and VS (where the mapping of all
vertices in VS ∪N(VS) is fixed), we can reduce this instance to a corresponding instance of (H−S)-List-
Colouring.

In total, (G, c1) is a YES-instance if and only if at least one of the O(|V (G)|) constructed instances
of (H − S)-List-Colouring is a YES-instance.

The next lemma is similar to Lemma 2.8 but now the boundary is distinguished using edges.

Lemma 2.9. Let (H, c) be a tropical graph containing a connected subgraph S of forcing vertices with
boundary B = B(S) and N = N(B) \ S. Assume that the following properties hold:
(a) for every pairs xy, x′y′ of distinct edges of B ×N , we have (c(x), c(y)) 6= (c(x′), c(y′)), and
(b) for every edge xy of B × N , there is no edge in (H − S) × (H − S) whose endpoints are coloure
c(x) and c(y). If (H − S)-List-Colouring is polynomial-time solvable, then (H, c)-Colouring is
polynomial-time solvable.

Proof. The proof is almost the same as the one of Lemma 2.8, except that now, while computing an
instance of (H − S)-List-Colouring, the distinction between VS and VS is determined by the edges of
B ×N .

The next lemma identify some unique features of a tropical graph to simplify the problem into a
list-homomorphism problem.

Definition 2.10 (Unique Tropical Feature). A Unique Tropical Feature in a tropical graph (H, c) is of
one of the following types :

Type 1. A vertex u of H whose colour class is {u}.

Type 2. An edge uv of H such that there is no other edge in H whose extremities are coloured c(u) and c(v),
respectively.

Type 3. A vertex u of H such that N(u) is monochromatic in (H, c) with colour s, and every vertex coloured
s that does not belong to N(u) has no neighbour coloured with c(u).

Type 4. A forcing vertex u of H such that for each pair v, w of distinct vertices in N(u), there is no path
v′u′w′ in H − u with c(v) = c(v′), c(u) = c(u′) and c(w) = c(w′).

Definition 2.11. Let (H, c) be a tropical graph and S a set of Unique Tropical Features of (H, c). S is
partitioned into four sets as S = S1 ∪ S2 ∪ S3 ∪ S4, where Si is the set of unique tropical features of type
i in S. We define H(S) as follows : V (H(S)) = (V (H) ∪ {uv|u ∈ S4, v ∈ N(u)}) \ (S1 ∪ S3 ∪ S4) and
E(H(S)) = (E(H[V (H(S))]) \ S2) ∪ {uvv|u ∈ S4, v ∈ N(u)}.

7



In other words, H(S) is the graph obtained from H by removing unique tropical features of type 1,
2, and 3, and for each unique tropical feature u of type 4, replacing N [u] by d(u) pending edges.
Lemma 2.12. Let (H, c) be a tropical graph and S a set of unique tropical features of (H, c). If (H(S))-
List-Colouring is polynomial-time solvable, then (H, c)-Colouring is polynomial-time solvable.
Proof. Let (G, c′) be an instance of (H, c)-Colouring. We are going to construct a graph G′ and
associate to each vertex of G′ a list of vertices of H(S) such that there is a list-homomorphism between
G′ and H(S) (with respect to these lists) if and only if there is a tropical homomorphism of (G, c′) to
(H, c). We proceed with sequential modifications, by considering the unique tropical features of S one
by one.

First, we can see the instance (G, c′) of (H, c)-Colouring as an instance of H-List-Colouring by
giving to each vertex u in G the list L(u) of vertex in H coloured c′(u). If at any point in the following,
we update the list of a vertex to be empty, we can conclude that there is no tropical homomorphism
between (G, c′) and (H, c).

For each unique tropical feature u of type 1 in S, there is a colour s such that only the vertex u is
coloured s in (H, c). Every vertex in (G, c′) coloured s must be mapped to u and has a list of size at most
one. For each vertex v in (G, c′) coloured s, we update the list of each of its neighbours w such that L(w)
becomes L(w)∩N(u). We can then delete v from (G, c′) and forget L(v) without affecting the existence
of a list-homomorphism. Indeed, if a homomorphism exists, then it must map each neighbour of v to a
neighbour of u. Moreover, there is no other vertex of (G, c′) that can be mapped to u.

For each unique tropical feature uv of type 2 in S, there is no other edge than uv in H such that
the colour of its extremities are c(u) and c(v). Every edge in (G, c′) whose extremities are coloured c(u)
and c(v) must be mapped to uv. For each edge xy in (G, c′) such that c′(x) = c(u) and c′(y) = c(v), we
update the list of x and y such that L(x) becomes L(x) ∩ {u} and L(y) becomes L(y) ∩ {v}. We can
then delete the edge uv from (G, c′) without changing the existence of a list-homomorphism. Indeed, if
a homomorphism exists, it must map x to u and y to v. Again, there is no other edge of (G, c′) that can
be mapped to uv.

For each unique tropical feature u of type 3 in S, N(u) is monochromatic in (H, c) of colour s and any
vertex coloured s with a neighour coloured c(u) must belong to N(u). Let v be a vertex of G such that
c(v) = c(u) and N(v) is monochromatic in (G, c′) of colour s. Then, we can assume that v is mapped to
u. Indeed, in every tropical homomorphism of (G, c′) to (H, c), if v is not mapped to u, it is mapped to a
vertex at distance 2 from u, and one obtains another valid tropical homomorphism by only changing the
mapping of v to u. For each such vertex v, we update the list of its neighbours w such that L(w) becomes
L(w) ∩N(u). We can then delete v from (G, c′) without affecting the existence of a list-homomorphism.
Indeed, if a homomorphism exists, it maps every neighbour of v to a neighbour of u. Moreover, there no
other vertex of (G, c′) can be mapped to u.

Finally, for each unique tropical feature u of type 4 in S, for each v, w ∈ N(u), there is no other
path v′u′w′ in H such that c(v) = c(v′), c(u) = c(u′) and c(w) = c(w′). Every vertex x in G such that
c′(x) = c(u) and which has both colours c(v) and c(w) in its neighbourhood must be mapped to u. For
each such vertex x, we update the list of each of its neighbours y such that L(y) becomes L(y) ∩N(u).
As u is a forcing vertex, L(y) is now of size at most one. We can then delete x from (G, c′) without
affecting the existence of a list-homomorphism. Indeed, if a homomorphism exists, it has to map every
neighbour of x to a neighbour of u. Then, every other vertex of (G, c′) that can be mapped to u has only
one colour in its neighbourhood and hence the mapping.

In conclusion, we have built an instance of H-List-Colouring that maps to H if and only if (G, c′)
maps to (H, c). Moreover, it satisfies that no vertex can map to a unique tropical feature of type 1 or
3 in S, no edges can map to a unique tropical feature of type 2 in S, and every vertex which can map
to a unique tropical feature of type 4 in S has a monochromatic neighbourhood. It implies easily that it
maps to H if and only if it maps to H(S).

3 (H, c)-Colouring and the Dichotomy Conjecture
Since each (H, c)-Colouring problem is a CSP, the Feder-Vardi Dichotomy Conjecture (Conjecture 1.1)
would imply a complexity dichotomy for the class of (H, c)-Colouring problems. In this section, we
prove that a complexity dichotomy for (H, c)-Colouring problems (even when restricted to 2-tropical
bipartite targets), would imply Conjecture 1.1.
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Following the construction of Feder and Vardi (Theorem 10 of [13]) and based on its exposition in
the book by Hell and Nešetřil [15], we modify their gadgets to prove a similar statement for the class
of 2-tropical bipartite graph homomorphism problems. Our writing is inspired by a similar proof for 2-
edge-coloured graph homomorphism problems in [2] by Brewster and three of the authors of the present
papers.

Two decision problems are polynomially equivalent if each of them is mutually reducible to the other
in polynomial time.

Definition 3.1 (2-coloured forcing path). A 2-coloured forcing path is a 2-tropical path where each vertex
is a forcing vertex.

Thus, a 2-coloured forcing path is a path of black and white vertices such that each vertex has one
black neighbour and one white neighbour (except for the two extremities, which have only one neighbor).
For example, BWWBBWWBBW is a 2-coloured forcing path.

We will consider the problem H-Retraction, defined for an undirected graph H. Given an input
graph G that contains H as a subgraph, H-Retraction consists in deciding whether G has a homo-
morphism to H. The problem (H, c)-Retraction is defined analogously for tropical graphs.

Theorem 3.2. For each CSP template T there is a 2-coloured graph (H, c) such that (H, c)-Colouring
and T -CSP are polynomially equivalent. Moreover, (H, c) can be chosen to be bipartite and homomorphic
to a 2-coloured forcing path.

Proof. We follow the proof of Theorem 5.14 in the book [15] proving a similar statement for digraph
homomorphism problems. The structure of the proof in [15] is as follows. First, one shows that for each
CSP template T , there is a bipartite graph H such that the T -CSP problem and the H-Retraction
problem are polynomially equivalent. Next, it is shown that for each bipartite graph H there is a digraph
H ′ such that H-Retraction and H ′-Retraction are polynomially equivalent. Finally it is observed
that H ′ is a core and thus H ′-Retraction and (H ′, c)-Colouring are polynomially equivalent. We
adapt this proof to the case of 2-tropical graph homomorphism problems.

