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Abstract

In a given graph G, a set of vertices § with an assignment of colors is said to be a defining
set of the vertex coloring of G, if there exists a unique extension of the colors of S to a y(G)-
coloring of the vertices of G. The concept of a defining set has been studied, to some extent,
for block designs and also under another name, a critical set, for latin squares. In this note we
extend this concept to graphs, and show its relationship with the critical sets of latin rectangles.
The size of smallest defining sets for some classes of graphs are determined and a lower bound
is introduced for an arbitrary graph G. The size of smallest critical sets of a back circulant latin
rectangle of size m x n, with 2m <n, is also determined.

1. Introduction

A latin rectangle is an m x n array, m<n, from the numbers 1,2,...,n such that
each of these numbers occur in each row and in each column at most once. A critical
set in an m x n array is a set S of given entries, such that there exists a unique
extension of S to a latin rectangle of size m x n. There are some papers on critical
sets of latin squares. The interested reader may start with [4] and its references. In [4],
application of critical sets in latin squares to secret sharing schemes is shown. If we
index the rows and columns of an m x n array, m<n, by the sets M = {1,2,...,m}
and N = {1,2,...,n}, respectively, then the array with integer i + j — 1 (mod #) in the
position (i, ;) is said to be a back circulant latin rectangle. The following important
result can be found in [3].

Theorem A (Cooper et al. [3]). Let L be a back circulant latin square of order n.
Then L contains a minimal critical set of size |n*/4).
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Cv' 3 G’ :

Fig. 1. dv(G) < dv(G").

The problem of finding critical sets in latin squares with minimum cardinality is an
open question. We study a similar concept for graphs and show that the critical sets
of latin squares are just defining sets of some special graphs.

We consider (simple) graphs which are finite, undirected, with no loops or multiple
edges. We will use standard notations such as K, for the complete graph on n vertices,
C, for the cycle of size n, and P, for the path with n vertices. For the necessary
definitions and other notations we refer the reader to texts, such as [2]. In this section
we mention some of the definitions and results which are referred to throughout the
paper. A k-coloring of a graph G is an assignment of &£ different colors to the vertices
of G, such that no two adjacent vertices receive the same color. The vertex chromatic
number of a graph G, denoted by x(G), is the minimum number &, for which there
exists a k-coloring for G. In a given graph G, a set of vertices S with an assignment of
colors is said to be a defining set of vertex coloring, if there exists a unique extension
of the colors of § to a y(G)-coloring of the vertices of G. A defining set with minimum
cardinality is called a minimum defining set (of vertex coloring) and its cardinality is
denoted by d4,(G). For example this parameter in the case of a connected bipartite
graphs is equal to 1, and for K4 — e is equal to 2. As an another interesting example,
one may check that d,(P) = 4, for the Petersen graph P. Also d,(Cony1) = n+ 1; for,
from every two adjacent vertices in C,,.;, one must be included in any defining set.
Note that for any graph G we have d4,(G)= x(G) — 1.

The following example shows that, in general, d,(G’)<d,(G) when G’ is a subgraph
of G, is not true; even if (G) = x(G’).

In the graph G the set of vertices with the color numbers given as in Fig. 1, is
a defining set. So dy(G) = 2, but clearly d,(G')=1.

The concept of defining sets is defined for block designs. See [7] for a survey.

Since any m X n latin rectangle, m<n, is equivalent to an n-coloring of the graph
Kn % K, it is of interest to explore the concept of defining sets of vertex colorings
of graphs. In Section 2 we state some results on this problem. Any defining set of
a vertex coloring of K, x K, is a critical set for an m x n latin rectangle. In Section 3
we find critical sets of some back circulant latin rectangles.

The following theorem of M. Hall, which is a corollary of the celebrated Marriage
Theorem of P. Hall, is very useful in our proofs.
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Theorem B (Hall (5]). If n sets Sy,...,S, have a system of distinct representatives —
SDR — and the smallest of these sets contains t objects, then if t=n, there are at
least t(t —1)---(t —n+ 1) different SDRs, and if t < n, there are at least t! different
SDRs.

2. Defining sets in vertex colorings

In the following theorem a lower bound for the size of a defining set in a graph G
is given.

