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Abstract

Projective cubes are obtained by identifying antipodal vertices of hypercubes. We introduce a general

problem of mapping planar graphs into projective cubes. This question, surprisingly, captures several well-

known theorems and conjectures in the theory of planar graphs. As a special case we prove that the Clebsch

graph, a triangle-free graph on 16 vertices, is the smallest triangle-free graph to which every triangle-free

planar graph admits a homomorphism.

1. Introduction

We use the standard notation of graph theory. Graphs are simple and loopless. Given graphs G and H

a mapping ψ : V (G) → V (H) is said to be a homomorphism of G to H if the image of every edge of G is

an edge of H. A core of a graph G is the smallest subgraph of G to which G admits a homomorphism. The

first theorem in graph homomorphisms is to show that core of a graph is well defined and that it is unique

up to isomorphism. A core is a graph which is its own core.

For further notations and a comprehensive study of graph homomorphism we refer to [HN04]. Some

recent or nonstandard notations, which we will use, are as follows: the class of all planar graphs of odd-girth

at least 2k + 1 is denoted by P2k+1. Given a graph G and a positive integer k we define Gk to be a graph

whose vertices are the same as V (G) with two vertices being adjacent in Gk if there is a walk of length k

joining x to y. If we take A(G) to be the incident matrix of G, then Gk is the graph whose incident matrix

is obtained from A(G)k by replacing every nonzero element with a 1 (we use the standard matrix product

in defining A(G)k).

It is an easy observation that if ψ : V (G) → V (H) is a homomorphism of G to H, then ψ is also a

homomorphism of Gk to Hk. For even values of k we note that, unless G has no edge, Gk has a loop. The

same is true if k is odd and at least as the odd-girth of G. Thus in both cases the problem of existence

of a homomorphism from a graph H to Gk is solved by a trivial homomorphism. Therefore, from the
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homomorphism point of view, we are only interested in Gk for odd values of k that are smaller than the

odd-girth of G.

For a class G of graphs we define: Gk = {Gk|G ∈ G}. Given a class G of graphs we say G is bounded by

a graph B if every member of G admits a homomorphism to B. It follows that if G is bounded by B, then

Gk is bounded by Bk. Given two classes G1,G2 of graphs we say G1 is bounded in G2 if there is a graph in

G2 that bounds G1.

Given a finite set H of connected graphs we use Forbh(H) to denote the class of all graphs which do not

admit a homomorphism from any member of H. Similarly, given a set M of graphs we use Forbm(M) to

denote the class of all graphs that have no member of M as a minor.

The question of bounding triangle-free planar graphs by a triangle-free graph was originally raised by

J. Nešetřil [N99] as a strengthening of the celebrated theorem of Grötszch. It was shown in [MNN06]

that such bound exists if and only if {χ(G3)|G is a triangle-free planar graph} is bounded. The question of

Nešetřil was then studied in two different directions. On the one hand J. Nešetřil and P. Ossona de Mendez

considered the general duality questions and, in a series of work, they proved the following theorem which,

in the author’s opinion, is the best approximation to the Hadwiger conjecture so far.

Theorem 1.1. [NN06] Given a finite set M of graphs and a finite set H of connected graphs, the class

Forbh(H) ∩ Forbm(M) of graphs is bounded in Forbh(H).

As a corollary, by taking M = {K5,K3,3} and H = {K3}, one concludes that there is a triangle-free

graph to which every triangle-free planar graph admits a homomorphism. Since the proof of the above

theorem is constructive, one could build such a bound from the theorem. However, the graph obtained by

this construction is too large.

On the other hand, trying to find the smallest triangle-free graph which answers the question of Nešetřil,

we have arrived at several interesting questions and conjectures, some of which propose extensions of the

four colour theorem. As a consequence we have shown in [N07] that the Clebsch graph, on 16 vertices, is

a triangle-free graph which bounds the class of triangle-free planar graphs. In this work we introduce yet

another question that captures several famous theorems and conjectures. Then we prove that the Clebsch

graph is the smallest triangle-free graph, both in terms of number of vertices and number of edges, that

bounds the class of triangle-free planar graph. To introduce our question we need an introduction to an

interesting family of graphs which we call projective cubes (known by other names such as folded cube in

the literature).