The construction of H ′ from H in [15] is through the use of so-called zig-zag paths. In our case,
we replace these zig-zag paths by specific 2-coloured graphs that play the same role. This will allow
us to construct a 2-coloured graph H ′ from a bipartite graph H such that H-Retraction and H ′-
Retraction are polynomially equivalent. Our paths will have black vertices denoted by B and white
vertices denoted by W . Hence the path WB4W 4B consists of one white vertex, four black vertices, four
white vertices and a black vertex. The maximal monochromatic subpaths are called runs. Thus the
above path is the concatenation of four runs: the first and last of length 1, the middle two of length 4.

Given an odd integer `, we construct a path P consisting of ` runs. The first and the last run each
consist of a single white vertex. The interior runs are of length four. We denote that last (rightmost)
vertex of P by 0. From P we construct `− 2 paths P1, . . . , P`−2. Path Pi (i = 1, 2, . . . , `− 2) is obtained
from P by replacing the ith run of length four with a run of length 2. We denote the rightmost vertex of
Pi by i.

Similarly, for an even integer k, we construct a second family of paths Q and Qj , (j = 1, 2, . . . , k− 2).
The leftmost vertex of Q is 1 and the leftmost vertex of Qj is j. The paths are described below:

P := W B4W 4 · · ·W 4B4︸ ︷︷ ︸
`−2

W Q := W B4W 4 · · ·B4W 4︸ ︷︷ ︸
k−2

B

Pi := W B4 · · ·W 4︸ ︷︷ ︸
i−1

B2 W 4 · · ·B4︸ ︷︷ ︸
`−i−2

W (i odd) Qj := W B4 · · ·W 4︸ ︷︷ ︸
j−1

B2 W 4 · · ·W 4︸ ︷︷ ︸
k−j−2

B (j odd)

Pi := W B4 · · ·B4︸ ︷︷ ︸
i−1

W 2 B4 · · ·B4︸ ︷︷ ︸
`−i−2

W (i even) Qj := W B4 · · ·B4︸ ︷︷ ︸
j−1

W 2 B4 · · ·W 4︸ ︷︷ ︸
k−j−2

B (j even)

We observe the following (c.f. page 156 of [15]):

1. The paths P and Pi (i = 1, 2, . . . ` − 2) each admit a homomorphism onto a 2-colour forcing path
of length 2`− 1, (that is, a path consisting of one run of length 1, `− 2 runs each of length 2 and
a final run of length 1: WBBWWB · · ·W ).

2. The paths Q and Qj (j = 1, 2, . . . k − 2) each admit a homomorphism onto a 2-colour forcing path
of length 2k − 1.
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3. Pi → Pi′ implies i = i′.

4. Qj → Qj′ implies j = j′.

5. P → Pi for all i.

6. Q→ Qj for all j.

7. if X is a 2-tropical graph and x is a vertex of X such that f : X → Pi and f ′ : X → Pi′ for i 6= i′

with f(x) = i and f ′(x) = i′, then there is a homomorphism F : X → P with F (x) = 0.

8. if Y is a 2-tropical graph and y is a vertex of Y such that f : Y → Qj and f ′ : Y → Qj′ for j 6= j′

with f(y) = j and f ′(y) = j′, then there is a homomorphism F : Y → Q with F (y) = 1.
We note that 2-colour forcing paths in 2-tropical graphs can be used to define height analogously

to height in directed acyclic graphs. More precisely, suppose G is a connected 2-tropical graph that
admits a homomorphism onto a 2-colour forcing path, say FP , of even length. Let the vertices of FP be
h0, h1, . . . , h2t. Observe that each vertex in the path has at most one white neighbour and at most one
black neighbour. Thus once a single vertex u in G is mapped to FP , the image of each neighbour of u is
uniquely determined and by connectivity, the image of all vertices is uniquely determined. In particular,
as G maps onto FP , there is exactly one homomorphism of G to the path. (More precisely, if the path
has length congruent to 0 modulo 4, there is an automorphism that reverses the path. In this case there
are two homomorphisms that are equivalent up to the reversing.) We then observe that if g : G onto→ FP ,
h : H → FP , and f : G → H, then for all vertices u ∈ V (G), g(u) = h(f(u)). This allows us to define
the height of u ∈ V (G) to be hi when g(u) = hi. Specifically, vertices at height hi in G must map to
vertices at height hi in H.

For each problem T in CSP there is a bipartite graph H such that T -CSP and H-Retraction are
equivalent [13, 15]. Let H be a bipartite graph with partite sets (A,B), with A = {a1, . . . , a|A|} and
B = {b1, . . . , b|B|}. Let ` (respectively k) be the smallest odd (respectively even) integer greater than or
equal to |A| (respectively |B|). To each vertex ai ∈ A attach a copy of Pi identifying i in Pi with ai in
A. Colour all original vertex of H white. To each vertex bj ∈ B attach a copy of Qj identifying j in Qj

with bj in B. Call the resulting 2-tropical graph (H ′, c). See Figure 1 for an illustration.
Let G be an instance of H-Retraction. In particular, we may assume without loss of generality

that H is a subgraph of G, G is connected, and G is bipartite. We colour the original vertices of G white.
Let (A′, B′) be the partite classes of G where A ⊆ A′ and B ⊆ B′. To each vertex v of A′\A, we attach
a copy of P , identifying v and 0. To the vertices of A∪B, we attach paths Pi and Qj as described above
to create a copy of H ′. Call the resulting 2-tropical graph (G′, c′). In particular, note that (G′, c′) and
(H ′, c′) both map onto a 2-colour forcing path of length 2` + 2k − 1. The (original) vertices of G and
H are at height 2`− 1 and 2` for colour classes A and B respectively. In particular, by the eight above
properties, under any homomorphism f : G′ → H ′ the restriction of f to G must map onto H with
vertices in A′ mapping to A and vertices in B′ mapping to B.

Using the eight properties of the paths above and following the proof of Theorem 5.14 in [15], we
conclude that G is a YES instance of H-Retraction if and only if (G′, c′) is a YES instance of (H ′, c)-
Retraction.

On the other hand, let (G′, c′) be an instance of (H ′, c)-Retraction. We sketch the proof from [15].
We observe that (G′, c′) must map to a 2-colour forcing path of length 2`+ 2k − 1. The two levels of G′
corresponding to H induce a bipartite graph (with white vertices) which we call G. The components of
G′ −E(G) fall into two types: those which map to lower levels and those that map to higher levels than
G. Let Ct be a component that maps to a lower level. After required identifications we may assume Ct

contains only one vertex from G (say v) and Ct must map to some Pi. If Pi is the unique Pi path to
which Ct maps, then we modify G′ by identifying v and i. Otherwise, Ct maps to two paths and (by the
properties 5–8) hence to all paths. The resulting graph (G′, c′) retracts to (H ′, c) if and only if G retracts
to H.

4 Minimal graphs H for NP-complete H-List-Colouring
Recall the dichotomy theorem for list homomorphism problems of Feder, Hell and Huang (Theorem 1.5):
H-List-Colouring is polynomial-time solvable if and only if
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Figure 1: Construction of a 2-tropical target H ′ from a H-Retraction problem.

by giving a characterization of bipartite graphs H such that H-List-Colouring is polynomial-
time solvable: these are exactly the class of bipartite graphs whose complement is a circular arc graph.
Alternatively, these graphs were characterized by Trotter and Moore [22] in terms of seven families of
forbidden induced subgraphs: six infinite ones and a finite one (see their descriptions in Table 1, as
reproduced from [11]). To concisely describe these seven families, they employ the following notation:
Let F = {Si : 1 ≤ i ≤ k} be a family of subsets of {1, 2, . . . , `}. Define HF to be the bipartite graph
(X,Y ) with X = {x1, x2, . . . , x`} and Y = {y1, y2, . . . , yk} such that xiyj is an edge if and only if i ∈ Sj .
The families C, T , W, D,M, N and G in Table 1 are defined in this way. Note that the graph Ci in C is
the cycle of length i. See Figure 2 for an illustration of the other families from Table 1. Also note that
G1, which is a claw where each edge is subdivided twice, is the only tree in the table.

Given the above characterization, we can reformulate Theorem 1.5 as follows.

Theorem 4.1 (Restatement of Theorem 1.5, Feder, Hell and Huang [11]). If H contains one of the
graphs defined in Table 1 as an induced subgraph, then H-List-Colouring is NP-complete. Otherwise,
H-List-Colouring is polynomial-time solvable.

In this section, we first turn our attention to the family of even cycles of length at least 6. We show
that C2k-Tropical-Colouring is polynomial-time solvable for any k ≤ 6. On the other hand, for any
k ≥ 24, C2k-Tropical-Colouring is NP-complete. We then prove that for all other minimal graphs
H described in Table 1, H-Tropical-Colouring is polynomial-time solvable.

4.1 Polynomial-time cases for even cycles
We now prove that the tropical homomorphism problems for small even cycles are polynomial-time
solvable.

Theorem 4.2. For each integer k with 2 ≤ k ≤ 6, C2k-Tropical-Colouring is polynomial-time
solvable.

Proof. Since C4-List-Colouring is polynomial-time solvable, C4-Tropical-Colouring is polynomial-
time solvable.

