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Abstract

We conjecture that every planar graph of odd-girth 2k +1 admits a homomorphism
to the Cayley graph C(Z2k+1

2 , S2k+1), with S2k+1 being the set of (2k + 1)-vectors
with exactly two consecutive 1’s in a cyclic order. This is an strengthening of a
conjecture of T. Marshall, J. Nešetřil and the author. Our main result is to show
that this conjecture is equivalent to the corresponding case of a conjecture of P.
Seymour, stating that every planar (2k + 1)-graph is (2k + 1)-edge-colourable.
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1 Introduction

Let G and H be graphs. A homomorphism f of G to H is an edge preserv-
ing mapping of V (G) to V (H). The theory of graph homomorphisms can be
viewed as a generalization of the theory of graph colourings, as a k-colouring
of a graph G is exactly a homomorphism of G to the complete graph Kk. The
existence of a homomorphism of G to H is normally denoted by G → H. Ho-
momorphism defines a quasiorder (a reflexive and transitive binary relation)
on the set of graphs, by G 4 H if and only if G → H. In this terminology,
we say that H is a bound for a class G of graphs, if G 4 H for all G ∈ G.
For instance, we can now state Grötzsch’s theorem (every triangle-free planar
graph G is three-colourable) by saying that H = K3 is a bound for the class
of triangle-free planar graphs. For more on graph homomorphisms we refer to
the recent book of Hell and Nešetřil [5].
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In a similar vein, the four-colour theorem (every planar graph is four-colourable)
says that K4 is a bound for the class of planar graphs. Since K4 is a planar
graph, there can be no smaller bound, i.e., no bound H with H 4 K4 and
K4 64 H. This led the authors of [2] to ask whether there exists a smaller
bound, H 4 K3, K3 64 H, for the class of triangle-free planar graphs. It is
easy using graph products to reduce this question to the problem of con-
structing a triangle-free bound H for the class of triangle-free planar graphs.
Such a bound is constructed in [10] using the methods of [7].

Let P2g+1 be the class of planar graphs of odd-girth at least 2g + 1. It is
conjectured in [7] that:

Conjecture 1 ([7]) For any positive integer g, the class P2g+1 admits a bound
B2g+1 of odd-girth 2g + 1.

This conjecture has been recently proved in [11]. See also [8] for a similar
problem on planar graphs. Here, we introduce a strengthening of the conjecture
by proposing a specific Cayley graph of odd girth 2k + 1 to be the bound for
P2k+1. Our main result, then, will be to connect this stronger conjecture to a
conjecture of P. Seymour on edge-colouring of planar graphs.

The study of edge-colouring has a long history in graph theory, being closely
linked to the four-colour problem. The edge-chromatic number of a graph is
obviously at least ∆. By Vizing’s well known theorem, the edge-chromatic
number of a graph is at most ∆ + µ, where µ is the maximum multiplicity
of the edges of the graph. In the case of r-regular multigraphs, one natural
obstacle to having an r-edge-colouring is to have a ‘small odd cut’: Let X, Y
be a partition of the vertices of G and let [X,Y ] denote the set of all edges
between X and Y . Then, [X,Y ] is said to be a cut of G. Moreover, [X, Y ] is
an odd cut of G if |X| or |Y | is odd. The size of a cut [X,Y ] is |[X, Y ]|.

If an r-regular graph G admits an r-edge-colouring, then every colour class
is a perfect matching and, hence, meets every odd cut. Therefore, every odd
cut must have size at least r. An r-regular graph with no odd cut of size less
than r is called r-graph. In particular, an r-regular graph of edge-chromatic
number r is an r-graph.

In 1878, Tait proved that the four-colour theorem is equivalent to the state-
ment that every planar 3-graph is 3-edge-colourable. This theorem of Tait has
played an important role in the development of graph theory. Not only has the
study of edge-colouring been raised from the statement itself, but the proof
of the equivalence was the first step in developing the theory of flows, as well.
Another importance of this theorem was the flexibility of the equivalent form
of the 4CC for possible generalizations. The following was a generalization
conjectured by W. Tutte and proved in [12]:
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Theorem 2 ([12]) Every 3-graph with no Petersen minor is 3-edge-colourable.

