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Email: nesetril@kam.ms.mff.cuni.cz

a: Department of Applied Mathematics and Institute for Theoretical
Computer Science(ITI) Charles University Malostranské nám.25, 11800
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Abstract

A class C of graphs is said to be H-bounded if each graph in the class C admits
a homomorphism to H. We give a general necessary and sufficient condition for
the existence of bounds with special local properties. This gives a new proof of
Häggkvist-Hell theorem [5] and implies several cases of the existence of triangle
free bounds for planar graphs.

1 Introduction

In this paper we study mainly coloring of graphs in the setting of graph homomor-
phism. Recall that a homomorphism from G to H is any edge-preserving mapping
f : V (G) −→ V (H), (i.e. xy ∈ E(G) =⇒ f(x)f(y) ∈ E(H). The existence of a
homomorphism from G to H is denoted by G −→ H. A homomorphism f from
G to H is sometimes called an H-coloring of G. This notion captures the coloring
problems by means of the following observation:

χ(G) ≤ k iff G −→ Kk.

It also allows us to treat many combinatorial problems in a more general setting, for
example in the context of partial order, as the existence of a homomorphism defines
a quasiorder ≤ which is called coloring order

G ≤ H if and only if G → H.
∗Supported by a DIMATIA postdoctoral fellowship under grant LN00A056. Written at Centrum

Dimatia 11800, Praha 1, Czech Republic
†Partially supported by a grant from DIMATIA
‡Partially supported by the Project LN00A056 of the Czech Ministry of Education.

1



The following is the main concept of this paper: We say a class C of graphs is
bounded by H if G ≤ H (or, equivalently, G −→ H) for any G ∈ C. This simple
order-theoretic concept may take the form of a profound problem when applied to a
concrete class of graphs. For a complete introduction to graph homomorphisms we
refer to [7].

Remark on terminology: In several earlier papers any graph H which bounds a
class C is called universal. We believe that this is a bit confusing as the notion of
universal graph (for a class C) is usually reserved for those graphs H which belong
to the class C (i.e. which is a greatest elements of the class C). We believe that the
present notations is more fitting in our context.

The characterization of boundedness (and the estimation of the size of H) is the
basic problem of chromatic (extremal) theory. In particular, the 4CT asserts that
the class P of all planar graphs is bounded by K4. Another related classical result
is the Grötzsch theorem [4]: The class of all triangle free planar graphs is K3-
bounded, see any graph-theory textbook, or [17] for a short proof. In our setting
of the Grötzsch theorem a certain asymmetry of the statement becomes apparent:
“triangle free bounded by triangle”. This led to the following problems posed in
[10], [11]:

Problem 1 Is the class of K4-free planar graphs bounded by a K4-free graph?

Problem 2 Is the class of K3-free planar graphs bounded by a K3-free graph?

One can ask whether the class of all planar graph is bounded by a K5-free graph.
Note that the answer to this last problem is positive by virtue of the 4CT [2], [15],
but in view of the difficulty of the proofs we should perhaps ask for an independent
proof (not relying on a computer).

The purpose of this paper is to give a necessary and sufficient condition for the
existence of bounds of this type. This is related to the following concept which is of
independent interest:
Given a graph property P we say that a proper coloring of a graph G is an (m, P )-
coloring if the subgraph of G induced by any m or fewer color classes has property P .

Roughly speaking, we prove that, for certain properties P , a class C of graphs
is H-bounded with H having a (m,P )-coloring iff all the graphs G ∈ C have an
(m,P )-coloring by a fixed number of colors. This holds for properties P like P (k),
k-colorablity, or more generally, locally F -colorable graphs, see Theorem 7 below.
Notice that a graph H is (k, P (k− 1))-colorable iff it is Kk-free and that (m,P (2))-
colorability is equivalent to high odd girth.