Next, we assume for contradiction that for some k ∈ {3, 4, 5, 6}, there is a vertex-colouring c of C2k

such that (C2k, c)-Colouring is NP-complete. Let (X,Y ) be the bipartition of C2k. By Proposition 2.3,
we can assume that the colour sets of c in X and Y are disjoint.

First, assume k = 3. There are three vertices in each part of the bipartition of C6. If one vertex
is coloured with a colour not present anywhere else in the part, Lemma 2.12 implies again that (C6, c)-
Colouring is polynomial-time solvable. Hence, we can assume that each part is monochromatic. But
then (C6, c) is not a core, a contradiction.

Suppose k = 4. There are four vertices in each part of the bipartition (X,Y ) of C8. If there is a
vertex that, in c, is the only one coloured with its colour, since Pk-List-Colouring is polynomial-time
solvable for any k ≥ 1, by Lemma 2.12 (C8, c)-Colouring is polynomial-time solvable. Hence we may
assume that each colour appears at least twice, in particular each part is coloured with either one or two
colours. If some part, say X, is coloured with only one colour (say Blue) then (C8, c) is not a core because
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C6 = {{1, 2}, {2, 3}, {3, 1}}
C8 = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}
C10 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}
. . .
T1 = {{1, 2}, {2, 3}, {3, 4}, {2, 3, 5}, {5}}
T2 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {2, 3, 4, 6}{6}}
T3 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {2, 3, 4, 5, 7}, {7}}
. . .
W1 = {{1, 2}, {2, 3}, {1, 2, 4}, {2, 3, 4}, {4}}
W2 = {{1, 2}, {2, 3}, {3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5}, {5}}
W3 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 2, 3, 4, 6}, {2, 3, 4, 5, 6}, {6}}
. . .
D1 = {{1, 2, 5}, {2, 3, 5}, {3}, {4, 5}, {2, 3, 4, 5}}
D2 = {{1, 2, 6}, {2, 3, 6}, {3, 4, 6}, {4}, {5, 6}, {2, 3, 4, 5, 6}}
D3 = {{1, 2, 7}, {2, 3, 7}, {3, 4, 7}, {4, 5, 7}, {5}, {6, 7}, {2, 3, 4, 5, 6, 7}}
. . .
M1 = {{1, 2, 3, 4, 5}, {1, 2, 3}, {1}, {1, 2, 4, 6}, {2, 4}, {2, 5}}
M2 = {{1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5}, {1, 2, 3}, {1}, {1, 2, 3, 4, 6, 8}, {1, 2, 4, 6}, {2, 4}, {2, 7}}
M3 = {{1, 2, 3, 4, 5, 6, 7, 8, 9}, {1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5}, {1, 2, 3}, {1}, {1, 2, 3, 4, 5, 6, 8, 10},

{1, 2, 3, 4, 6, 8}, {1, 2, 4, 6}, {2, 4}, {2, 9}}
. . .
N1 = {{1, 2, 3}, {1}, {1, 2, 4, 6}, {2, 4}, {2, 5}, {6}}
N2 = {{1, 2, 3, 4, 5}, {1, 2, 3}, {1}, {1, 2, 3, 4, 6, 8}, {1, 2, 4, 6}, {2, 4}, {2, 7}, {8}}
N3 = {{1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5}, {1, 2, 3}, {1}, {1, 2, 3, 4, 5, 6, 8, 10}, {1, 2, 3, 4, 6, 8},

{1, 2, 4, 6}, {2, 4}, {2, 9}, {10}}
. . .
G1 = {{1, 3, 5}, {1, 2}, {3, 4}, {5, 6}}
G2 = {{1}, {1, 2, 3, 4}, {2, 4, 5}, {2, 3, 6}}
G3 = {{1, 2}, {3, 4}, {5}, {1, 2, 3}, {1, 3, 5}}

Table 1: Six infinite families C, T , W, D,M, N and family G of size 3 of forbidden induced subgraphs
for polynomial-time H-List-Colouring problems.

it contains as a subgraph the path on three vertices where the central vertex is Blue, and the two other
vertices are coloured with all the colour(s) of Y . Hence, in each part, there are exactly two vertices of
each colour. We can use Lemma 2.6 with S1, S2, S3 and S4 being the four sets of two vertices with the
same colour. It follows that (C8, c)-Colouring is polynomial-time solvable.

Assume that k = 5, and let c be a vertex-colouring of C10. By similar arguments as in theproof of
Theorems 5.1 and 6.1, using Lemma 2.12 and the fact that (H, c) should not be homomorphic to a P2-
or P3-subgraph, each partite set of the bipartition (X,Y ) contains exactly two vertices of one colour and
three vertices of another colour, say X has three vertices coloured 1 and two vertices coloured 2, and Y
has three vertices coloured a and two vertices coloured b.

The cyclic order of the colours of X can be either 1−1−1−2−2 or 1−1−2−1−2 (up to permutation
of colours and other symmetries). If this order is 1 − 1 − 1 − 2 − 2, then the vertex of Y adjacent to
the two vertices coloured 2 satisfies the hypothesis of Lemma 2.12 and hence (C10, c)-Colouring is
polynomial-time solvable. The same argument can be applied to Y , hence the cyclic order of the colours
of Y is a− a− b− a− b.

Hence, there is a unique vertex y of Y whose two neighbours are coloured 1. If c(y) = b, then the
second vertex of Y coloured b is in the centre of a 3-vertex path coloured 1 − b − 2 that satisfies the
hypothesis of Lemma 2.12, hence (C10, c)-Colouring is polynomial-time solvable. Therefore, we have
c(y) = a. By the same argument, the unique vertex of X adjacent to two vertices of Y coloured a must be
coloured 1. Therefore, up to symmetries c is one of the three colourings 1−a−1−a−2−b−1−a−2−b,
1− a− 1− b− 2− a− 1− a− 2− b and 1− a− 1− b− 2− a− 1− b− 2− a (in the cyclic order).

We are going to use the Lemma 2.6 to conclude the case k = 5. In a homomorphism to (C10, c), a
vertex coloured 2 or b can only be mapped to the two vertices in (C10, c) of the corresponding colour.
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Figure 2: Illustration of the families defined in Table 1 (except the cycles in C).

A vertex v coloured 1 adjacent to at least one vertex coloured b or a vertex coloured a adjacent to at
least one vertex coloured 2 also can only be mapped to two vertices of (C10, c) (the ones having the
same properties as v). However, a vertex coloured 1 all whose neighbours are coloured a can be mapped
to three different vertices in (C10, c) (say x1, x2, x3, the vertices coloured 1, that all have a neighbour
coloured a). However, at least one of x1, x2, x3, say x1, has a common neighbour coloured a with one of
the two other vertices (say x2). Therefore, if there is a homomorphism h of some tropical graph (G, c1)
to (C10, c) mapping a vertex v of G coloured 1 all whose neighbours are coloured a to x1, we can modify
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h so that v is mapped to x2 instead. In other words, there is a homomorphism of (G, c1) to (C10, c)
where none of the vertices coloured 1 all whose neighbours are coloured a is mapped to x1. Therefore
such vertices have two possible targets: x2 and x3. The same is true for vertices coloured a all whose
neighbours are coloured 1. Thus, (C10, c) satisfies the hypothesis of Lemma 2.6 and (C10, c)-Colouring
is polynomial-time solvable, a contradiction.

Finally, assume now that k = 6. Again, using Lemma 2.12, we can assume than each partite set has at
most three colours, and each colour appears at least twice. Furthermore, if there are exactly three colours
in each partite set, each colour appears exactly twice and hence (C12, c)-Colouring is polynomial-time
solvable by Lemma 2.6. If one partite set has one colour and the other has at most two colours, then
(C12, c) would not be a core. Therefore, the numbers of colours of the partite sets are either one and
three, two and three, or two and two.

Assume that one partite set, say X, is monochromatic (say Red) and the other, Y , has three colours
(thus two vertices of each colour). For the graph to be a core and not satisfy Lemma 2.12, the three
colours of Y must form the cyclic pattern x − y − z − x − y − z. In this case, considering any vertex
x of colour Red in an input tropical graph (G, c1), in any homomorphism (G, c1) → (C12, c), all the
neighbours of x with the same colour must be identified. Furthermore, no Red vertex in (G, c1) can be
adjacent to all of x, y and z. Therefore, the mapping of each connected component is forced after making
a choice for one vertex. Since there are two choices per vertex, we have a polynomial-time algorithm for
(C12, c)-Colouring, a contradiction.

Assume now that one partite set, say X, contains two colours (a and b) and the other, Y , contains
three colours (x, y and z). Note that there are exactly two vertices of each colour in Y . We are going to
use Lemma 2.6 to conclude this case. A vertex of some input graph (G, c1) coloured x, y or z can only
be mapped to two possible vertices in (C12, c). A vertex of (G, c1) coloured a or b (say a) and having
all its neighbours of the same colour, say x, might be mapped to more than two vertices of (C12, c).
However, once again, there are always two of these vertices that, together, are adjacent to all the vertices
of colour x (indeed, there are only two vertices of colour x). These two vertices are the designated targets
for Lemma 2.6. A vertex coloured a (or b) with two different colours in its neighbourhood can only be
mapped to two possible vertices if there is no pattern x − a − y − a − x − a − y in the graph (up to
permutation of colours). Hence, if there is no such pattern in the graph (up to permutation of colours),
(C12, c) satisfies the hypothesis of Lemma 2.6 and (C12, c)-Colouring is polynomial-time solvable, a
contradiction. On the other hand, if there is a pattern x− a− y− a− x− a− y in the graph, then there
is a unique path coloured a − x − b or a − y − b in the graph and by Lemma 2.12, (C12, c)-Colouring
is polynomial-time solvable, a contradiction as well.