The other generalization, which is still mainly an open problem, was intro-
duced by P. Seymour in [13].

Conjecture 3 ([14,13]) Every planar r-graph is r-edge-colourable.

It is important to admit multiple edges for r-graphs in Conjecture 3. Other-
wise, there is no planar r-graph for r ≥ 6. On the other hand, multiple edges
are irrelevant for questions related to homomorphisms and vertex colourings.

A classical result of Kotzig implies that r = 4 of Conjecture 3 is stronger than
the four-colour theorem. This case, together with the case r = 5, has been
proved by B. Guenin (using the four-colour theorem) in [4].

A planar graph with a specific planar drawing is called a plane graph. We will
need the following lemma of W. Klostermeyer and C. Q. Zhang, known as
Folding lemma:

Lemma 4 ([6]) Let G be a plane graph with odd-girth 2g+1. If C = v0v1 · · · vr−1v0

is a facial cycle of G with r 6= 2g + 1, then there is an i ∈ {0, 1, · · · , r − 1}
such that the graph G′ obtained from G by identifying vi−1 and vi+1 (mod r)
is still of odd-girth 2g + 1.

Corollary 5 Given a planar graph G of odd girth greater than or equal to
2k+1, there is a plane graph G′ of odd girth 2k+1 with every face of G′ being
a (2k + 1)-cycle and for which G → G′.

Proof. If G has more than one component, then we choose a vertex from each
component and identify them all. Now, the corollary is implied by a repeated
application of Lemma 4 and by removing parallel edges. 2

2 Some Cayley graphs

Let Γ be an additive group and S a subset of Γ closed under taking inverses.
Then, the Cayley graph C(Γ, S) is defined to have the vertex set Γ, with two
vertices x and y being adjacent if and only if x− y ∈ S.

Let k ≥ 1 and Γk = Zk
2 be the k-dimensional group over Z2. Let Sk = {si|i =

1, 2, · · · k} be the set of k-vectors with exactly two consecutive 1’s in a cyclic
order. The Cayley graph C(Γk, Sk) has two isomorphic connected components.
The set of vectors with an even number of 1’s induces one component and the
set of vectors with an odd number of 1’s induces the other component. Let Hk

be one component of this graph.
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Fig. 1. H5 (the Clebsch graph) with a canonical edge-colouring.

The graphs H1, H2, H3 and H4 are, respectively, isomorphic to K1, K2, K4 and
K4,4. In general, Hk is a bipartite graph for all even values of k. The graph
H5 is well known independently in two different areas. In Ramsey theory, it is
called the Greenwood-Gleason graph, see [1]. It is mainly called the Clebsch
graph as it is the intersection graph of the straight lines in some algebraic
surface. It is also one of the few known triangle-free strongly regular graphs,
see [3]. In the next section, we will show that it is also a bound for P5 and
that this statement is a direct generalization of the four-colour theorem.

Lemma 6 The graph H2k+1 has the following properties:

(a) It is (2k + 1)-regular.
(b) It has edge-chromatic number equal to 2k + 1.
(c) It is of odd-girth 2k + 1.

Proof. Statement (a) is obvious. For (b), it is enough to give a (2k +1)-edge-
colouring. This is easy because every si ∈ Sk induces a perfect matching, it
matches a vertex x to a unique vertex x+si. The edge-colouring obtained this
way will be called the canonical edge-colouring of H2k+1.

For (c), first note that H2k+1 is not a bipartite graph (for k ≥ 1). For example,
the set C of vertices defined by C = {vi | vi = s1 + s2 + · · · si, i = 1, · · · 2k +1}
induces an odd cycle of length 2k + 1. To show that H2k+1 does not contain
any smaller odd cycle, consider the canonical edge-colouring of H2k+1 and let
C be any cycle in the graph. Note that the sum of the colours of the edges of
C is zero in Z2k+1

2 , because it is 2
∑

x∈C x = 0.
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Now, if C is an odd cycle, then one of the colours, say si, appears an odd
number of times. In order for si to vanish in the sum, both si+1 and si−1 have
to appear an odd number of times. By repeating this argument, we conclude
that all sj’s j = 1, 2, · · · 2k + 1 must appear on C an odd number of times. In
particular, |C| ≥ 2k + 1. 2

The above proof also implies that:

Corollary 7 In the canonical (2k+1)-edge-colouring of H2k+1, every (2k+1)-
cycle takes 2k + 1 different colours.