To formulate the next result we introduce the following:
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For a finite set F of graphs we denote by Forbh(F) the class of all graphs G satis-
fying F 6−→ G for any F ∈ F .
The main result of [5] and [3] can be reformulated as follows:

Theorem 3 For any d ≥ 1 and any finite class of graphs F , the class of connected
graphs in Forbh(F) with maximum degree d and chromatic number k is bounded by
a k-chromatic graph in Forbh(F ).

Below (in Section 3) we give a proof of this result as a consequence of our main
result (see Theorem 7 and Proposition 3). One can see that most of our results are
partial results toward solving the following:

Problem 4 Is it true that for any finite set of connected graphs F any set of planar
graphs in Forbh(F) is bounded in Forbh(F)?

The paper is organized as follows: In section 2 we reduce the boundedness of classes
of graphs to the existence of (m,P )-colorings while in Section 3 we prove the exis-
tence of (m,P )-colorings for bounded degree graphs. In Section 4 we present results
on triangle free and large odd girth planar graphs. Section 5 contains some further
remarks and open problems.

2 Construction of bounds for bounded classes

For a graph property P we introduced the notion of an (m,P )-coloring of a graph
G (recall: the subgraph induced by the union of any m or fewer color classes should
have property P ). We also denote by χm,P (G) the minimal number of classes in a
(m,P )-coloring of G (provided that it exists).

The following definition is a key construction, compare [1, 14, 16] for constructions
of similar flavour:

Definition Let m and n be positive integers and U a graph, then let Π = Π(n,m, U)
be the graph whose vertex set is the set of ordered pairs (i, φ), where 1 ≤ i ≤ n and
φ is a function from the m-sets of {1, 2, . . . n} which contain i, to V (U) and whose
edge set is the set ((i, φ), (j, ψ)) for which i 6= j and φ(S) is adjacent to ψ(S) for all
m-sets S of {1, 2, . . . n} which contain both i and j.
The graph Π(n,m, U) is n-partite and has order n× |V (U)|(n−1

m−1).

Proposition 5 Let PU be the property of U -colorability. If χm,PU
(G) ≤ n then

there is a homomorphism from G to Π(n,m, U).

Proof. Let c : V (G) → [n] be an (m,PU )-coloring of G, then for each S ⊆ [n] of
cardinality m the vertices colored from S induce a subgraph GS of G with property
PU and so there is a homomorphism ρS : GS → U . Now define f : V (G) →
V (Π(n,m, U)) by f(v) = (c(v), φ), where φ is defined by φ(S) = ρS(v). We must
show that f is a homomorphism. If u and v are adjacent vertices in G then set
f(u) = (i, φ) and f(v) = (j, ψ). Since c is a proper coloring i 6= j and, if {i, j} ⊆ S
then φ(S) = ρS(u) which is adjacent to ρS(v) = ψ(S) so f is a homomorphism. 2
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For special type of properties we prove the converse of this result.
Definition Let G and U be graphs. The graph G is said to be m-locally U -colorable
if every subgraph of G induced by m or fewer vertices admits a homomorphism into
U .
Examples
i. m-locally K2-colorable graphs are graphs with odd girth at least m + 1.
ii. k-locally Kk−1-colorable graphs are just graphs not containing Kk.

Proposition 6 The graph Π(n,m, U) is m-locally U -colorable.

Proof. Let Π1 be the subgraph of Π(n,m,U) induced by vertices {(ik, φk)}m
k=1.

Let S′ = {i1, i2, . . . im} and let S be any m-subset containing S′. Then the mapping
(ik, φk) → φk(S) is a homomorphism. 2

Together these propositions give

Theorem 7 A class C of graphs is bounded by an m-locally U -colorable graph if and
only if {χm,PU

(G)| G ∈ C} is bounded where PU stands for U -colorability.

Proof. Propositions 5 and 6 give the “if” part of the theorem. For the converse,
suppose that C is bounded by an m-locally U -colorable graph H. If G ∈ C then color
it by a homomorphism φ : G −→ H. If G′ is a subgraph of G which takes at most m
colors, then so does its image φ(G′) which thus maps to U . Hence χm,PU

(G) ≤ |H|
for all G ∈ C. 2

We will be mainly concerned with the following two instances of this theorem (propo-
sitions 8 and 9).