2. Projective cubes

Consider an (n + 1)-dimensional hypercube which, using l1-norm, is embedded as the unit sphere of

dimension n in Rn+1. To build a projective space of dimension n one would identify antipodal vertices of
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this sphere. In this projection the image of the hypercube graph H(n+ 1) is a new graph which we call the

projective cube of dimension n and denote by PC(n). Thus PC(n) is obtained from H(n+ 1) by identifying

vertices at maximum distance. There are several distinct ways of representing PC(n), each useful for a

different purpose.

In the binary representation of H(n + 1), vertices are the elements of Zn+1
2 with two vertices being

adjacent if their hamming distance is 1. In other words H(n + 1) is a Cayley graph on Zn+1
2 with x ∼ y

if x − y ∈ {e1, e2, · · · en+1} where {e1, e2, · · · en+1} is the standard basis of Zn+1
2 . In this presentation of

H(n + 1), given a vertex x, the vertex at maximum distance from x is J + x where J is the all 1 vector.

Thus vertices of PC(n) are represented by pairs {x, x+ J} and in this presentation (x, x+ J) ∼ (y, y + J)

if either x is adjacent to y in H(n+ 1) (i.e., x− y ∈ {e1, e2, · · · en+1}) or x is adjacent to y+ J in H(n+ 1),

(i.e., x−y+J ∈ {e1, e2, · · · en+1}). If we represent a vertex {x, x+J} by either x or x+J , whichever whose

last coordinate is 0, and then drop this last coordinate, we will have a presentation of PC(n) using Zn
2 such

that two vertices x and y are adjacent if x− y ∈ {e1, e2, · · · en, J} where {e1, e2, · · · en} is the standard basis

for Zn
2 and J is the all 1 vector in Zn

2 . Thus to build PC(n) one could also take H(n) and add a new edge

between every pair of antipodal vertices.

Another presentation of PC(n) is obtained by looking at H(n + 1) as a subset order. In this view,

vertices of H(n+ 1) are the 2n+1 subsets of an (n+ 1)-set with A ∼ B if the symmetric difference of A and

B is of size 1 exactly. Thus the antipodal of a vertex A is Ac, the complement of A, and, therefore, vertices

of PC(n) are labeled by pairs of complementary sets in this notion. To simplify the notion we may choose

to present each vertex {A,Ac} with A or Ac whichever has fewer elements. When n+ 1 is even, we have to

make a choice for sets of size n+1
2 . However, when n+ 1 is odd, which is the primary focus of this work, this

notation is well defined. In this notation, for n = 2k, two vertices A and B (subsets of an (n + 1)-set) are

adjacent if either A ⊂ B and |A| = |B|+ 1 or if A ⊂ Bc and |A| = |Bc|+ 1. Thus two vertices of the same

cardinality cannot be adjacent unless they are of cardinality k, in which case they are adjacent if and only

if they have no element in common. Therefore, the subgraph induced by the set of vertices of cardinality k

is isomorphic to the Kneser graph K(2k + 1, k). These graphs are also known as odd graphs.

In presenting PC(n) as a Cayley graph we may also use a difference set which would make symmetries of

this graph more apparent. Let C = {(1100 . . . 0), (0110 . . . 0), . . . (10 . . . 01)} be the set of elements in Zn+1

each having exactly two 1’s which are also consecutive in a cyclic order. The Cayley graph (Zn+1, C) has

two isomorphic connected components each isomorphic to PC(n). We leave the proof of the isomorphism to

the reader, but we note that the two connected components are induced by the set of vertices with an even

number of 1’s and the set of vertices with an odd number of 1’s. With this definition we see the following:

Lemma 2.1. The graph PC(n) is vertex transitive. It is, furthermore, distance transitive, i.e., for any two

pairs {x, y} and {u, v} of vertices if d(x, y) = d(u, v), then there is an automorphism σ of PC(n) such that

3



σ(x) = u and σ(y) = v.

There are two basic families of automorphisms of PC(n). Taking the Cayley presentation of PC(n), for

each c ∈ Zn the permutation σ(x) = c + x is an automorphism. Each permutation τ of the difference set

also induces an automorphism. It is not hard to see that every other permutation is a composition of a σ

and a τ .