We would like to remark that for any k-subset S of Z2k+1
2 , if

∑
x∈S x = 0 but

no other subset of S sums up to zero, then the Cayley graph C(Z2k+1
2 , S) will

have two isomorphic copies of Hk as its components. It is also worth noting
that Hk can be obtained from the hypercube of order k− 1 by adding an edge
to the vertices at maximum distance (i.e., distance k − 1). H5, together with
a canonical 5-edge-colouring, is depicted in Figure 1. To obtain a labeling of
vertices, one may pick an arbitrary vertex to be 0 and then add the colour of
edges in a path from 0 to any selected vertex to get the label of that vertex.

3 The four-colour theorem and homomorphisms

The following is a strengthening of Conjecture 1:

Conjecture 8 The class P2k+1 is bounded by H2k+1.

Notice that for k = 1 this is exactly the four-colour theorem. Our next theorem
shows that this conjecture is equivalent to the corresponding case of Conjecture
3.

Theorem 9 The class P2k+1 is bounded by H2k+1 if and only if every planar
(2k + 1)-graph is (2k + 1)-edge-colourable.

For a given abelian group Γ and a subset S of Γ, (Γ, S)-flow on a graph G is a
flow f on G for which f(e) ∈ S for every edge e of G. It is a well known fact
that a 3-regular graph is 3-edge-colourable if and only if it admits a nowhere
zero 4-flow. The following theorem is a generalization of this fact to (2k + 1)-
regular graphs and will help us in proving Theorem 9.

Theorem 10 Given a (2k +1)-regular graph G, it is (2k +1)-edge-colourable
if and only if it admits a (Z2k+1

2 , S2k+1)-flow.

Proof. One direction of the theorem is easy to observe. If G admits a
(Z2k+1

2 , S2k+1)-flow, then every element of S2k+1 must be assigned to exactly
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one edge incident to a given vertex. This gives a (2k + 1)-edge-colouring. For
the other side, assume G is (2k + 1)-edge-colourable. Let E1, E2, · · ·E2k+1 be
the colour classes. Then, for each i, the subgraph induced by Ei∪Ei+1 (indices
are being taken modulo 2k + 1) is a union of cycles and, therefore, ϕi defined
by

ϕi(e) =





1 if e ∈ Ei ∪ Ei+1,

0 otherwise

is a Z2-flow on G.

Now ϕ, defined by ϕ(e) = (ϕ1(e), ϕ2(e), · · ·ϕ2k+1(e)), is a (Z2k+1
2 , S2k+1)-flow

on G. 2

Proof of Theorem 9. Let P ′2k+1 be the class of plane graphs such that for
each graph in P ′2k+1 the odd girth is 2k + 1 and, moreover, every facial cycle
is of length 2k + 1. By corollary 5, a graph B bounds P2k+1 if and only if it
bounds P ′2k+1.

It is also important to note that a planar graph G is in P ′2k+1 if and only if
the dual G∗ is a planar (2k +1)-graph. To see this, first note that for a planar
graph being (2k + 1)-regular is equivalent to having every facial cycle of its
dual to be of size 2k + 1. Secondly, by a simple counting argument, a cut of
a (2k + 1)-regular graph is an odd cut if and only if it has an odd number
of edges. Therefore, the condition of no small odd cut for a (2k + 1)-regular
planar graph G∗ is equivalent to the condition of no small odd cycle for the
dual G.

Our next important observation is about the dual of the edge-colouring of a
planar (2k + 1)-graph. It is not hard to see that a planar (2k + 1)-graph, G∗,
admits a proper (2k + 1)-edge-colouring if and only if its dual, G, admits an
edge-colouring (most possibly an improper one) in which every facial cycle
takes all the 2k + 1 different colours.

