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Abstract

Assuming that every proper minor closed class of graphs contains a maximum with
respect to the homomorphism order, we prove that such a maximum must be homo-
morphically equivalent to a complete graph. This proves that Hadwiger’s conjecture
is equivalent to saying that every minor closed class of graphs contains a maximum
with respect to homomorphism order. Let F be a finite set of 2-connected graphs,
and let C be the class of graphs with no minor from F. We prove that if C has
a maximum, then any maximum of C must be homomorphically equivalent to a
complete graph. This is a special case of a conjecture of J. NeSetfil and P. Ossona
de Mendez.

1 Introduction

Given two graphs, G and H, we say H is a minor of GG if H can be obtained
from G by a series of operations: contracting edges, deleting isolated vertices
and deleting edges. The following conjecture, a generalization of the four color
conjecture introduced by Hadwiger, is one of the most outstanding open prob-
lems in graph theory.

Hadwiger’s conjecture [2] Every k-chromatic graph G contains the com-
plete graph K} as a minor.
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The conjecture is almost trivial for k = 1,k = 2 and k = 3. For k = 4, it is
proved by Hadwiger and also by G. A. Dirac in [1]. For k = 5, it is stronger
than the four colour theorem. It was proved by K. Wagner that this case is
actually equivalent to the four colour conjecture [9]. The case k = 6 has also
been proved to be equivalent to the four colour theorem by N. Robertson, P.
D. Seymour and R. Thomas in [8]. It remains open for £ > 7 and has been a
fruitful research area.

We say a class C of graphs is minor closed if for every graph G in C and every
minor H of G, H is also in C. A minor closed class of graphs that consists
of only a graph H and all of its minors is called principal ideal and will be
denoted by [H]. We say C is a proper minor closed class of graphs if it is not
the class of all graphs. The following theorem of Halin (and also Wagner) was
one of the first advances toward Hadwiger’s conjecture.

Theorem 1 [3,10] For every proper minor closed class C of graphs, there is
an integer k such that each graph in C is k-colorable.

A reformulation of the Hadwiger’s conjecture in terms of graph homomorphism
and homomorphism order of graphs has been recently given in [7]. Given two
graphs G and H, a homomorphism of G to H is an edge preserving mapping
f:V(G) — V(H). That is to say, for every edge xy of G, f(z)f(y) is an edge
of H. The existence of a homomorphism of G to H is denoted by G — H.
This notation captures the classical vertex coloring problem of graphs because
a graph G is k-colorable if and only if it admits a homomorphism to the
complete graph Kj.

Graphs G and H are said to be homomorphically equivalent provided that
each admits a homomorphism to the other. If G and H are homomorphically
equivalent, then we write G ~ H. Using the notation of homomorphisms, we
can define an order on the class of graphs by

G=<H ifandonlyif G — H.

This homomorphism order, which is also called coloring order, is a quasi order
on the class of all graphs and is a partial order on a class of graphs for which no
two members are homomorphically equivalent. An arbitrary class of graphs C
is said to be bounded by a graph H if, for every graph G in the class C, G <X H.
Moreover, if H is also in C, then H is called a mazimum of C.

Now using Theorem 1, one can see that Hadwiger’s conjecture is equivalent to
the conjunction of the following two conjectures. These two conjectures were

introduced by J. Nesetfil and P. Ossona de Mendez in [7].

Conjecture 2 Any bounded minor closed class of graphs has a maximum.



Conjecture 3 If a minor closed class of graphs C admits a mazimum, then
the mazimum 1s homomorphically equivalent to a complete graph.

Here we prove that Conjecture 3 is implied by Conjecture 2. In other words,
we show that if every proper minor closed class of graphs contains a maximum,
then the maximum of every minor closed class of graphs is homomorphically
equivalent to a complete graph. This implies that Conjecture 2 is equivalent
to Hadwiger’s conjecture. We also prove Conjecture 3 for a special class of
minor closed classes.

2 On the maximum of a bounded minor closed class

The next theorem shows that, in fact, a weaker form of Conjecture 2 implies
Conjecture 3.

Theorem 4 Suppose every principal ideal contains a maximum. Let C be any
minor closed class of graphs with a maximum element H. Then H must be
homomorphically equivalent to a complete graph.

Proof. We will prove this by contradiction. Assume this is not true for some
minor closed classes. Let G/ K}, be the class of all graphs which do not contain
K, as a minor. By Lemma 1, any proper minor closed class is contained in
some G/K}. Let k be the smallest integer such that G/K} contains a minor
closed subclass C for which the statement of the theorem does not hold. Note
that k > 4.

Let H be a maximum of C. Then [H] is a finite minor closed class of graphs
for which the statement of the theorem also does not hold. Because of this
finiteness, we may assume C is a minimal subclass of G/K} with respect to
having a maximum A which is not homomorphically equivalent to a complete
graph. This minimality then implies that C = [H].