Proposition 8 For each n and each class C of graphs the following statements are
equivalent, where P (n− 1) is the property of (n− 1)-colorability.

(a) C is bounded by a Kn-free graph.

(b) {χn,P (n−1)(G)| G ∈ C} is bounded.

(c) {χn+1,P (n−1)(G)| G ∈ C} is bounded.

Proof. Observe that Kn-free is equivalent to both n-locally Kn−1-colorable and
(n + 1)-locally Kn−1-colorable (since the smallest n-chromatic graph not containing
Kn has n + 2 vertices) and apply theorem 7. 2

Our second particular choice is the property B = P (2) of being bipartite.

Proposition 9 For each odd n and each class C of graphs the following statements
are equivalent where B is the property of being bipartite.

(a) C is bounded by a graph of odd girth n.

(b) {χn−2,B(G)| G ∈ C} is bounded.

(c) {χn−1,B(G)| G ∈ C} is bounded.

Proof. Having odd girth n is equivalent to both (n−1)-locally K2-colorability and
(n− 2)-locally K2-colorability. Now apply theorem 7. 2
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3 Proof of Theorem 3

Let F be a finite set of connected graphs. Put m = max{|V (F )| F ∈ F} and let
U be the disjoint union of all (non-isomorphic) graphs in Forbh(F) which have at
most m vertices. Then Forbh(F) is precisely the class of all m-locally U -colorable
graphs. (This is easy to see: any G ∈ Forbh(F) is clearly m-locally U -colorable.
If G is m-locally U -colorable then the existence of a homomorphism F → G for an
F ∈ F would violate the U -colorability of the image of F in G.)

Let Cd be the subclass of Forbh(F) of all graphs G with maximal degree ∆(G) ≤ d.
We prove that for any G ∈ Cd holds χm,PU

(G) ≤ d2m+1. This will finish the proof
as, by Theorem 7, the class Cd is then bounded by a graph H in Forbh(F). More-
over if all graphs in Cd are k-colorable then Cd is bounded by the k-colorable graph
H ×Kk ∈ Forbh(F).

Given G ∈ Cd consider the graph G(m) on the same set of vertices where two distinct
vertices are joined by an edge iff they are joined in G by a path of length ≤ m. As
∆(G(m)) < dm+1 there exists a dm+1-coloring of G so that any two distinct vertices
of G with their distance ≤ m are colored differently.

We prove that this is an (m,PU )-coloring: Let G′ be a subgraph of G induced
by any m classes and let G′′ be one of its components. Every pair of vertices in
G′′ is joined by a path in G′′. If any of these paths is of length at least m then its
vertices take at least m + 1 colors (on the first m + 1 vertices of the path). This
is impossible so every two distinct vertices in G′′ are joined by a path of length at
most m − 1, and so take distinct colors. Therefore G′′ has at most m vertices and
thus, by the definition of U , is U -colorable, whence so is G′.

4 Bounds with given odd girth

The problem of bounds for the set of planar graphs with a given odd girth has
been studied in various papers. The Grötszch theorem is of this type. We use Pk to
denote the set of all planar graphs with odd girth at least k (note that P2k = P2k+1).
Grötzsch’s theorem then simply states that C3 is a bound for P4. Another result of
this type is Zhu’s recent proof that C2k+1 is a bound for P8k−3, and it is conjectured
that C2k+1 even bounds P4k+1 [19].
In this section we will study the following problem:

Problem 10 For any given k ≥ 1 does there exists a bound H for the subclass
P2k+1 of planar graphs with oddgirth(H) = 2k + 1?

By Proposition 9 this is equivalent to asking whether {χ2k−1,B(G)| G ∈ P2k+1} (or,
equivalently, {χ2k,B(G)| G ∈ P2k+1}) is bounded.
In this setting Problem 1 reads as follows:

Conjecture 11 P4 is bounded by a triangle free graph.
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Figure 1: H

By applying Proposition 9 this is equivalent to:

Conjecture 12 There exists a number l for which every G ∈ P4 has an l-coloring
such that every odd cycle takes at least 4 different colors.