Therefore, there must be exactly two colours in each partite set. We assume first that there are
two vertices coloured a and four vertices coloured b in one partite set, say X. If the neighbours of
vertices of colour a all have the same colour, say x, then (C12, c) is not a core because it can be mapped
to its sub-path coloured a − x − b − y. We suppose without loss of generality that the coloured cycle
contains a path coloured y − a − x − b. Then, if there is no other path coloured y − a − x − b, by
Lemma 2.12 (C12, c)-Colouring is polynomial-time solvable. Therefore, there is another such path in
(C12, c). If this other path is part of a path x − a − y − a − x, then the problem is polynomial-time
solvable by applying Lemma 2.12 to the star a − y − a. Up to symmetry, we are left with two cases:
y− a− x− b− .− b− .− a− .− b− .− b or y− a− x− b− .− b− .− b− .− a− .− b (where a dot could
be colour x or y). The first case must be y − a− x− b− .− b− y − a− x− b− .− b, because otherwise,
(C12, c) is not a core. Any placement of the remaining x’s and y’s yields a polynomial-time solvable case
using Lemma 2.8. Similarly, the second case must be y − a− x− b− .− b− .− b− y − a− x− b. Then,
(C12, c)-Colouring is polynomial-time solvable because of Lemma 2.9, with a− x− b− y− a as forcing
set and x− b− .− b− .− b− y, which contains no vertex coloured a, as the other set.

Finally, we can assume, without loss of generality, that there are exactly three vertices for each of the
two colours in each partite set. There are three possible configurations in each partite set: a−a−a−b−b−b,
a− a− b− b− a− b or a− b− a− b− a− b, up to permutations of colours. If one partite set is in the
first configuration, then, either we have the pattern a− x− b or a− y− b that satisfies the hypothesis of
Lemma 2.12, or we have two paths a− x− b, in which case, there is a unique path a− y − a or b− y − b
which satisfies the hypothesis of Lemma 2.12. Suppose some partite set is in the second case. Then, if
we have the pattern a− x− a− .− b− x− b− .− a− .− b− ., there is a unique path a− x− b satisfying
the hypothesis of Lemma 2.12. Otherwise, we have the pattern a− x− a− .− b− y− b− .− a− .− b− .,
in which case we can apply Lemma 2.6 in a similar way as for C10. Therefore, both partite sets must be
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in the third configuration. But then every vertex is a forcing vertex and we can apply Lemma 2.5. This
completes the proof.

4.2 NP-completeness results for even cycles
We now present a generic reduction from NAE 3-SAT to the tropical homomorphism problems for the
tropical even cycles of length at least 48.

Theorem 4.3. For any integer k with k ≥ 24, C2k-Tropical-Colouring is NP-complete.

Proof. Let 2k = 48 + 2` for some integer ` ≥ 0. We prove that (C48+2`, c)-Tropical-Colouring is
NP-complete, where c is illustrated in Figure 3, by reduction from NAE 3-SAT.

=c

=p
=

Figure 3: The 4-tropical cycle (C48+2`, c). The two arrows represent the two possibile mappings of Lxi,xj

(see Claim 4.3.A).

From an instance (X,C) of NAE 3-SAT, we construct a graph GX,C in the following way. Recall
that we may assume that (X,C) is monotone, that is, no variable is negated in (X,C).

• GX,C contains a unique Black vertex v, and a copy of (C48+2`, c) whose vertex v0 is identified with
v.

• For each pair {x1, x2} of X, GX,C contains a copy of the pair gadget Lx1,x2 (the path shown in
Figure 4), with both extremities of the path identified with v. Note that Lx1,x2 contains a central
Green vertex and a peripheral Green vertex defined by their position on the path.

• For each triple {x1, x2, x3} of X (not necessarily forming a clause of C), we add a triple gadget
connecting Lx1,x2 , Lx2,x3 and Lx1,x3 as follows. For each permutation σ of the set {1, 2, 3}, we
consider a copy of the triad shown in Figure 5 and identify its leftmost vertex with the peripheral
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Green vertex of Lxσ(2),xσ(3) , its rightmost vertex with the Central vertex of Lxσ(1),xσ(2) and its bottom
vertex with the peripheral Green vertex of Lxσ(1),xσ(3) . An example is illustrated in Figure 5 for the
identity permutation σ = (1, 2, 3).

• For each clause (x1, x2, x3) of C, a unique copy of the clause path shown in Figure 6 is added
between Lx1,x2 and Lx1,x3 .

Central vertex Peripheral vertex

Figure 4: The path Lx1,x2

Central

Peripheral

Peripheral

Central

Peripheral

Central

Figure 5: One of the six triads connecting the three paths Lx1,x2 , Lx2,x3 and Lx1,x3 .

We now show that GX,C → (C48+2`, c) if and only if (X,C) is NAE-satisfiable.

Assume first that we have a homomorphism h of GX,C to (C48+2`, c). First of all, v has to be mapped
by h to one of the three Black vertices v0, v1 or v2 in (C48+2`, c). If ` > 0, necessarily h(v) = v0 because
the colouring of (C48+2`, c) is not symmetric (with respect to the three Black vertices) and so the copy
of (C48+2`, c) attached to v via v0 forces h(v) = v0. If ` = 0, the colouring of (C48, c) is symmetric with
respect to the three Black vertices v0, v1, v2, so we may assume without loss of generality that h(v) = v0.

Claim 4.3.A. Let xi, xj be any two distinct variables of X. Then, for any homomorphism of GX,C to
(C48+2`, c), we have the following properties.
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Peripheral

Peripheral

Central

Central

Figure 6: The clause path for clause (x1, x2, x3).

(1) The pair gadget Lxi,xj can only be mapped to two possible subgraphs of (C48+2`, c) represented by
the arrows in Figure 3: the path starting from v0 and ending at v1 (we call this path folding path),
or surjectively to the whole cycle.

(2) If Lxi,xj is mapped to the folding path, its Central and Peripheral vertices are both mapped to the
Green vertex =.

(3) If Lxi,xj is mapped around the cycle, its Central vertex is mapped to the Green vertex noted 6=c and
its Peripheral vertex is mapped to the Green vertex noted 6=p.

Proof of claim. (1) Following the left-right order of Figure 4, the first vertices of Lxi,xj have to be mapped
to the right of v0, in partiucular the first Green vertex has to be mapped to vertex = and the first Black
vertex has to be mapped to v1. Assume that some vertex of Lxi,xj is mapped to the Red vertex after v1
in (C48+2`, c) (then in particular the Red vertex after the first Black vertex in Lxi,xj must be mapped
to this Red vertex). Then one can check that the mapping is forced and necessarily Lxi,xj is mapped
surjectively to (C48+2`, c).

(2) and (3) are easy to observe since for each of the two ways of mapping Lxi,xj , the mapping is
determined. (�)

If a gadget Lxi,xj is mapped to the folding path, it will encode the fact that xi and xj are equal (both
True or both False). If Lxi,xj is mapped around the cycle, it will encode the fact that xi and xj are
different (one is True and the other is False).

The triple gadgets ensure that the rules of boolean consistency are respected, i.e. x1 = x2 and x2 = x3
implies x1 = x3, and x1 6= x2 and x2 6= x3 implies x1 = x3. More precisely, we have the following claim.

Claim 4.3.B. Let {x1, x2, x3} be a triple of X.
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(1) Let {i, j, k} = {1, 2, 3}. In any homomorphism of GX,C to (C48+2`, c), it is not possible that Lxi,xj

is mapped around the cycle whereas Lxi,xk and Lxj ,xk are mapped to the folding path.

(2) In any homomorphism of GX,C to (C48+2`, c), it is not possible that all three gadgets Lx1,x2 , Lx2,x3

and Lx1,x3 are mapped around the cycle.

Proof of claim. (1) Assume i = 1, j = 2 and k = 3 (the proofs of the other cases are identical). Assume
for a contradiction that Lx1,x2 is mapped around the cycle whereas Lx1,x3 and Lx2,x3 are mapped to
the folding path. Consider the triad T of the triple gadget for {x1, x2, x3} connecting Lx1,x2 , Lx2,x3 and
Lx1,x3 as in Figure 5. Then by Claim 4.3.A(3), the Peripheral vertex of Lx1,x2 is mapped to 6=p, and
by Claim 4.3.A(2), the Peripheral and Central vertices of Lx1,x3 and Lx2,x3 are mapped to =. Then,
following the mapping of the upper part of T , necessarily the upper Black vertex of the triad T must be
mapped to v0. Similarly, the lower Black vertex of T must be mapped to v0 or v1. But in the former
case, necessarily, the upper Black vertex of T is mapped to v1, and in the latter case, the upper Black
vertex of T is mapped to v2, a contradiction.