Theorem 1. For every graph G we have
|E(G)|

WGV (O] = o

Proof. Let S be a defining set of size dy(G) and consider the extension of the coloring
of S to a y(G)-coloring of the vertices of G. Denote the number of vertices with color i
in § by r;, and in G by v;. Let G;; be the induced subgraph of G over the vertices
with color i and j. We claim that S contains at least one vertex from each component
of G;;. Suppose a component of G;; does not intersect S, then by permuting the colors
i and j in that component, one obtains a new yx(G)-coloring for G. Thus, the number
of components in Gj; is at most r; + r;. Therefore there are at least (v;+v;) — (r; +r;)
edges in G;;. Now, if we sum up this for all i and j such that 1<i < j<y(G), we
obtain

|E(G)|Z(x(G) = D) ([V(G)| — du(G));
from which the assertion follows. O

Corollary. The size of a minimum defining set of the cartesian product of K, by
Conyr IS

dy(Kz X Coppr) =n+1.

Proof. Let G = K; x Cypy1. From Theorem 1 we obtain d,(G)=n + % Thus, d,(G) =
n + 1. To show equality we give a defining set, S, of size n + 1 as in Fig. 2. Note
that all the vertices in S are labeled by their colors. The colors @ and b depend on »,
where:

2n+1=3k; a=1,b=2
2n+1=3k+1;, a=2, b=2
2n+1=3k+2;, a=3, b=3. |

The following theorem on defining sets of G x K, will be useful in the discussion
of critical sets in latin rectangles.



454 E.S. Mahmoodian et al. |/ Discrete Mathematics 167/168 (1997) 451-460

S

Fig. 2. G=K; x C2n+1.

Theorem 2. For any graph G, such that y(G)<n we have
dy(G X Ky) Z|V(G)|(n — 1) — 2|E(G)|.

Proof. By [1], we have y(G x K,) = n. Let |V(G)| = m, V(K,) = {1,2,...,n}, and
V(G)={1,2,...,m}. We note that G x K,, which is isomorphic to K, x G, has mn
vertices, which contains m ‘horizontal’ copies of K, say K,E”,K,Ez),..., ,ﬁ”'), (ordered
from top to bottom), and n ‘vertical’ copies G'1),G®,...,G™ (ordered from left to
right) of G. A horizontal copy ™ and a vertical copy G have only one vertex
(i,j) in common. Now let S be a defining set for G x K, and let d,,d>,...,d, be the
degree sequence of G. We show that for each i, at least n — d; — 1 vertices of Kﬁi)
belong to S. Suppose on the contrary, there exists an i such that fewer than n — d; — 1
vertices of K,fi) belong to S. In other words, the colors of at least d; + 2 vertices, say
T ={t,t,....t412}, of K,(,i) are not given. Assume that the colors of all vertices of
G x K,, except the ones in T are given. Let 7; be the set of colors available for the
vertex ¢, j = 1,2,...,d; + 2; that is the set of colors which do not appear in the
neighborhood of ¢; in S. Since S is a defining set, there exists an SDR for T;’s. We
have

|7;|>n—((n—d,—2)+d,)=2, j=1529'--’di+2-

By Theorem 1, there exist at least two SDRs. This contradicts the assumption that the
set S is a defining set. Now, since S contains at least n — d; — 1 vertices from each
horizontal copy,

IS|25(n—dy = 1) = m(n — 1) —2JEG)|. O
i=1

If in Theorem 2 we let G = K,,, then we have
Corollary. For n=m,
dy(Kpy % Kp)Zm(n — m).

Next we discuss defining sets of cartesian products of cycles by complete graphs.
The results of Theorems 3—5 show that the lower bound in Theorem 2 is a good bound.

Theorem 3. For n>6 we have

dy(Cpy X Kp) = m(n —3).
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Proof. If in Theorem 2 we let G = C,,, we obtain
d\'(Cm X K,,);m(n - 3)

To show equality, we need the following notation. For an ordered triple abc we denote
the three permutations abe (the identity permutation), bca, and cab by ay, o2, and a3,
respectively. Note that in the latin square

a b ¢
b ¢ al,
¢ a b

given any two rows, the remaining row can be determined uniquely. To proceed, we
note that if the vertices of C, x K, are in an m x n array in each row of which we
have a subgraph K, then as in the proof of Theorem 2 any defining set must contain
at least n — 3 vertices of each row.

We consider two cases for m:

(1) m even. For n = 6, a defining set is given as follows,

(61) 1 2 3 * * *
* * * 4 5 6 (o1)
(72) 2 3 1 * * *
* * * 5 6 4 (02)
() or a3) ) (e ® * * *
* * * D o (o) or 03)
(03) 3 | 2 s * *
* * 5 (73)

In the above table in the first three columns we use only the colors 1, 2, and 3.
And in this coloring, for example in the third row, we have used the permutation a;
of {1,2,3}, which is 231. Here a & sign, means that the color in that entry is given,
while a x sign, means that the color of that entry is not given.