Examples like the graph of Fig. 1 shows that a triangle-free bound for P4, if it exists,
can not be very small. In fact any such a graph has to contain graph H of Fig. 1
as subgraph (as any 2 non-adjacent vertices of this graph are joined by a path of
length 3). It is also not hard to see that any triangle-free bound for P4 is nonplanar:

Theorem 13 P4 is not bounded by a triangle-free planar graph H.

Proof. For a contradiction, suppose that H is a planar triangle-free bound and
assume H has minimum number of vertices. It follows that H is a core (i.e. it does
not have a proper retract). We show that H has minimum degree at least four.
Since H is also triangle-free, this contradicts Euler’s formula.

Let B be the graph obtained by joining two 5-cycles with an edge. This graph
contains a set of four vertices {a, b, c, d}, each of which is joined to the others by a
path of length three and no two of which are adjacent. Let H1 be the disjoint union
of H and one copy, say Bv, of B for each vertex v of H. Let {av, bv, cv, dv} be the
four vertices in Bv corresponding to {a, b, c, d} in B. Now form a new graph H ′ by
joining each vertex v of H in H1 to the vertices av, bv, cv and dv.

Since H ′ is still in P4, there is homomorphism from H ′ to H. As H is a core,
the restriction of this homomorphism to H is an automorphism of H. For each
v ∈ V (H), the images of the vertices in {av, bv, cv, dv} are distinct (otherwise H
would contain a triangle) so each vertex of H has degree at least four, as required.
2
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The following related result puts our results in yet another context.

Proposition 14 The class of planar graphs with girth at least 2k is bounded by a
graph H with oddgirth(H) = k + 1.

Proof. Let P have girth at least 2k, then the dual P ? of P has edge connectivity
at least 2k and so, by the theorem of Tutte and Nash-Williams, [9, 18], has k edge
disjoint spanning trees T1, T2, . . . , Tk. Let Di be the union of Ti and Ti+1 (taking
subscripts modulo k).

For each i > 0 and each edge e ∈ E(Ti) we define a Z2-flow fi,e by taking a cy-
cle which contains the edge e and otherwise lies entirely in Ti+1 and letting fi,e take
the value 1 on the directed edges of this cycle and zero elsewhere. Let ψi be the sum
of the fi,e taken over all edges in Ti. Thus ψi takes the value 1 on all edges of Ti

and zero on all edges not in Di. Symmetrically we construct a Z2-flow ψ′i which is 1
on Ti+1 and zero off Di. Let φi be the cartesian product of these two flows so that
φi is a flow taking values in the Klein 4-group V , which is nonzero exactly for edges
in Di. Define T0 to be the set of edges that do not lie in any Ti (i ≥ 1). A similar
construction gives a Z2-flow φ0 which is nonzero on all edges in T0 (and generally
on some other edges too).

The cartesian product of the φi (0 ≤ i ≤ k) is thus a nonzero Z2 × V k-flow φ
on P ?. An oriented edge e is in Ti (i ≥ 1) if and only if φ(e) vanishes on all of the
last k coordinates except the ith and the (i− 1)th and is in T0 if and only if φ(e) is
non- vanishing on the first coordinate. Thus we have:

Every edge e of P ? lies in a unique Ti (i ≥ 0) and this Ti is determined by the
value of φ(e).

The flow φ induces a corresponding Z2×V k-coloring φ̃ on P . In view of Proposition
9, it suffices to prove that φ̃ gives each odd cycle in P at least k colors. In fact we
prove this for every cycle.

Let C be a cycle in P which takes m vertex colors under φ̃. Define an edge-colored
graph H whose vertex set is the set of colors taken by vertices in C and join vertices
c and c′ by an edge colored i if there are adjacent vertices v and v′ in C, colored
c and c′ respectively, which are joined by an edge whose dual is in Ti. This edge
coloring is well defined because, as observed above, the value of c− c′ determines i.

