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A k-critical graph is a k-chromatic graph whose proper subgraphs are all (k − 1)-
colourable. An old open problem due to Borodin and Kostochka asserts that for k ≥ 9,
no k-critical graph G with k = ∆(G) exists, where ∆(G) denotes the maximum degree
of G. We show that if a certain special list-colouring property holds for every 8-critical
graph with ∆ = 8 (which is true for the apparently only known example), then the
Borodin-Kostochka Conjecture holds. We also briefly survey constructions of ∆-critical
graphs with ∆ ≤ 8, highlighting the apparent scarcity of such graphs once ∆ exceeds
6.

1 Introduction

Our main motivation in this note is a famous open problem about extending Brooks’
classical theorem [3], which was posed by Borodin and Kostochka [2] in 1977. They
conjectured that for every k ≥ 9, if a graph G with ∆(G) = k satisfies χ(G) ≥ ∆(G),
then G contains a complete subgraph Kk with k vertices. Here χ(G) denotes the
chromatic number of G, and ∆(G) denotes its maximum degree.

We begin our discussion here by reformulating the Borodin-Kostochka Conjecture
(BKC) in terms of critical graphs. A k-critical graph is a graph G with the property
that χ(G) = k but χ(G′) ≤ k − 1 for every proper subgraph G′ of G.
Conjecture 1. For each k ≥ 9, the only k-critical graph G with ∆(G) ≤ k is Kk.

Since every graph G with χ(G) ≥ k contains a k-critical subgraph, Conjecture 1
clearly implies the BKC. Conversely, since Kk is k-chromatic, the BKC implies that
any k-critical graph G with ∆(G) ≤ k contains Kk, and hence is Kk. Thus the BKC
implies Conjecture 1.

Since ∆(Kk) = k − 1, Conjecture 1 is equivalent to asserting the non-existence of
∆-critical graphs once ∆ ≥ 9. Phrased in similar language, Brooks’ Theorem implies
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that for each k ≥ 4, the only k-critical graph with ∆ + 1 ≤ k is Kk. The condition
k ≥ 9 in Conjecture 1 is necessary, due in particular to the graph C5[K3] shown in
Figure 1.

Much progress has been made towards a solution to the BKC, for example [2, 5–
8, 12, 14, 16] (see e.g. [6] for a detailed description of previous work). Despite these
developments, the conjecture remains open in general. Here we mention just two of the
strongest results to date, namely, that the conjecture holds provided ∆ is a sufficiently
large (unspecified) constant [16], and that any ∆-chromatic graph with ∆ ≥ 13 must
contain K∆−3 [6]. In [7] it was shown that the conjecture is equivalent to the seemingly
much weaker assertion that every ∆-chromatic graph with ∆ ≥ 9 contains the graph
obtained from K∆ by removing the edges of a K∆−3.

One simple but important step in addressing the BKC, shown in [4, 12], has been
to reduce the general problem to graphs with ∆ = 9. (Similar arguments were used
in e.g. [6, 7, 14] as well.) In this note we continue the same theme, linking the general
conjecture to the behaviour of graphs with ∆ ≤ 8.

We will refer to a particular restricted notion of list colouring, called non-identical
list colouring (abbreviated NIL), defined as follows. For a set S, an integer k, and
a graph G, an (S, k)-NIL assignment of G is an assignment L of lists L(v) ⊆ S to
each vertex v ∈ V (G) such that each |L(v)| = k, and L(v) ̸= L(w) for some pair
v, w ∈ V (G). We say that G is (S, k)-NIL colourable if every (S, k)-NIL assignment L
of G admits an L-list colouring of G. For example, it is easy to verify (see Section 2)
that the complete graph Kn is (S, n− 1)-NIL colourable for every S.

In this note we prove the following theorem, where [n] denotes {1, . . . , n}. The
proof appears in Section 3.
Theorem 2. Suppose that every 8-critical graph with ∆ ≤ 8 is regular and ([8], 7)-NIL
colourable. Then the only 9-critical graph with ∆ ≤ 9 is K9 (i.e. the BKC holds).

Recall that the lexicographic product of graphs G and H is the graph G[H] with
vertex set V (G)× V (H), in which (x, u) is adjacent to (y, v) whenever xy ∈ E(G), or
x = y and uv ∈ E(H). The (regular) 8-critical graph C5[K3] (see Figure 1) is shown in
Section 2 to be ([8], 7)-NIL colourable. Since we are unaware of any 8-critical graphs
with ∆ ≤ 8 besides C5[K3] and K8, the following corollary tempts us to conjecture
that there are no others, thus possibly strengthening Conjecture 1.
Corollary 3. Suppose that the only 8-critical graphs with ∆ ≤ 8 are C5[K3] and K8.
Then the BKC holds.