Here we are primarily concerned with homomorphisms of planar graphs to projective cubes. Thus it is

essential to understand basic homomorphism properties of the projective cubes themselves. We first note

that PC(n) for odd values of n is bipartite. Thus the ordinary homomorphism problem to this graph is

easily solved. However PC(n) for even values of n has a complicated structure from a homomorphism point

of view. First we recall the following lemma from [N07]:

Lemma 2.2. [N07] The odd-girth of PC(2k) is 2k + 1.

Furthermore the following lemma shows that all the shortest odd cycles are isomorphic.

Lemma 2.3. For every pair C and C ′ of 2k + 1-cycles in PC(2k) there is an automorphism that takes

vertices of C into vertices of C ′.

The proof of this lemma is elementary and we leave it to the reader. We should note this statement

would not hold for 2k-cycles in PC(2k−1). There are essentially two types of 2k-cycles in PC(2k−1). The

ones that are k-edges coloured and the ones that are 2k-edges coloured where edges are coloured with the

corresponding elements of the difference set {e1, e2, . . . e2k−1, J}.

Lemma 2.4. Each PC(2k) is 4-chromatic. Furthermore we have PC(2k + 2)→ PC(2k).

Proof. Let u be a vertex of PC(2k+2) and let ψ2k be the projection of u into its first 2k coordinates and let

ψ2 be the projection on the last two coordinates. Then define φ : V (PC(2k + 2))→ V (PC(2k)) as follows:

φ(u) =

ψ2k(u) if ψ2(u) ∈ {00, 11}

ψ2k(u) + J if ψ2(u) ∈ {01, 10}
We note that in the second case J is the all 1 vector in Z2k

2 . It is easy to check that φ is a homomorphism.

Thus, by transitivity, every PC(2k) admits a homomorphism to PC(2). Since this graph is isomorphic to

K4, we obtain a 4-colouring of PC(2k). That PC(2k) is not 3-colourable follows from the fact that it

contains a generalized Mycielski graph as a subgraph; we refer to [P92] for details.

3. Bounding planar graphs by Projective Cubes

Our main purpose of this work is to introduce the following question which, surprisingly, captures many

well-known theorems and conjectures and directs us toward new lines of research on the study of colouring

planar graphs.
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Problem 3.1. Given integers l ≥ k ≥ 1, what is the smallest subgraph of PC(2k) to which every planar

graph of odd-girth 2l + 1 admits a homomorphism?

Intuitively speaking one could see a planar graph of a given odd-girth as an approximation or partition

of the plane with certain properties. The question is what is the smallest section of the projective cube that

this approximation or partition can be encoded to?

For a few choices of k and l we know the answer or we have a conjectured answer:

Case k = l = 1. In this case PC(2), i.e., K4 itself is a planar core and thus no proper subgraph could

be an answer. By the virtue of the four colour theorem we know that PC(2) is an answer.

Case k = 1, l ≥ 2. Since P2l+1 contains graphs that are not bipartite, the smallest answer could be K3.

This is indeed the answer by Grötzsch’s Theorem.

Case k = l. In this case we have introduced the following conjecture:

Conjecture 3.2. The class P2k+1 of planar graphs of odd-girth 2k+1 is bounded by PC(2k), the projective

cube of dimension 2k. Furthermore, PC(2k) is the smallest graph of odd-girth 2k+ 1 which bounds P2k+1.

We note that in this conjecture we claim PC(2k) is generally the smallest graph of odd-girth 2k+1 which

bounds P2k+1. However it follows from [N03] that if B is a minimal graph of odd-girth 2k + 1 bounding

P2k+1, then the minimum degree of B is at least 2k + 1. Thus if the first part of Conjecture 3.2 (that

PC(2k) bounds P2k+1) is true, then PC(2k) itself is the only subgraph that will work. This first part of the

conjecture is equivalent to a conjecture of P. Seymour in the theory of edge-colouring of planar graphs, see

[N07]. Thus the answer to this question in this particular case would solve the problem of finding the edge

chromatic number of planar graphs. On the other hand this special case is also related to other conjectures

such as the cycling conjecture on clutters, see [G05].

As mentioned the case k = 1 of the previous conjecture is equivalent to the four colour theorem. The

first part of the case k = 2 of this conjecture follows from the four colour theorem as shown in [N07]. In

the next section we prove the second part of the conjecture for this case. More precisely we prove that if a

triangle-free graph bounds P5, then it has at least 16 vertices.