Since each of the trees Ti (i ≥ 1) meets each cutset in P ?, H has at least one
edge of each color i ≥ 1.
Choose one edge of each color i ≥ 1 in H, and suppose |V (H)| ≤ k. In this case a
subset of these edges forms a cycle in H with vertices, in order, c1, c2, . . . cs. Since

∑
(cj+1 − cj) = 0,

(taking subscripts modulo s) and each difference cj+1 − cj is nonzero on a different
adjacent pair of the last k coordinates, we must have s ≥ k. Thus, in any case,
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|V (H)| ≥ k and, since m = |V (H)|, the proof is completed. 2

5 Remarks and open problems

1. If m is odd and B is the property of being bipartite, then the (m, B)-colorings,
considered in the previous section, are only possible on graphs with odd girth at
least m + 2. On the other hand nothing is said about the number of colors taken
by an even cycle. We now consider colorings which are (m, B)-colorings when the
odd girth is at least m + 2 but are defined for all graphs and for which there is a
specified minimum number of colors on even as well as odd cycles.

Conjecture 15 For each n there exists a constant Cn for which every planar graph
admits an coloring by at most Cn colors, for which every cycle of length ≥ k takes
at least min{d(k/2)e+ 1, n} distinct colors.

The proof of Proposition 14 shows that this result holds for planar graphs of girth
at least 2n.
Remark For each k and C there is a planar graph G such that, for every C-coloring
of G there is a cycle of length k which is colored by at most d(k/2)e+1 distinct col-
ors. If k is even, say k = 2m, then we can let G be a graph with many independent
paths of length m with common end points. By the pigeonhole principle, if there
are enough paths, some two must take the same colors and hence the circuit they
form takes at most k/2 + 1 colors. If k = 2m + 1, then we modify the preceding
graph G by joining two adjacent interior points of each path by a path of length
two. This graph then has the property that, for every C-coloring, there is a cycle of
length k +1 which is colored by at most d((k + 1)/2)e+ 1 distinct colors. Hence the
numbers in the conjecture above cannot be increased.

2. For a graph G, we denote by Gk the graph with the same set of vertices where the
edges correspond to pairs of distinct vertices joined by a trail of length k. We con-
fine our attention to odd k. Note that Gk is loopless iff G has odd girth at least k+2.

It is an easy observation that if k is odd and a class C is bounded by a graph
in H with odd girth at least k + 2 then the graphs in C also have odd girth at least
k+2 and Hk bounds the graphs Gk whenever G ∈ C. Thus there is a bound (namely
|V (H)|) for χ(Gk) when G ∈ C.

We do not know whether the converse to this statement is true. This can be formu-
lated as follows:

Conjecture 16 If k is odd, the graphs in C have odd girth at least ≥ k + 2 and
{χ(Gk)|G ∈ C} is bounded, then C is bounded by a graph with odd girth at least
k + 2.

In particular the following is a weakening of Conjecture 11

Conjecture 17 {χ(G3)|G ∈ P4} is bounded
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We do not know any example of a graph G ∈ P4 for which χ(G3) > 11. The graph
of the Fig. 1 shows that 11 can be attained.

Added in proof: There has been some progress on the problem studied in this
paper. Problem 10 has been answered affirmatively in [13]. The same authors have
constructed the first triangle free bound for P4 in [12]. A smaller bound together with
a connection between Problem 10 and a conjecture of P. Seymour (on edge coloring
of planar graphs) can be found in [8]. Conjecture 16 was also recently proved by
Claude Tardif, personal communication. The result of [8] shows χ(G3) ≤ 16 for
every G ∈ P4 and the same author has shown that there are graphs in P4 with
χ(G3) = 15. Whether the bound of 16 can be achieved remains an open problem.
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Čada, J. Maxová, eds.), KAM-DIMATIA Series 99-452, p.12.
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