With these observations, one direction of the theorem is easy to prove. Suppose
P2k+1 is bounded by H2k+1. Let G∗ be a planar (2k +1)-graph. Then the dual
G∗ of G is in P ′2k+1 and, therefore, it admits a homomorphism to H2k+1. This
homomorphism induces a (2k + 1)-edge-colouring c on G using the canonical
(2k+1)-edge-colouring of H2k+1. Since every (2k+1)-cycle of G and, therefore,
every facial cycle of G must map to a (2k+1)-cycle of H2k+1, the edge-colouring
c has the property that every facial cycle of G takes all the 2k + 1 different
colours. This colouring, therefore, induces a proper (2k +1)-edge-colouring on
G∗ (note that we are using Corollary 7 here).
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For the other direction, suppose every planar (2k + 1)-graph is (2k + 1)-edge-
colourable. It is enough to prove that every member of P ′2k+1 admits a ho-
momorphism to H2k+1. Let G be a graph in P ′2k+1. Then, the dual G∗ of G
is a planar (2k + 1)-graph. Hence, by the assumption, G∗ admits a (2k + 1)-
edge-colouring and, therefore, by Theorem 10, it admits a (Z2k+1

2 , S2k+1)-flow
ϕ∗.

Now, for every edge e of G define ϕ(e) = ϕ∗(e∗), where e∗ is the corresponding
edge of e in the dual G∗ of G. The homomorphism ϕ of G to H2k+1 can
be defined as follows: For an arbitrary but fixed vertex x of G, let ϕ(x) =
(0, 0, · · · 0). For any other vertex y of G, choose an arbitrary xy-path P and
let ϕ(y) =

∑
ei∈P ϕ(ei). The fact that ϕ is well defined is an easy classical

result in the theory of flows. ϕ is normally called the tension of ϕ. It is then
straightforward to see that ϕ is a homomorphism of G to H2k+1. 2

The following theorem is now a consequence of Theorem 9 and the recent
proof of Guenin for Conjecture 3 in the case of r = 5.

Theorem 11 The class of triangle-free planar graphs, P5, is bounded by H5.

4 Remarks and open problems

For a given positive integer k we define

G2k−1 = (V (G), {xy | there is a (2k + 1)− walk in G joining x and y}).

Note that G2k−1 is loopless if and only if G is of odd girth at least 2k + 1.
Moreover, any homomorphism of G to H is also a homomorphism of G2k−1 to
H2k−1. The following is now a relaxation of Conjecture 8:

Conjecture 12 For every G ∈ P2k+1 we have χ(G2k−1) ≤ 22k.

The weaker claim that {χ(G2k−1)|G ∈ P2k+1} is bounded is equivalent to
Conjecture 1 and, therefore, is proved in [11].

It is also of an independent interest to question the tightness of the bound of
Conjecture 12. More precisely, we would like to ask:

Problem 13 Is there a graph G in P2k+1 with χ(G2k−1) = 22k?

A relatively simpler problem to ask is whether every bound B of odd-girth
2k + 1 for P2k+1 has at least 22k vertices. It is shown by the author that such
a bound with a minimal number of vertices must have a minimum degree of
at least 2k + 1.
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When k = 2, the upper bound of 16 in Conjecture 12 is implied by Theorem
11. A triangle-free graph with χ(G3) ≥ 15 is constructed by the author, see
[9]. We do not know whether the right bound is 15 or 16.

We finally would like to ask whether the equivalence of Theorem 9 can be
extended beyond planar graphs. In particular, is there any dual for Theorem
2?
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[2] P. Dreyer, Ch. Malon, J. Nešetřil, Universal H-colourable graphs without a given
configuration, Discrete math. 250 (2002) no. 1-3, 245-252.

[3] C. Godsil, G. Royle, Algebraic graph theory, Springer, New York (2001).

[4] B. Guenin, Edge coloring plane regular multigraphs, manuscript.
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