(2) The proof is similar to the proof of (1). For a contradiction, assume that all three gadgets Lx1,x2 ,
Lx2,x3 and Lx1,x3 are mapped around the cycle. Then by Claim 4.3.A(3), the Central vertex of each
gadget is mapped to 6=c, and its Peripheral vertex is mapped to 6=p. Again let T be the triad of the triple
gadget for {x1, x2, x3} connecting Lx1,x2 , Lx2,x3 and Lx1,x3 as in Figure 5. Then, using the mapping of
the upper part of T , the upper Black vertex of T must be mapped to v2; the lower Black vertex of T
must be mapped to v0 or v2. But as before it is not possible to complete the mapping of T . (�)

The following claim shows how the clause paths enable us to obtain a satisfying assignment.

Claim 4.3.C. Let (x1, x2, x3) be a clause of C. In any homomorphism of GX,C to (C48+2`, c), for any
clause (x1, x2, x3), at most one of the gadgets Lx1,x2 , Lx2,x3 and Lx1,x3 is mapped to the folding path of
(C48+2`, c).

Proof of claim. Assume for contradiction and without loss of generality that both gadgets Lx1,x2 , and
Lx1,x3 are mapped to the folding path. Consider the clause path connecting Lx1,x2 and Lx1,x3 (see
Figure 6). By Claim 4.3.A(2), both ends of the path are mapped to vertex =. But then, going from the
left end of the clause path towards the center, necessarily the left Black vertex must be mapped to v0.
It follows that the Green vertex is mapped to 6=p. But coming from the right end of the clause path, the
right Black vertex must be mapped to v1, and the mapping is impossible to complete, a contradiction. (�)

It is now easy to show (X,C) is satisfiable. By Claim 4.3.A, any gadget Lxi,xj can be mapped either
to the cycle of to the folding path. We construct a truth assignment A(h) of X as follows. First, set
some variable of X, say, x1, to True. For each variable xi of X, i 6= 1, if Lx1,xi is mapped to the folding
path, we let xi be True; otherwise, we let xi be False. Note that the assignment is consistent with all the
mappings of the gadgets Lxi,xj , indeed by Claim 4.3.B(2), for any three variables x1, x2, x3, we cannot
have two of the three gadgets mapped to the folding path and one to the cycle (i.e. we cannot have
x1 = x2, x2 = x3 and x1 6= x3), and by Claim 4.3.B(3), we cannot have x1 6= x2, x2 6= x3 and x1 6= x3.
Moreover, by Claim 4.3.C, for any clause (x1, x2, x3), we cannot have x1 = x2 = x3. Therefore, A(h) is
NAE-satisfying.

Now, given a NAE-satisfying assignment of (X,C), we build a homomorphism of GX,C to (C48+2`, c).
We have the following claim, whose proof is easy and left to the reader.

Claim 4.3.D. Consider a partial homomorphism hp of GX,C to (C48+2`, c).

(1) Let {x1, x2, x3} be a triple of variables of X, and assume that the three gadgets Lx1,x2 , Lx2,x3

and Lx1,x3 are already mapped by hp. If all three gadgets are mapped by hp to the folding path of
(C48+2`, c) or exactly one is mapped to the folding path and the two others are mapped around the
cycle, then hp can be extended to the triple gadget for {x1, x2, x3}.

(2) Let (x1, x2, x3) be a clause of variables of X, and assume that the three gadgets Lx1,x2 , Lx2,x3 and
Lx1,x3 are already mapped by hp. If at most one of the three gadgets os mapped to the folding path of
(C48+2`, c), then hp can be extended to the three clause paths connecting Lx1,x2 , Lx2,x3 and Lx1,x3 .
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Using a NAE-satisfying assignment of (X,C), we construct a homomorphism of GX,C to (C48+2`, c)
as follows. For any two variables xi and xj , we map Lxi,xj to the folding path of (C48+2`, c) if xi = xj ,
and to the whole cycle otherwise. Since for any triple of variables{x1, x2, x3} either all three of them
are equal or two of them equal, by Claim 4.3.D(1) we can extend the mapping to all triple gadgets.
Furthemore, since for any clause (x1, x2, x3) at most two of the variables are equal, by Claim 4.3.D(2) we
can also extend the mapping to all clause paths. Finally, the copy of (C48+2`, c) attached to vertex v is
trivial to map, and the proof is finished.

4.3 Other families of minimal graphs
Next, we show that for each of the minimal graphs H from Table 1 (other than even cycles) that make
H-List-Colouring NP-complete, H-Tropical-Colouring is polynomial-time solvable.

Theorem 4.4. For every graph H belonging to one of the six families T , W, D,M, N and G described
in Table 1, H-Tropical-Colouring is polynomial-time solvable.

Proof. We assume for contradiction, that for some integer i and a family F among T , W, D,M, N and
G, there is a problem (Fi, c)-Colouring that is not polynomial-time solvable.
Family T . Suppose xi+4 is colouredm. Suppose yi+3 is coloured a, a 6= m by Proposition 2.3. Then yi+4
cannot be coloured a (otherwise it can be folded onto yi+3), so it is coloured b. Because of Lemma 2.12,
there must be another P3 coloured amb on the graph, but for the graph to be a core, the vertex coloured
m of this P3 must not be adjacent to yi+3. However, note that yi+3 is adjacent to every vertex of X
except for x1 and xi+3, both of which have degree 1 and cannot create a 3-vertex path coloured a-m-b.
Family W. Now, we consider Wi. We try to find a colouring c of Wi such that (Wi, c)-Colouring
is not polynomial-time solvable. Suppose yi+2 is coloured with colour a. Suppose xi+3 is coloured m.
yi+4 cannot be coloured a, otherwise it can be folded onto yi+2, so we may assume it is coloured b. yi+3
cannot be coloured b, for otherwise yi+4 can be folded onto it, so it is coloured a or d. Suppose first that
it is coloured d. By Lemma 2.12, there is another vertex coloured a, and the only one which could not
be folded onto yi+2 is yi+1, so it must be coloured a. Similarly, y1 is coloured d. By Lemma 2.12, there
is another edge besides xi+3, yi+4 with endpoints coloured m and b, but for the graph to be a core, the
edge xi+3yi+4 must not be able to fold onto it. However, it is easily verified that this is impossible. So,
we must assume that yi+3 is coloured a. There is no other vertex in Y coloured a, otherwise it can be
folded onto yi+2 or yi+3. We can assume, without loss of generality, that a connected subgraph of the
source graph, coloured only with m and b, and with only vertices of colour a at distance 1, will be sent
to xi+3 and yi+4. Knowing this, we can contract each such subgraph to a single vertex, coloured with
a new colour ω, and similarly replace xi+3 and yi+4 by a single vertex coloured ω, adjacent to yi+2 and
yi+3. There will be a homomorphism between the source graph and (Wi, c) if and only if there is one
after such transformation. However, the graph obtained after such transformation will not contain any
induced subgraph from the table above, which yields a contradiction.
Family D. Now, consider Di and a colouring c such that (Di, c)-Colouring is not polynomial-time
solvable. Suppose xi+4 is coloured m and yi+4 is coloured a. By Lemma 2.12, there is another vertex
coloured a. We may assume that y1 is such a vertex because it is the only one that cannot be folded on
yi+4. Then x1 cannot have colour m, for otherwise it can be folded onto xi+4, so it is coloured l. By
Lemma 2.12, there is another vertex in X coloured l, say v. y1x1 can be folded onto yi+4v, which yields
a contradiction.
Family M. Now, consider Mi and a colouring c such that (Mi, c)-Colouring is not polynomial-time
solvable. Suppose x2 is coloured m and yi+2 is coloured a. By Lemma 2.12, there is another vertex in
X coloured m. The only vertex which can be coloured m without being able to be folded onto x2 is x1.
This is because yi+2 is adjacent only to x1 and x2 is adjacent to every vertex in Y except for yi+2. So we
may assume x1 is coloured m. By Lemma 2.12, there is another vertex in Y coloured a, say v. x1yi+2
can be folded onto x2v since x2 is adjacent to every vertex in Y except yi+2, which yields a contradiction.
Family N . Now, consider Ni and a colouring c such that (Ni, c)-Colouring is not polynomial-time
solvable. Suppose x2 is coloured m. For 3 ≤ j ≤ 2i + 3, xj cannot be coloured m, for otherwise it can
be folded onto x2 since N(xj) ⊂ N(X2). By Lemma 2.12, x1 or x2i+4 must be coloured m. Both x1 and
x2i+4 have a neighbour of degree 1 (namely, yi+1 and y2i+4, respectively), which are the two only vertices
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in Y not adjacent to x2. By Lemma 2.12, neither x1yi+1 nor x2i+4y2i+4 can be an edge of unique colour.
Either exactly one of them is coloured ma and a neighbour v of x2 is coloured a, in which case the graph
is not a core because the edge can be folded on x2v (since N(x1)\{yi+1} and N(x2i+4)\{y2i+4} are both
subsets of N(x2)), or both x1yi+1 and x2i+4y2i+4 are coloured ma and the graph is not a core because
x2i+4y2i+4 can be folded on x1yi+1 since N(x2i+4) \ {y2i+4} ⊂ N(x1), yielding a contradiction.