Case l = k + 1. For this case we introduce the following conjecture:

Conjecture 3.3. For l = k + 1 the smallest subgraph of PC(2k) to which every planar graph of odd-girth

2l + 1 admits a homomorphism is the Kneser graph K(2k + 1, k).

This conjecture is related to the study of the fractional chromatic number of planar graphs of a given

odd-girth. We have conjectured ([N09]) that the fractional chromatic number of planar graphs of odd-girth

2l + 1 is bounded by 2 + 1
l−1 and we have shown that this is the best possible, if possible at all.
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The case k = 1 of Conjecture 3.3 is obtained by Grötzsch’s Theorem. For k = 2 the best known result is

that of Dvořák, Škrekovski and Valla, [DSV08]. They prove that the Petersen graph (i.e., K(5, 2)) bounds

P9, while our conjecture claims that the Petersen graph bounds the larger family P7.

Case l ≥ 2k. The smallest subgraph of the projective cube PC(2k) which is not bipartite is C2k+1. It

is a classical result that when l is much larger than k, then C2k+1 is the answer to Problem 3.1. Zhang in

[Zh02] conjectured that C2k+1 is the answer to this problem as soon as l ≥ 2k. This is related to the theory

of flows and is a strengthening of a dual statement of a conjecture of Jaeger on the existence of a certain

kind of flows (Jaeger’s conjecture is for general graphs but to use the duality one must restrict it to planar

graphs only). To our knowledge the best known result in this direction is that of X. Zhu who proved in

[Zh02] that for l ≥ 4k − 2, C2k+1 bounds P2l+1. For k = 2 and l ≥ 5, M. DeVos and A. Deckelbaum claim

to have a proof that C5 is the answer.

For any other values of k and l, the problem, to our knowledge, is a new problem whose study may lead

to new concepts in the theory of homomorphisms of planar graphs.

4. Bounding P5

We have shown previously that PC(4), also known as the Clebsch graph (or the Greenwood-Gleason

graph in some other literature), bounds P5. Two different representations of PC(4) are shown in Figure 1.

We have proved in [N03] that χ(P3
5 ) ≥ 15. Here we show that any triangle-free bound for P5 has at least 16

vertices. Since a minimal triangle-free bound for P5 has minimum degree at least 5 (see Fact 2 in the proof

of the following theorem) it turns out that PC(4) is the smallest triangle-free bound for P5 both in terms

of number of vertices and number of edges.

Figure 1: Two different presentations of the Clebsch graph

Theorem 4.1. Every triangle-free bound for P5 has at least 16 vertices.

Proof. Let B be a minimal triangle-free bound for P5, i.e., every triangle-free planar graph admits a homo-

morphism to B but for every proper subgraph B′ of B, with fewer number of vertices, there is a triangle-free
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planar graph GB′ that does not map to B′. Taking the union of all GB′ we find a triangle-free planar graph

GB that maps to B by the choice of B but any such mapping must be onto. We note that one could take

GB to be connected by identifying some vertices from disconnected components.

Since B is triangle-free, B3 is a loopless graph and since B bounds P5, B3 bounds P3
5 but we have

already proved in [N03] that χ(P3
5 ) ≥ 15. Thus to prove the theorem we must show that B cannot be on 15

vertices. Towards a contradiction, from here on we assume B is a triangle-free bound of P5 on 15 vertices.

We collect some facts about B and we put them together to finally get a contradiction.

Fact 1. B is a core.

This is immediate from the fact that B is a minimal bound.

The next fact was implicitly proved in [N03], but we include a proof for the sake of completeness.

Fact 2. δ(B) ≥ 5.

We use the graph of Figure 2 as a gadget to prove this fact. We first note that there is a walk of length

3 between every pair of the five emphasized vertices of the graph of Figure 2.

Figure 2: A triangle-free outer planar graph

Let G be a graph obtained from GB by adding a copy Hv of the graph of Figure 2 for each vertex v of GB

and joining v to five emphasized vertices of Hv. We note that G is also in P5 and admits a homomorphism

φ to B by the choice of B. The restriction of φ on GB is an onto homomorphism of GB to B. Thus each

vertex x of B is an image of a vertex v of GB in G. But then the five emphasized vertices of Hv in G must

map to five distinct neighbours of x in B, proving that dB(x) ≥ 5.