Indeed, the assumptions of Theorem 2 precisely identify the properties of C5[K3]
and K8 that make a simple proof of Theorem 2 possible.

We end this brief note with a discussion on constructing ∆-critical graphs for small
∆ in Section 4. In particular, we point out there that while infinite families of such
graphs exist when ∆ ≤ 6, it seems more difficult to construct examples for ∆ = 7,
and (as mentioned) even more so for ∆ = 8.

2 Non-identical list colouring

In this section we verify that the graph C5[K3] shown in Figure 1 is ([8], 7)-NIL
colourable. Observe that C5[K3] has 15 vertices and independence number 2, so it
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is not 7-colourable. An 8-colouring can be easily found (χ(C5[K3]) ≤ 8 also follows
from Brooks’ theorem). To see that it is critical, observe that the graph is vertex
transitive and there are only two types of edges (those in triangles xiyizi and those
connecting them). Given an [8]-colouring ϕ, let us assume that 8 is the unique colour
that appears exactly once, and that ϕ(x1) = 8. By symmetry, we may assume that
ϕ(z2) = ϕ(z5) = 7, and that colors 1, 2, . . . , 6 each appear on neighbours of x1 exactly
once. Then in a subgraph missing x1y1 we may recolour x1 to ϕ(y1), and in a subgraph
missing x1x2 we may recolour x1 to ϕ(x2). This shows that C5[K3] is also 8-critical.
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Figure 1: C5[K3]

First we note the following simple consequence of the well-known fact (equivalent
to Hall’s Theorem) that a collection of sets {L(v) : v ∈ V } has a system of distinct
representatives {sv ∈ L(v) : v ∈ V } if and only if |

⋃
v∈T L(v)| ≥ |T | for each T ⊆ V .

Lemma 4. For every n ≥ 2 and every set S, the complete graph Kn is (S, n−1)-NIL
colourable.
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Proof. Let L be an (S, n− 1)-NIL assignment of G. Each nonempty T ⊆ V (G) clearly
satisfies |

⋃
v∈T L(v)| ≥ n − 1, so the above condition fails only if |

⋃
v∈V (G) L(v)| =

n− 1, i.e. only if all lists are identical.

Lemma 5. The graph C5[K3] is ([8], 7)-NIL colourable.

Proof. Fix an ([8], 7)-NIL assignment L of G = C5[K3]. By symmetry, we may assume
that two (adjacent) vertices with different lists are among x

1
, x

2
, y

1
, y

2
. Let K denote

the K4 induced by these four vertices. Since every pair of vertices of G have at least
6 common colours in their lists, by renaming colours if necessary we may choose the
following partial colouring φ:

• φ(z
1
) = φ(z

3
) = 7.

• φ(z
2
) = φ(z

5
) = 8.

• φ(x
3
) = φ(x

5
) = 6 and φ(y

3
) = φ(y

5
) = 5.

• For each v ∈ K ∪ {x
4
, y

4
, z

4
} set L′(v) = L(v) \ {5, 6, 7, 8}. Then we may easily

colour each vertex v ∈ {x
4
, y

4
, z

4
} from L′(v) since |L′(v)| ≥ 3 for each.

It remains to colour the vertices v of K from their current lists L′(v). If |L′(v)| = 3
for each v ∈ K, then each L(v) contains all of {5, 6, 7, 8} and hence, by our choice of
K, we find that {L′(v) : v ∈ K} is a ([4], 3)-NIL assignment of K4. If |L′(x)| ≥ 4 for
some x ∈ K, then we may assign to each v in K a 3-subset of L′(v) such that not all
are identical. Hence, in either case, by Lemma 4, we may complete the colouring of K
and hence of G.

3 Proof of Theorem 2

As mentioned in the Introduction, and shown in [4, 12] (see also [6, 7, 14]), the BKC
can be reduced to the specific case of k = 9. A useful tool for such purposes is the
following result of King [11] (which is based on [9]). Here ω(G) denotes the maximum
size of a clique in G.
Theorem 6. If a graph G satisfies ω(G) > 2

3 (∆(G) + 1), then G contains an
independent set I such that ω(G− I) = ω(G)− 1.

Our proof of Theorem 2 begins with an application of Theorem 6, which in this
context is quite standard. For example it essentially repeats the proof of Lemma 1.8
in [7], but we include this argument in order to establish how the 8-critical graph H
sits in G. This is needed for the rest of the proof.

Proof of Theorem 2. Suppose that there exist 9-critical graphs G with ∆(G) ≤ 9 that
are distinct fromK9, and choose one suchG with the smallest number of vertices. Then
by Brooks’ Theorem we know ∆(G) = 9, since otherwise G would be 8-colourable.
By Theorem 6 we may choose a maximal independent set I in G that intersects every
8-clique. (Note that if ω(G) ≤ 7 then any maximal independent set will do.)