Family G. We try to find a colouring c of G1 such that (G1, c)-Colouring is not polynomial-time
solvable. The colour of y1 is, say, a. By Lemma 2.12, colour a must be present somewhere else in Y . By
symmetry, we can assume y2 is coloured a. The two neighbours of y2 cannot be coloured with the same
colour, for otherwise we can fold x2 on x1, implying that (G1, c) is not a core, a contradiction. Without
loss of generality, x1 and x2 are coloured 1 and 2 respectively. By Lemma 2.12 applied to edge y2x2,
there must be another edge coloured a2. However, if a neighbour of y1 is coloured 2, we can fold y2x2
onto y1 and the graph is not a core, a contradiction. It follows that the other edge coloured a2 is either
y3x4 or y4x6. By symmetry, we can assume that x4 is coloured 2 and y3 is coloured a. x3 cannot be
coloured 1 or 2, for otherwise (G1, c) is not a core. Therefore, x3 is coloured with a third colour, say 3.
At this point, y1x1y2x2 is coloured a1a2 and y1x3y3x4 is coloured a3a2. Consider the colour of y4. It
must be a by Lemma 2.12. There are only two uncoloured vertices, x5 and x6, which must be coloured 1
and 3 by Lemma 2.12. The graph is not a core in both cases as we can either fold x6y4 onto x1y1 or the
edge x6y4 onto x3y1, a contradiction.

Now, let c be a colouring of G2 such that (G2, c)-Colouring is not polynomial-time solvable. Suppose
the vertex y2 is coloured with a. Then, y1 cannot be coloured a, for otherwise it can be folded onto y2,
which yields a contradiction. Therefore, y1 is coloured b. Because of Lemma 2.12, y3 and y4 must be
coloured a and b. By symmetry, we may assume y3 is coloured a and y4 is coloured b. Suppose x5 is
coloured m. Then x1, x2, x3 and x4 cannot be coloured m, for otherwise y3x5 can be folded on y2. Thus,
y3x5 is the only edge coloured am. Lemma 2.12 yields a contradiction.

Now, let c be a colouring of G3 such that (G3, c)-Colouring is not polynomial-time solvable. By
Lemma 2.12, there are at most two colours in each partite set of the bipartition. If x1 and x2 have the
same colour, x2 can be folded onto x1, a contradiction. Similarly, if y1 and y4 have the same colour, y1
can be folded onto y4. Then x1, y1, x2 and y4 induce a complete bipartite graph with every colour of c,
implying that (G3, c) is not a core, a contradiction.

5 Bipartite graphs of small order
In this section, we show that for each graphH of order at most 8,H-Tropical-Colouring is polynomial-
time solvable. On the other hand, there is a graph H9 of order 9 such that H9-Tropical-Colouring
is NP-complete.

Theorem 5.1. For any bipartite graph H of order at most 8, H-Tropical-Colouring is polynomial-
time solvable.

Proof. It suffices to prove that for each bipartite graph H of order at most 8 and each colouring c of
H, (H, c)-Colouring is polynomial-time solvable. In fact, by Proposition 2.3 it suffices to show the
statement for colourings of H such that the colour sets in the two partite sets are disjoint. Assume for
contradiction that for some tropical bipartite graph (H, c), (H, c)-Colouring is not polynomial-time
solvable. Let us assume that (H, c) is a minimal counter-example, and therefore (H, c) is a connected
core. Let (X,Y ) be the bipartition of H.

Since the only graphs of order at most 8 of Table 1 are the cycles C6 and C8, by Theorem 1.5, if H
does not contain an induced 6-cycle or an induced 8-cycle, then H-List-Colouring is polynomial-time
solvable and therefore H-Tropical-Colouring is polynomial-time solvable. Therefore H contains an
induced 6-cycle or an induced 8-cycle.

If H contains an induced copy of C8, then H is isomorphic to C8 itself and hence we are done by
Theorem 4.2. Therefore, we can assume that H contains an induced copy of C6. Again by Theorem 4.2,
if H is isomorphic to C6, we are done.

Now, assume that H is a bipartite graph of order 7 or 8 with an induced copy of C6. If one partite
set, say X, is of order 3, then all its vertices belong to each 6-cycle of H. Hence, for each x ∈ X,
(H − x)-List-Colouring is polynomial-time solvable. Hence, if X is not monochromatic, we can apply
Lemma 2.12 and (H, c)-Colouring is polynomial-time solvable, a contradiction. Therefore X must
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be monochromatic, say Blue. If Y contains at most two colours, then (H, c) contains as a subgraph
a path on three vertices where the central vertex is Blue and the other vertices are coloured with the
colours of Y . Then (H, c) is not a core, a contradiction. Hence, Y contains at least three colours. If
|Y | = 4, then Y contains two colours that are the unique ones coloured with their colour. Moreover,
(H − {x, y})-List-Colouring contains no 6-cycle and therefore by Lemma 2.12 (H, c)-Colouring is
polynomial-time solvable, a contradiction. Hence we can assume that |Y | = 5. If Y contains at least four
colours, by the same argument we are done, therefore we assume that Y contains exactly three colours. If
(H, c) contains a star with a Blue center and a three leaves of different colours, then (H, c) is not a core.
Therefore the neighbourhood of each vertex of X contains at most two colours. If the three vertices y1,
y2, y3 of Y in the 6-cycle have three different colours, then each of the other two vertices, if it coloured
i, can only be adjacent to the two vertices of X that have a neighbour coloured i. But then (H, c) is not
a core, a contradiction. If y1, y2, y3 have the same colour, the two remaining vertices each have a unique
colour, and again (H, c) is not a core. Therefore, we can assume that c(y1) = c(y2) = 1 and c(y3) = 2.
Then, the vertex coloured 3 has degree 1 and is adjacent to the common neighbour of y1 and y2. But
then again, (H, c) is not a core.

Therefore, H is a bipartite graph of order 8 and |X| = |Y | = 4. If there are at least three colours
in one partite set (say X), then two vertices x1, x2 in X form two colour classes of size 1. Moreover,
H−{x1, x2} has no 6-cycle and therefore, by Lemma 2.12, (H, c)-Colouring is polynomial-time solvable,
a contradiction. Therefore each partite set contains at most two colours. If one partite set, sayX, contains
exactly one colour (say Blue), then (H, c) contains a path on three vertices with every colour of c (the
central vertex is Blue) and is not a core, a contradiction. Therefore each partite set contains exactly two
colours. If in each partite set, each colour has exactly two vertices, we can apply Lemma 2.6 to show
that (H, c)-Colouring is polynomial-time solvable. Therefore, we can assume that there is a colour,
say Blue, with exactly three vertices of one partite set, say x1, x2, x3 from X, coloured Blue (x4 is
coloured Green). If H−x4 contains no induced 6-cycle (it cannot contain an 8-cycle since it has order 7),
then (H − x4)-List-Colouring is polynomial-time solvable and we can use Lemma 2.12 and (H, c)-
Colouring is polynomial-time solvable, a contradiction. Let C be an induced 6-cycle of H − x4. Note
that C must contain three vertices of X and therefore contains all three of x1, x2, x3. If the three other
vertices y1, y2 an y3 of C are coloured with the same colour, then (H, c) is not a core, a contradiction.
Therefore assume without loss of generality that c(y1) = c(y2) = 1 and c(y3) = 2. Then, in order for
(H, c) not to be a core, we cannot have both x1 and y1 (respectively, y2 and x3) of degree 3. More
precisely, either d(y1) = d(x3) = 2 and d(x1) = d(y2) = 3, or d(y1) = d(x3) = 3 and d(x1) = d(y2) = 2.
In both cases, we have d(y3) = 2, for otherwise (H, c) contains a 4-cycle with all four colours, and (H, c)
is not a core. If c(y4) = 1, then (H, c) contains a path on four vertices coloured 2-Blue-1-Green; moreover
there is no edge in (H, c) whose endpoints are coloured Green and 2, therefore (H, c) is homomorphic to
the above path and is not a core. If c(y4) = 2, then (H, c) contains a 4-coloured 4-cycle and again (H, c)
is not a core, a contradiction. This shows that (H, c) does not exist and completes the proof.

Denote by H9 the graph obtained from a 6-cycle by adding a pendant degree 1-vertex to three
independent vertices (see Figure 7).

B

B

B

B

B
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R G
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Figure 7: The 4-tropical graph H9.

Theorem 5.2. H9-Tropical-Colouring is NP-complete.
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Proof. We show that (H9, c)-Colouring is NP-complete, where c is the 4-colouring of H9 illustrated in
Figure 7. We describe a reduction from C6-List-Colouring, which is NP-complete [11]. We label the
vertices in C6 from 1 to 6 sequentially. We also do that in the C6 included in H9. We assume without
loss of generality that the vertex adjacent to the Red vertex is labelled 1, and the one adjacent to the
Green one is labelled 3. It follows that the vertex adjacent to the Yellow vertex is labelled 5.

Let (G,L) be an instance of C6-List-Colouring, where L is the list-assignment function. If G is not
bipartite, then G has no homomorphism to C6, so we can assume that G is bipartite. Since G and C6 are
bipartite, we may assume that ∀u ∈ V (G), either L(u) ⊆ {1, 3, 5}, or L(u) ⊆ {2, 4, 6}. Thus |L(u)| ≤ 3.