Fact 3. For each vertex x of B, the non-neighbours of x induce a subgraph which contains a matching of

size at least 3.

To show this we use the graph of Figure 3. We use H to denote the graph of Figure 3 till the end of

proof of this fact. We note that H ∈ P5 and that H3 ∼= K11. Thus any homomorphic image of H in B is
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yx

Figure 3: An 11 clique in P3
5

isomorphic to H. We further note that beside xy any other edge of H incident to x or y if added to H would

create a triangle. Finally if we delete x, y and the neighbours of x from H, the remaining graph, call it Hx,

is a matching of size 3. Now as in the previous case we build a new graph G from GB by adding a disjoint

copy Hv of H for each vertex v of GB and then identifying the copy of x in Hv with v. Since G ∈ P5, there

is a homomorphism ϕ of G to B which must be onto on the subgraph GB of G, by the choice of GB . For

an arbitrary vertex u of B let v be a vertex in GB such that ϕ(v) = u. The subgraph isomorphic to Hx in

Hv is a matching of size 3 in the subgraph induced by the non-neighbours of u in B.

Fact 4. ∆(B) = 6.

It follows from Fact 3 that each vertex of B has degree at most 8. Let u be a vertex of maximum

degree in B and suppose dB(u) = i, 7 ≤ i ≤ 8. Let X be the set of neighbours of u and Y be the set of

non-neighbours of u. Then |Y | = 14 − i and, again by Fact 3, the graph induced by Y has a 3-matching.

Since B is triangle-free and has minimum degree at least 5, any vertex in X must be joined to at least 4

vertices in Y . But it cannot be adjacent to more than 3 vertices of the matching induced by Y , thus Y has

at least 7 vertices. However, if it has exactly 7 vertices, then the only vertex not in the induced 3-matching,

say u′, must be connected to all the vertices of X. Now the mapping of u→ u′ (every other vertex is fixed)

induces a homomorphism of B to a proper subgraph of itself contradicting the Fact 1. On the other hand by

Fact 2 every vertex of B has minimum degree at least 5. Since there are no 5-regular graph on 15 vertices

(implied by the first theorem of graph theory), we have ∆(B) = 6.

Fact 5. The subgraph of B induced by the set of non-neighbours of a vertex x contains a 5-cycle.

We use the graph of Figure 4 to prove this fact. Till the end of proving this fact H will denote the graph

of Figure 4. Since H ∈ P5 we have H → B. Let ψ be any mapping of H to B. The central vertex x of this
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Figure 4: Forcing a 5-cycle in the non-neighbours

graph is in a 5-cycle with every other vertex, thus its image in B is distinct from the image of all the other

vertices. For the same reason the five vertices of the outer face are also mapped to five distinct vertices of B

under ψ and the image is also an induced 5-cycle. Let y be a vertex of the outer face. Since the image of y

is distinct from that of x, the 2-path connecting them must also map to a 2-path. Thus if ψ(y) ∼ ψ(x), then

we have a triangle in G, a contradiction. We now build a graph G from GB by adding a disjoint copy Hv

of H and identifying the vertex x in this copy with v. The proof of this fact now follows from considering a

mapping of G to B; the rest of the proof is similar to the proof of the previous facts and we leave it as an

exercise.

Let u be a vertex of degree 6 in B. Let N(u) be its six neighbours and N(u) be its eight non-neighbours.

By Fact 5, the subgraph induced by N(u) contains a 5-cycle. We denote this cycle by Cu and we use x, y, z

to denote the three vertices of N(u) that are not in Cu.

Fact 6. x, y, z induce an independent set.

By contradiction suppose xy is an edge of B. By Fact 2 and since B is triangle-free, each vertex v in

N(u) must be joined to at least four vertices in N(u). Since v can only be joined to two vertices of Cu, it

must be joined to at least two of x, y and z. But it cannot be joined to both x and y, thus it is joined to z.

This means every neighbour of u is a neighbour of z thus the mapping that maps u to z and fixes all other

vertices is a homomorphism of B to a proper subgraph of itself, contradicting Fact 1.