For n=8, a defining set can be given such a way that only the colors 1,2,...,6 are
used in the first six columns of C,, x K,, similar to the case of n = 6, and the colors
of the vertices in the last n — 6 columns are all given.

For n = 7, we treat K7 x C,, in arrays of m x 3 and m x 4. The first array will be the
same as the first m x 3 array in the case of n = 6. For the second array, the following
arrays can be used for m =4 and m = 6, respectively,

* * * * * 7 4
7 6 4 5 5 7 6 4
* 4 * * 7 * * *
4 5 6 7 5 6 4 7
* * 7 *
4 5 6 7
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Since the last row of first array is the same as the last row of second array, to obtain
a defining set for any other even number m, one can use a suitable combinations of
these two arrays.

(ii) m odd. For n = 6, the following are defining sets for C3 x K¢ and Cs x K,
respectively,

1 2 3 * * * 5 3 1 * * *
* * 5 * 3 * * * 5 6 4
2 * * 6 1 2 3 * * *
* * 5 4 * 3
2 * * 6 4 *

To obtain a defining set for C,, X K¢, where m>7, since m—3 is even, one can combine
the above array for C; x K¢ with the one in the case of m even and n = 6.

For n=9, as in the case of m even, one can use the defining set of C, x K, given
above, to obtain a defining set for C,, x K,,.

For n =7, the following are defining sets for C3 x K; and Cs x K, respectively:

2 3 5 % x x 6 5 3 1 x *x x 17
3 5 x 1 4 % x 7 x *x 5 6 4 %
*x * x 4 5 6 7 1 2 3 x 7 % x
*x x 5 4 x 3 7
2 x x 6 4 7 «x

For n = 8, the following are defining sets for C3 x K3 and Cs x Kjg, respectively:

2 3 7 x x x 5 4 5 3 1 % x *x 7 8
3 4 x 1 6 8 % % 7 x x 5 6 4 8 «
x % x 6 4 5 7 8 1 2 3 % 7 % x 8
*x *x 5 4 x 3 8 7
2 x x 6 4 7 x 8

For m>7, both of these cases (n = 7 and »n = 8) can be dealt within the same way
as in the case of n=6. [

Theorem 4. For n>=6 we have,

dy(Pp % Kp) = m(n —3) + 2.

Proof. For m = 1,2, it is trivial; and for m>3 it is similar to Theorem 3. []

3. Critical sets in back circulant latin rectangles

As we noted earlier, an m X n latin rectangle, m <n, is equivalent to an n-coloring of
graph K, x K,,. In the following, we first show that equality is possible in the corollary
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to Theorem 2, thus there exists m x n latin rectangles with n>m? and a critical set of
size m(n — m), but there is no such rectangle with a smaller critical set.

Theorem 5. If n>=m?, then

dy(Ky % Ky) = m(n —m).

Proof. We consider the following m x n latin rectangle,
L=[4A4y...Ap-1Anl;

where each 4;, i = 1,2,...,m — 1, is an m X m back circulant latin square, generated
by the row,

(i-1m+1 (G=1m+2 ... i—1)m+m
and 4,, is an m x (n — m* + m) back circulant latin rectangle, generated by the row,
m—m+1 m—m+2 ... n

Now a critical set can be given which consists of all the entries of L, except the entries
of the ith row of 4;, i =1,...,m — 1, and the entries of the last row of A4,, which are
m* —m+1, m* —m+2,..., and m?. It is easy to check that S is a critical set of
Ky x Ky, and |S| =m(n —m). O

Next, we find the smallest critical set for back circulant latin rectangles of size m xn,
where 2m<n. We use some graph theoretical methods. To understand the method, first
we will show it in an example. The following lemma on cyclic graphs is very useful
in our proof. A cyclic graph G on n vertices is one with an automorphism group
containing the cyclic group (Z,, +) as a subgroup.

Lemma 1. Let n and d be two natural numbers such that n — d is odd Let G
be a d-regular cyclic graph with vertex set V(G) = {1,2,...,n} and ij € E(G), if
i—j=r+1,r+2,..., or r+dmodn; where r = (n —d — 1)/2. Then B(G), the
covering number of G, is equal to n —r — 1.

Proof. An example of a cyclic graph with the conditions of the lemma where n = 11,
d =2, r=4,is given in Fig. 3.