From (G,L), we build an instance f(G,L) of (H9, c)-Colouring as follows. First, we consider a
copy G′ of G, we let G′ ⊂ f(G,L) and colour every vertex of G′ Black. We call u′ the copy of vertex u
in G′. Then, for each vertex u of G, we add a gadget Hu to f(G,L) that is attached to u′. The gadget
is described below and depends only of L(u).

• If L(u) = {1} (respectively, {3} or {5}), then Hu is a single Red (respectively, Green or Yellow)
vertex of degree 1 adjacent only to u′.

• If L(u) = {2} (respectively, {4} or {6}), then Hu consists of two 2-vertex path: a Red-Black path
and a Green-Black path (respectively, a Green-Black path and a Yellow-Black path or a Yellow-
Black path and a Red-Black path) whose Black vertex is of degree 2 and is adjacent to u′ (the other
vertex is of degree 1).

• If L(u) = {2, 4} (respectively, {4, 6} or {2, 6}), then Hu is a 2-vertex Green-Black (respectively,
Yellow-Black or Red-Black) path whose Black vertex is of degree 2 and adjacent to u′ (the other
vertex is of degree 1).

• If L(u) = {1, 3} (respectively, {3, 5} or {1, 5}), then Hu is a 5-vertex Red-Black-Black-Black-
Green path (respectively, Green-Black-Black-Black-Yellow or Yellow-Black-Black-Black-Red) whose
middle Black vertex is of degree 3 and adjacent to u′ (the endpoints of the path are of degree 1 and
the other two vertices have degree 2).

• If L(u) = {1, 3, 5}, then Hu is a 3-vertex Black-Black-Red path with the black leaf adjacent to u′.

• If L(u) = {2, 4, 6}, then Hu is a 4-vertex Black-Black-Black-Red path with the black leaf adjacent
to u′.

Let us prove that G has a homomorphism to C6 that fulfills the constraints of list L, if and only if
f(G,L)→ (H9, c).

For the first direction, consider a list homomorphism h of G to C6 with the list funtion L. We build
a homomorhism h′ of f(G,L) to (H9, c) as follows. First of all, each copy v′ of a vertex v of G with
h(v) = i is mapped to i in (H9, c). It is clear that this defines a homomorphism of the subgraph G′ of
f(G,L) to the Black 6-cycle in (H9, c). It is now easy to complete h′ into a homomorhism of f(G,L) to
(H9, c) by considering each gadget Hu independently.

For the converse, let hT be a homomorphism of f(G,L) to (H9, c). Then, we claim that the restriction
of hT to the vertices of the subgraph G′ of f(G,L) is a list homomorphism of G to C6 with list function
L. Indeed, let u′ be a vertex of G′. If Hu has one vertex (say a Red vertex), then L(u) = {1}. Then
necessarily u′ is sent to a neighbour of a vertex coloured Red in (H9, c). Since the only such neighbour
is vertex 1, u′ ∈ hT (u). All the other cases follow from similar considerations.

6 Trees
We now consider the complexity of tropical homomorphism problems when the target tropical graph is
a tropical tree.

It follows from the results in Section 4 that for every tree T of order at most 10, T -Tropical-
Colouring is polynomial-time solvable. Indeed, such a tree needs to contain a tree of order at most 10
from Table 1, and the only such tree is G1, which has order 10. We proved in Theorem 4.4 that G1-
Tropical-Colouring is polynomial-time solvable. With some efforts, we can extend this to trees of
order at most 11. The proof of this is deferred to Appendix A.
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Theorem 6.1. For every tree T of order at most 11, T -Tropical-Colouring is polynomial-time
solvable.

Let T23 be the tree of order 23 shown in Figure 8.

Figure 8: The 7-tropical tree (T23, c)

Theorem 6.2. T23-Tropical-Colouring is NP-complete.

Proof. We give a reduction from 3-SAT to (T23, c)-Colouring, where c is the colouring of Figure 8.
Given an instance (X,C) of 3-SAT, we construct an instance f(X,C) = (GX,C , cX,C) of (T23, c)-
Colouring.

To construct the graph GX,C , we first define the following building blocks. See Figure 9 for illustra-
tions.

• The block S1,2 is a graph built from a 7-vertex black-coloured path with vertex set {x1, . . . , x7}
where a BlackCross leaf is attached to vertices x1 and x7, a RedDot leaf is attached to vertices x2
and x6, and a GreenDot leaf is attached to vertex x4.

• The block S1,T is a graph built from a 7-vertex black-coloured path with vertex set {x1, . . . , x7}
where a BlackCross leaf is attached to vertices x1 and x7, a RedDot leaf is attached to vertices x2
and x6, and a RedCross leaf is attached to vertex x4.

• The block S1,T is a graph built from a 7-vertex black-coloured path with vertex set {x1, . . . , x7}
where a BlackCross leaf is attached to vertices x1 and x7, a GreenDot leaf is attached to vertices
x2 and x6, and a GreenCross leaf is attached to vertex x4.

• The NOT-block is depicted in Figure 9(b).

• The A-block is depicted in Figure 9(c).

Illustrations of these blocks can be found in Figure 9.
We now define gadgets for each variable of X and each clause of C. The graph GX,C is formed by

the set of all variable and clause gadgets.

• For each literal l of a variable of X, there are two adjacent vertices l0 and l1 coloured BlackDot
and BlackCross, respectively. For a variable x, the variable gadget of x consists of the four vertices
x0, x1, x̄0 and x̄1, where x0 and x̄0 are joined by a NOT-block.

• For each clause c = (l1, l2, l3) ∈ C, there is a clause gadget of c (as drawn in Figure 10) connecting
vertices l01, l02 and l03.

We now show that GX,C → (T23, c) if and only if (X,C) is satisfiable.

Assume first that there is a homomorphism h of GX,C to (T23, c). We first prove some properties of
h.

Claim 6.2.A. The homomorphism h satisfies the following properties.
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(a) The blocks S1,2, S1,T and S2,T .

(b) The variable gadget of x, essentially a NOT-block. (c) The A-block and its representation as an ar-
row.

Figure 9: The building blocks of GX,C .

Figure 10: Example of a clause gadget of clause (l1, l2, l3). The full details of the A-blocks and S1,2-blocks
are represented in Figure 9.

(1) For each literal l of a variable of X, vertices l0 and l1 are mapped to the two vertices of one of the
pairs T , F1 or F2. The same holds for the extremities of the blocks S1,2, S1,T , S2,T and A.

(2) The two extremities of each block S1,2 are both mapped either to the vertices of T , or to vertices of
F1 ∪ F2.

(3) The two extremities of each block S1,T are both mapped either to the vertices of F2, or to vertices
of F1 ∪ T .

(4) The two extremities of each block S2,T are both mapped either to the vertices of F1, or to vertices
of F2 ∪ T .

(5) For each variable x of X, exactly one of x0 and x̄0 is mapped to a vertex of T , and the other is
mapped to a vertex of F1 or F2.

(6) In any A-block, either some extremity is mapped to T (then the other extremity can be mapped to
any of F1, F2 or T ), or the left extremity is mapped to F2 and the right extremity, to F1.

Proof of claim. (1) This is immediate since the only pairs in (T23, c) consisting of two adjacent BlackDot
and BlackCross vertices are the ones of T , F1 and F2.

(2)–(4) We only prove (2), since the three proofs are not difficult and similar. By (1), the extremities
of S1,2 are mapped to vertices of T ∪ F1 ∪ F2. If one extremity is mapped to T , the remainder of the
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mapping is forced and the claim follows. If one extremity is mapped to F1 ∪ F2, one can easily complete
it to a mapping where the other extremity is mapped to either F1 or F2.

(5) By (1), x0 and x̄0 must be mapped to a vertex of T ∪ F1 ∪ F2. Without loss of generality,
we can assume that x0 corresponds to the left extremity of the NOT-block Nx connecting x0 and x̄0.
Assume first, for contradiction, that x0 and x̄0 are mapped to the vertex of T coloured BlackDot. Then,
considering the vertices of Nx from left to right, the mapping is forced and the degree 3-vertex of Nx at
distance 2 both of a RedDot and a RedCross vertex must be mapped to the vertex c of T23. But then,
continuing towards the right of Nx, x̄0 cannot be mapped to a vertex of T , a contradiction. Therefore,
assume that both x0 and x̄0 are mapped to the BlackCross vertices of F1 ∪ F2. If x0 is mapped to the
BlackCross vertex in F1, then again going through Nx from left to right the mapping is forced; the central
vertex of Nx must be mapped to a vertex of F2, and x̄0 must be mapped to a vertex of T , a contradiction.
The same applied when x0 is mapped to the BlackCross vertex in F2, completing the proof of (5).

(6) An A-block is composed of two parts: the upper part and the lower part. Observe that if the
left extremity of an A-block is mapped to F1, then using (2) and (4), the mapping of the upper part of
the A-block is forced and the right extremity has to be mapped to T . Similarly, if the left extremity is
mapped to F2, by (2) and (3) the right extremity cannot be mapped to F2. On the other hand, for all
other combinations of mapping the extremities to T , F1 or F2 the mapping can be extended. (�)

We are ready to show how to construct the truth assignment A(h). If h(l0) ∈ T for some literal l,
we let l be True and if h(l0) ∈ F1 ∪ F2, we let l be False. By Claim 6.2.A(5), this is a consistent truth
assignment for X. For any clause c = (l1, l2, l3), in the clause gadget of c, we have three A-blocks forming
a directed triangle. Hence, by Claim 6.2.A(6), there must be one of the three extremities of this triangle
mapped to a vertex of T . Therefore, by Claim 6.2.A(2), at least one of the vertices l01, l02 and l03 is mapped
to T . This shows that A(h) satisfies the formula (X,C).