Fact 7. Each of x, y, z is adjacent to exactly 4 vertices of N(u).

To prove this we first show that x cannot be adjacent to five or six vertices in N(u). By contradiction

suppose x is adjacent to five vertices of N(u) and let v be the only vertex in N(u) which is not adjacent to x.

We note that v must be adjacent to both y and z. Since mapping x to u (while fixing all the other vertices)
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is not a homomorphism x must be adjacent to another vertex, and since x, y, z induce an independent set,

x must be adjacent to a vertex of Cu, we call it a. Thus of the vertices in N(u), v is the only vertex that

could be adjacent to a. Hence to complete the degree of a to a minimum of 5 it must be adjacent to at least

one of y or z and, therefore, a is not adjacent to v either. Since a is not adjacent to any neighbour of u,

by adding the edge au to B we get a new triangle-free graph B′ on fifteen vertices which contains B and,

therefore, bounds P5. But B′ has a vertex of degree 7. A contradiction can now be obtained as in Fact 4

(we note that we did not use edge minimality in the proof of Fact 4).

Now since each vertex in {x, y, z} is adjacent to at most four vertices in N(u) (twelve edges at most) and

since each vertex in N(u) is adjacent to at least two vertices in {x, y, z} (twelve edges at least), it must be

the case that each vertex in {x, y, z} is adjacent to exactly four vertices in N(u) and each vertex in N(u) is

adjacent to exactly two vertices in {x, y, z}. Thus the graph of Figure 4 presents a partial structure of B.

u

v2 v5 v6

x y z

v1 v3 v4

a1 a2 a3 a4 a5

Figure 5: Forced structure of a bound on 15 vertices

Now to get the final contradiction we assume x is adjacent to a vertex a1 of Cu (else mapping x to u

and fixing other vertices is a homomorphism, contradicting Fact 1) . Then each vi (i = 1, 2, 3, 4) is either

adjacent to both a2, a4 or to both a3, a5. Furthermore v1 and v2 must be adjacent to different pairs of

vertices in Cu (else they have identical neighbours and one could identify them). Similarly v3 and v4 are

adjacent to different pairs of vertices in Cu. Now y and z cannot be joined to any vertex of Cu but a1. Thus

a1 is not adjacent to any vertex in N(u). We now get a new triangle-free bound for P5 by adding the edge

ua1. This new graph has a vertex of degree 7 which contradicts Fact 7.

5. Concluding Remarks

1. Though PC(k) is a bipartite graph and the ordinary homomorphism problems into these graphs is

trivial, the story changes when we consider them as signed graphs. In this regard an analogous of Conjecture

3.2 for bipartite signed planar graphs is introduced in [G05]. We hope to write more on this subject in the

future.
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2. Conjecture 3.2 can be viewed as an optimal answer (in terms of order of the bounds) for Theorem 1.1.

In this regard it is interesting to know that even formulating a conjecture in finding the optimal bound for

Forbh({C2k+1}) ∩ Forbm(K4) has proved to be challenging. For k = 1 and for k = 2, the triangle and the

Wagner graph are the answers respectively. For k = 3, an optimal answer on 14 vertices is found recently

in a joint work with F. Foucaud.

3. Given a class G odd-girth at least 2l + 1 and l > we define χ(G2k+1) = max{χ(G2k+1)|G ∈ G}.

Another problem related to Problem 3.1 is to ask: what is the exact value of χ(P2k+1
2l+1 ) for l > k? The

number of vertices of the subgraph of the projective cube found by the answer to Problem 3.1 is an upper

bound on this question. But we do not know if this gives the exact value of χ(P2l+1
2k+1). In particular while

we proved in this paper that the smallest triangle-free graph bounding the class of all triangle-free graphs

has 16 vertices, we do not know if χ(P3
5 ) =15 or 16.

4. Finally we would like to point out that our proof is constructive, i.e., if we follow the steps of the

proof, starting with a triangle-free planar graph G with χ(G3) ≥ 15, which is constructed in [N09], we build

a triangle-free planar graph whose triangle-free images each have at least 16 vertices. Smaller examples of

this type may help studying the questions we asked in this paper.

Acknowledgment I would like to thanks F. Foucaud, S. Sen, E. Sopena and both referees for a careful

reading of the original draft.
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