By maximality of I we know ∆(G−I) ≤ 8, by 9-criticality of G we know χ(G−I) ≤
8 (and hence χ(G − I) = 8), and by choice of I we have ω(G − I) ≤ 7. Let H be an
8-critical subgraph of G − I. Then clearly we have ∆(H) ≤ 8 and ω(H) ≤ 7 as well.
Hence in particular H is not K8, so again by Brooks’ Theorem ∆(H) = 8. Thus, by
the assumption of the theorem, H is 8-regular and ([8], 7)-NIL colourable.

4



We denote by IH the subset I ∩ NG(H). Since ∆(G) = 9 and H is 8-regular, by
maximality of I we know dIH (v) = 1 for each vertex v of H, from which it follows that
IH is a vertex cut in G separating H from G − I − H. (We remark that this is the
only place in our proof that the assumption of regularity of H is essential rather than
simply convenient.) Furthermore since H is 8-regular and not K9 it has more than 9
vertices, so |IH | ≥ 2.

By 9-criticality of G we know that G−H is 8-colourable. First suppose that G−H
has an 8-colouring ϕ in which two vertices of IH receive different colours. Since each
vertex v of H has exactly one neighbour vI in IH , the list assignment L given by
L(v) = [8] \ {ϕ(vI)} is an ([8], 7)-NIL assignment for H. Hence, by the assumption,
H has an L-colouring, which together with ϕ shows that G is 8-colourable, giving a
contradiction. Thus we may assume that every 8-colouring of G − H must give all
vertices of IH the same colour. In other words, adding any edge xy to G −H where
x, y ∈ IH results in a 9-chromatic graph G−H + xy.
Claim 1. Every pair of disinct vertices x, y ∈ IH lies in a K−

9 -subgraph Kxy of G−H
with V (Kxy) ∩ IH = {x, y}. (Here K−

9 denotes the graph obtained by removing one
edge from K9.)

To verify the Claim, observe that since G −H + xy is 9-chromatic, it contains a
9-critical subgraph J . Since |V (J)| ≤ |V (G − H)| < |V (G)| and ∆(J) ≤ ∆(G) = 9,
by minimality of our counterexample G, we conclude that J = K9. Clearly J must
contain the edge xy, so J − xy is the claimed K−

9 .

Recalling that |IH | ≥ 2 and ∆(G) = 9, Claim 1 immediately implies a contradiction
if any v ∈ IH satisfies dH(v) ≥ 3, since in that case dG(v) = dH(v) + dG−H(v) ≥
3+ (9− 2) = 10 > ∆(G). Hence we may assume dH(v) ≤ 2 for each v ∈ IH . We know
H has more than 9 vertices, so since dIH (u) = 1 for each vertex u of H, we find that
|IH | ≥ ⌈9

2⌉ = 5. Fix v ∈ IH .
For four vertices ui ∈ IH , 1 ≤ i ≤ 4, ui ̸= v, by Claim 1, we have copies Kvui of

K−
9 in G − H, each of which contains v. Since d(v) ≤ ∆(G) = 9, by the pigeonhole

principle some neighbour of v lies in ⌈ 4(7)
9 ⌉ = 4 of these subgraphs. Let w denote

such a vertex. Then w is a vertex of G− I −H, and w has eight neighbours in Kvu1

together with u2, u3 and u4. Thus there are a total of at least 11 neighbours of w in
G, contradicting the fact that ∆(G) = 9. This completes the proof of Theorem 2. □

4 ∆-critical graphs for small ∆

The graph C5[K3] is one example of a critical graph obtained by blowing up each
vertex of an odd cycle into a clique. One can easily construct infinite families of k-
critical graphs with ∆ = k for k ∈ {4, 5} by using such blow-ups using clique sizes 1
and 2. For example, for each t ≥ 2 let U be an independent set of t vertices in C2t+1.
Blowing up each vertex of U into a K2 results in a 4-critical graph with ∆ = 4.

Another simple construction of critical graphs from [4] (generalizing examples
from [1]) is as follows. Fix k ≥ 4, let G be a graph with ∆(G) ≤ k, and suppose G has
a vertex x of degree k−1. Form a new graph Gk

x by “evenly splitting” x into 3 vertices
(i.e. remove x and add an independent set Ix of three vertices whose degrees differ by at
most one and whose neighbourhoods partition N(x)), and joining each vertex of Ix to
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a new cliqueKx of order k−2. Note that |V (Gk
x)| = |V (G)|−1+3+(k−2) = |V (G)|+k.

An example of this construction for k = 7 with G = K7 is depicted in Figure 2. Here
G7

x is a 7-critical graph on 14 vertices, with 8 vertices of degree seven and 6 vertices
of degree six.