Reciprocally, if there is a solution for (X,C), one can build a homomorphism of GX,C to (T23, c)
by mapping, for each literal l, the vertices l0 and l1 to one of the vertex pairs F1, F2 and T of (T23, c)
corresponding to the truth value of l (if l is False, we may choose one of F1 and F2 arbitrarily). Then
using Claim 6.2.A one can easily complete this to a valid mapping.

7 Conclusion
We have shown that the class of H-Colouring problems have a very rich structure, since they fall into
the classes of CSPs for which a dichotomy theorem would imply the truth of the Feder-Vardi Dichotmy
Conjecture. Hence, we turned our attention to the class of H-Tropical-Colouring problems, for
which a dichotomy theorem might exist. Despite some initial results in this direction, we have not been
able to exhibit such a dichotomy, and leave this as the major open problem in this paper.

Towards a solution to this problem, we propose a simpler question. All bipartite graphs H with
H-Tropical-Colouring NP-complete that we know either contain as an induced subgraph, an even
cycle of length at least 6 (for example cycles themselves or H9), or the graph G1 from Table 1, a claw
with each edge subdivided twice (this is the case for T23). Hence, we ask the following.

Question 7.1. Is it true that for any bipartite graph H with no induced cycle of order at least 6 and no
induced copy of a claw where each edge is subdivided twice, H-Tropical-Colouring is polynomial-time
solvable?

Another interesting question would be to consider the restriction of H-Tropical-Colouring to
2-tropical graphs. We note that one can slightly modify the gadgets from Theorem 4.3 and the colouring
of the cycle, to obtain a 2-colouring c of C54 such that (C54, c)-Colouring is NP-complete.

Finally, we relate our work to the (H,h, Y )-Factoring problem studied in [4] and mentioned in
the introduction. Recall that (H, c)-Colouring corresponds to (H, c,K+

|C|)-Factoring where K+
|C| is

the complete graph on |C| vertices with all loops, and with C the set of colours used by c. In [4], the
authors studied (H,h, Y )-Factoring when Y has no loops. Using reductions from NP-complete D-
Colouring problems where D is an oriented even cycle or an oriented tree, they proved that for any
fixed graph Y which is not a path on at most four vertices, there is an even cycle C and a tree T such that
(C, hC , Y )-Factoring and (T, hT , Y )-Factoring are NP-complete (for some suitable homomorphisms
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hC and hT ). Note that C and T here are fairly large. We can strengthen these results as follows.
Consider our reduction of Theorem 4.3 showing in particular that C48-Tropical-Colouring is NP-
complete. The given colouring c1 of C48 can easily be made a proper colouring by separating the red
vertices into two classes, according to which partite set of C48 they belong to. Then, one can observe
that c1 is in fact a homomorphism to a tree T1 obtained from a claw where one edge is subdivided
once (the three vertices of degree 1 are coloured Blue, Black and Green, and the two other vertices
are the two kinds of Red). Thus, for any graph Y containing this subdivided claw as a subgraph, we
deduce that (C48, c1|T1 , Y )-Factoring is NP-complete. We can use a similar approach for our result
of Theorem 6.2, that T23-Tropical-Colouring is NP-complete. Note that the colouring c2 we give is
in fact a homomorphism to a tree T2 which is obtained from a star with five branches by subdividing
one edge once. Thus, for any graph Y containing T2 as a subgraph, (T23, c2|T2 , Y )-Factoring is NP-
complete. Of course we can apply this argument by replacing T1 and T2 by the underlying graph of any
loop-free homomorphic image of (C48, c1) and (T23, c2), respectively.
Acknowledgements. We thank Petru Valicov for initial discussions on the topic of this paper.
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A Proof of Theorem 6.1
We now prove Theorem 6.1 that states that T -Tropical-Colouring is polynomial-time solvable for
any tree T of order at most 11.

Proof of Theorem 6.1. Let G1 be the smallest tree such that G1-List-Colouring is NP-hard, as defined
in Table 1 of Section 4 (G1 has order 10 and is obtained from a claw by subdividing each edge twice).
We let V (G1) = {c, x1, y1, z1, x2, y2, z2, x3, y3, z3}, with edges cxi, xiyi, yizi for i = 1, 2, 3.

Assume for a contradiction that there is a tree T0 of order 11 such that T -Tropical-Colouring
is not polynomial-time solvable. Then, T0 is a connected core. Once again, by Proposition 2.3, we may
assume that the colour sets of the two partite sets of T0 are disjoint. By Theorem 1.5, for any tree T
which does not contain G1 as an induced subgraph, T -List-Colouring is polynomial-time solvable, and
therefore T -Tropical-Colouring is polynomial-time solvable. Hence G1 is a subtree of T0.

There are four non-isomorphic trees of order 11 which contain G1, depending on where we attach
the additional vertex a. If in T0, a is adjacent to c, then the same arguments as in the proof of Theo-
rem 4.4 showing that G1-Tropical-Colouring is polynomial-time solvable show that T0-Tropical-
Colouring is polynomial-time solvable, a contradiction.

Let (A,B) be the bipartition of T0 with {c, y1, y2, y3} ⊆ A and {x1, x2, x3, z1, z2, z3} ⊆ B. For the
remainder, we may assume that no vertex (except a) is the only one with its colour, for otherwise,
by Lemma 2.12, T0-Tropical-Colouring would be polynomial-time solvable. In particular, A − a is
coloured with at most two colours and B − a is coloured with at most three colours.

Assume first that a is adjacent to a vertex xi of G1, say x1. The colours of x1 and z1 must be distinct,
otherwise (T0, c0) is not a core. Without loss of generality, assume that c0(x1) = 1 and c0(z1) = 2.
Without loss of generality the central vertex c is Black. The supplementary vertex a must be coloured
with a different colour than c and y1 (say with colour Red), otherwise (T0, c0) is not a core. Hence
y1 is not Red. Assume first that y1 is Green. Then (without loss of generality), y2 is Black and y3
is Green, otherwise we could apply Lemma 2.12. But by Lemma 2.12, there must be two edges with
endpoints 1 and Green, and one with endpoints 2 and Green. Hence c0(x3) = 1 and c0(z3) = 2 (if
c0(x3) = 2 and c0(z3) = 1 then (T0, c0) is not a core). But again by Lemma 2.12 we need another edge
with endpoints Black and 1, and one with endpoints Black and 2. But in both cases (T0, c0) is not a core,
a contradiction. This shows that vertex y1 must be Black. Then, since (T0, c0) is a core, vertex c has no
neighbour coloured 2. But if there is no second edge with endpoints coloured 2 and Black, then we could
apply Lemma 2.12. Hence one of y2 and y3, say y2, must be Black, and c0(z2) = 2. If c0(x2) = 1, (T0, c0)
is not a core, therefore c0(x2) = 3, and c0(x3) ∈ {1, 3}. If y3 is Black, then (T0, c0) is not a core, hence
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y3 is Red. But both neighbours of y3 must have distinct colours, which means we can apply Lemma 2.12
to one of the edges incident with y3, a contradiction.

Assume now that a is adjacent to a vertex yi of G1, say y1. Then, the colours of a, x1 and z1 must be
distinct, say c0(x1) = 1, c0(z1) = 2, c0(a) = 3. Without loss of generality the central vertex c is Black.
By Lemma 2.12, there is another vertex coloured Black. If y1 is Black, then by Lemma 2.12 we have
two further edges with endpoints Black-2 and Black-3. But these edges cannot be both incident with c
(otherwise (T0, c0) is not a core), hence there is another Black vertex. Then in fact, Lemma 2.12 implies
that both y2 and y3 are Black. But then, any way to complete c0 implies that (T0, c0) is not a core, a
contradiction. Therefore, y1 is not Black (say it is Red) and we can assume that y2 is Black, and since
we need a second Red vertex, y3 is Red. But one of the type of edges among Red-1, Red-2 and Red-3
will appear only once, and we can apply Lemma 2.12, a contradiction.

We assume finally that a is adjacent to a vertex zi of G1, say z1. Without loss of generality, vertex a
is Black, vertex z1 is coloured 1, and vertex y1 is Red (otherwise, (T0, c0) is not a core). By Lemma 2.12,
there must be another 3-vertex path coloured Black-1-Red. This path must be cxiyi with c Black, for
otherwise (T0, c0) is not a core. We can assume that c0(x2) = 1 and y1 is Red. Then c0(x1) 6= 1, assume
c0(x1) = 2. Then again by Lemma 2.12 there is another 3-vertex path coloured Black-2-Red. The only
possibility is that c0(x3) = 2 and y3 is Red. Then c0(z3) /∈ {1, 2}, otherwise (T0, c0) is not a core. Hence
we assume c0(z3) = 3, which by Lemma 2.12 implies c0(z2) = 3. But then there is a unique 3-vertex path
coloured 1-Red-3, and by Lemma 2.12, (T0, c0)-Colouring is polynomial-time solvable, a contradiction.
This completes the proof.
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