Since 2(G)+ B(G)=n, where a(G) is the independence number of G, it is sufficient
to show that a(G) =r + 1. Suppose S is an independent set of vertices in G with
maximum size. Without loss of generality, we can assume that 1 € S. We have SC T =
V(G) — {r +2,r +3,...,r +d + 1}. But T contains r parallel edges {jr + d +
j}, j=2,3,...,r + 1. Therefore, |S|<r + 1. The set of vertices {1,2,3,...,r+ 1} is
an independent set; thus |S| = (G)=r+1. [J

Example 1. Let L be a 5 x 11 back circulant latin rectangle. Then L contains a critical
set of size 34, which is the smallest critical set for such a latin rectangle.
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Fig. 3. Gy, a cyclic graph of Example 1.

Proof. In the following table a critical set with size 34 is shown for the back circulant
latin rectangle of size 5 x 11:

M @ B @ 6 () 7 8 9 10 11
2 6 @ 6 © O @) 9 10111
G @ 6 © O & (¢ dao 1 12
4 5 6 7 (8 (9 a0 aAh (1) (2) )
5 6 7 8 9 (10) (1) (1) ) 3 @&

Now we prove that, this is the smallest critical set for that latin rectangle. Note that
in each row there are some pairs that can be permuted. For example, in the first row if
we permute 1 and 7, the resulting rectangle is still a latin rectangle. So any critical set
must contain at least one of these entries. We associate a graph G, with the first row,
with V(G,) = {1,2,...,11}, and ij € E(G)) if the entries i and j can be permuted in
the first row (see Fig. 3).

Let S be a critical set for L. The set of elements of S in the first row is a covering
set for Gj. The graph G, satisfies the conditions of Lemma 1, where n = 11, d = 2,
r =4, and B(G,) = 6. Thus, S contains at least 6 entries from the first row. Similarly
we associate a graph G, with the second row. The set of elements of § in the second
row is a covering set for G,. The graph G, satisfies the conditions of Lemma 1, where
n=11,d =4, » =3, and f(G,) = 7. Thus, S contains at least 7 elements from
the second row. Similarly S must contain 8 elements from the third row. If Gy is the
graph associated with the kth row, it can easily be checked that G, = G5 and G, = Gj.
Thus S must contain at least 6 + 7 + 8 + 7 + 6 = 34 elements. [

Theorem 6. Let L be an m x n back circulant latin rectangle, where 2m <n. Then L
contains a critical set of size m(n —m) + |(m — 1)*/4], which is the smallest critical
set for such a latin rectangle.

Proof. As in Example 1, we associate a graph Gj with the kth row of L as follows.
The set of vertices of Gy, is V(Gy) = {1,2,3,...,n}, and ij € E(Gy) if and only if the
entries i and j can be permuted in the kth row of L such that the resulting rectangle
is still a latin rectangle.
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First, we show that Gy, for k < [m/2], satisfies the hypotheses of Lemma 1. Indeed,
since L is back circulant it follows that G, is cyclic. As can be observed from the
back circulant latin rectangle given below, in Gy, since 2m < n, the neighborhood of
vertex k is {m+ 1,m+2,....,n—m+2k - 1}.

1 2 -« ko« . . ..oy
2 . .k
k .
k a m b « e
m -k
k
m k
Mmoo e e e e e e e ek

Here, a=2k -1, b=n-m+2k—-1,c=n—m+2k, and e =k — 1. So we have
d=n-2m+2k—1and r = m— k. Thus by Lemma 1, f(Gy) =n—m+k — 1,
k<[m/2].

Next, we show that Gy = G,,—x+. This can be seen by noting that the neighborhood
of vertex I in Gy, for /> [m/2] is {21,...,n}. Now suppose that S is a critical set for L.
Then the elements of S in row & must be a covering set for Gy. Therefore,

12 S BG) =l(n=m)+(n=—m+ 1)+ + (n—m+ |m2) — 1]
k=1
+%(1 + (=" n—m+ |m/2])

+(n—m+ m2] -1+ +(n—m+ 1)+ (n—m)]
=m(n —m)+ [(m— 1)*/4].

If in a back circulant latin rectangle of size m x n we take the entries of the set S,
where

S ={GNli<m/2), 1<j<n—m+i -1} U{GHli> [m/2], i+1<j<n),
then S is a critical set of size m(n —m) + |(m — 1)?/4]. [
In [3] it is proved that the smallest critical set for a back circulant latin square of
order n is n%/4, for n even. The following conjecture is made in [6)].

Conjecture ( Mahmoodian [6]). For any latin square of order n the cardinality of any
critical set is greater than or equal to [n?/4].
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