Figure 2: G7
x where G = K7

It is straightforward to verify that Gk
x is k-critical if and only if G is k-critical.

Since each v ∈ V (G) ∩ V (Gk
x) has degree dG(v) in Gk

x, each v ∈ Kx has degree
(k − 3) + 3 = k, and each v ∈ Ix has degree k − 2 + ⌈k−1

3 ⌉ or k − 2 + ⌊k−1
3 ⌋, we

see that if k − 2 + ⌈k−1
3 ⌉ ≤ k then ∆(Gk

x)) = k. This holds for k ≤ 7. Moreover if

k − 2 + ⌊k−1
3 ⌋ ≤ k − 1, then Gk

x has a vertex of degree less than k, which is true for
k ≤ 6. Hence for k ∈ {4, 5, 6}, we may start for example with the k-critical graph
Kk and repeat this construction an arbitrary number of times, thus giving an infinite
family of k-critical graphs with ∆ = k.

In contrast, for k = 7, since no new vertex of degree k − 1 is introduced by the
construction, if we start with K7 the process will produce 7-critical graphs with ∆ = 7
on 7i vertices for i ∈ [8], thus terminating with graphs on 56 vertices. This operation
produces various nonisomorphic 7-critical graphs on 7i vertices for i ∈ {3, . . . , 8}. For
example, consider such a graph on 56 vertices. Letting W denote the vertex set of the
initial K7, we note that the subgraph J induced on the set

⋃
w∈W Iw of 21 vertices

is a 2-regular graph in which there is (exactly) one edge evw connecting each pair
{Iv, Iw} with v, w ∈ W . Thus the edges of J are in one-to-one correspondence with
the edges of K7, and hence the components of J correspond to a decomposition of
E(K7) into connected even-degree subgraphs of K7. Conversely, any such decompo-
sition F1, . . . , Fs of E(K7) can be realized as such a subgraph J , whose components
are cycles of lengths |E(F1)|, . . . , |E(Fs)|, by following an Euler tour in each of the Fi.
There are many such partitions, for example a partition of E(K7) into three 7-cycles,
or a partition into seven 3-cycles (the lines of the Fano plane), or the whole set E(K7)
as a single partition class (for which J is a 21-cycle). The example based on the Fano
plane is shown in Figure 3.

Since the graph Q obtained from C5[K3] by removing two nonadjacent vertices is
also 7-critical, another family of 7-critical graphs with ∆ = 7 can be built from Q
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Figure 3: Example of 7-regular 7-critical graph on 56 vertices.

using the splitting operation. This gives further examples, with vertex sets of sizes 20,
27, and 34. To the best of our knowledge this describes all the known 7-critical graphs
satisfying ∆ = 7. Thus we pose the following natural questions.
Problem 7. Does there exist an 8-critical graph with ∆ = 8 different from C5[K3]?
Problem 8. Does there exist an infinite family of 7-critical graphs with ∆ = 7?

Observe that in all the constructions of 7-critical graphs with ∆ = 7 that we have
described, the graph Q is the only one that does not contain the graph K5 ∨ K3

obtained from K8 by removing the edges of a triangle. (This is the subgraph induced
by Kx ∪ Ix after splitting the vertex x.) Thus one potential way of showing that the
above list is complete for ∆ = 7 might be to show that every 7-critical graph with
∆ = 7, aside from Q, contains K5 ∨K3.

We remark that the splitting operation has been generalized and used in various
contexts. For example, a generalization to hypergraphs appears in [17], and in [13], a
range of more general results on graphs G with chromatic number close to ∆(G) are
obtained using this type of operation.
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Recall that the rth power Cr
ℓ of the cycle Cℓ is the graph obtained from Cℓ by

joining every pair of vertices at each distance d ∈ {2, . . . , r} in Ct. We conclude by
noting that further examples of ∆-critical graphs for ∆ ∈ {4, 6} that are not of either
of the types described so far are given by the square C2

8 of the 8-cycle and the cube
C3

11 of the 11-cycle respectively. More generally, the rth power Cr
3r+2 of the (3r + 2)-

cycle forms the basis for a family of tight examples for a conjecture of Reed [15],
that is closely related to Conjecture 1. This conjecture proposes that for every graph

G one has χ(G) ≤ ⌈∆(G)+ω(G)+1
2 ⌉. The graph Cr

3r+2[Kt] has (3r + 2)t vertices, it is
((2r+1)t−1)-regular, it has clique number (r+1)t, and independence number 2. This
implies that its chromatic number is at least⌈ (3r + 1)t

2

⌉
=

⌈ (2r + 1)t− 1) + (r + 1)t+ 1

2

⌉
=

⌈∆(G) + ω(G) + 1

2

⌉
.

It is not difficult to give a colouring using only this many colours. The well-known
example C5[Kt] is the special case r = 1.
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