By the choice of k, we also know Kj_; is in C. For otherwise C C G/K}_; and
we are done. Since H is a maximum of C and Kj_; is an element of C, we have
Ky_1 — H. Thus Kj_; is also a subgraph K of H.

We first claim that every vertex of K is adjacent to a vertex of H that is not
in K. To see this, suppose there is a vertex x of K that is adjacent only to the
k — 2 vertices of V(K)\z. By the minimality of C, the graph H, obtained from
H by deleting the vertex x must be (k — 1)-colourable. For otherwise [H,] is
a minor closed subclass of C for which the maximum is not homomorphically
equivalent to a complete graph. Since x is adjacent to k — 2 vertices, any k£ — 1
colouring of H, can be extended to a k — 1 colouring of H. This implies that



H is homomorphically equivalent to Kj_;, which is a contradiction.

Our next claim is that the induced subgraph H' of H on V(H)\V (K) is con-
nected. Again, by contradiction, assume it has parts H; and H)} with no edges
from H] to H). Then by a similar argument as before, each of the subgraphs
induced on V(H]) UV (K) and V(Hj) UV (K) must be (k— 1)-colourable. But
then just a permutation of colours will produce a k — 1 colouring of H. Thus
H must be homomorphically equivalent to Kj_;.

To complete the proof, note that because H' is connected one can contract all
the edges in H' to obtain a single vertex that is adjacent to all the vertices of
K. Therefore Ky is a minor of H, but this contradicts the choice of C and H.
O

This theorem proves that the validity of Hadwiger’s conjecture for all graphs
is equivalent to the validity of Conjecture 2 for all minor closed classes. For
the sake of completeness, we give a proof of this equivalence in the following
theorem.

Theorem 5 The following two statements are equivalent:

(a) Every graph G with x(G) =k contains Ky as a minor.
(b) Every proper minor closed class of graphs contains a mazimum with respect
to homomorphism order.

Proof Suppose (a) is true and let C be a proper minor closed class of graphs.
Then by Theorem 1, the chromatic number of the graphs in C is bounded. Let
k be the maximum chromatic number of the graphs in C and let G be a graph
in C with the chromatic number equal to k. Then by (a), G contains K} as a
minor so K} is in the class and, therefore, C contains a maximum.

For the other implication, assume (b) is true and let G be a graph with y(G) =
k. Then [G] has a maximum. By Theorem 4, such a maximum can be chosen
to be a complete graph K,. But since G — K, r > x(G) and, therefore, G
contains K, as a minor. O

We believe that it should not be very difficult to prove Conjecture 3 indepen-
dently. In fact, we present a proof of this conjecture for a large class of minor
closed classes. To prove this, we will need a lemma on vertex transitive graphs.
This lemma, which seems to be a folklore lemma, was formulated by P. Hell
and the proof we are presenting was suggested by N. Robertson.

Lemma 6 If G is a vertex transitive graph, then G does not contain a clique
cut set.



Proof. By contradiction, let K be a clique cut and B a component of G,
the induced subgraph by V(G)\V(K). Moreover, assume B has the smallest
size over all possible K.

Let B’ be another component of G and let = be a vertex in K that is adjacent
to a vertex in B’. Let b be a vertex in B and t an arbitrary vertex in K. Since
G is vertex transitive, there is an automorphism ¢ of G that maps ¢ to b. The
image of K under ¢ is a clique K’ containing b. Therefore K’ cannot intersect
any component of G other than B.

Let Gk be the subgraph induced by V(G)\V (K'). We claim that B’ is also
a component of Gg. In fact, there are 3 possibilities for a component of Gg:
(1) it is a subgraph of B, (2) it contains V(K)\V(K’) or (3) it is also a
component of Gk (being connected only to V(K) N V(K')). Note that the
first case cannot happen because of the minimality of B. There is only one
component of the second type. Since G and Gk have the same number of
components, every other component of Gk (i.e., a component other than B)
must be a component of G as well. This proves our claim.

Since B’ is a component of G, the vertex x of K, which is connected to a
vertex in B, must be a vertex of K’, as well. In particular, this implies that
x is adjacent to b. However, since the choice of b was arbitrary,  must be
adjacent to every vertex in B. This is a contradiction because x is adjacent to
every possible neighbour of b (i.e., all the vertices in K and B) plus, at least,
to one more vertex in B'. O

Corollary 7 Let G be a connected vertex transitive graph that contains Kj
as a proper subgraph. Then G must contain Kyy1 as a minor.

Proof. Let Kj be a subgraph of G. Since G is connected, there must be an
edge connecting a vertex in Kj to a vertex not in Kj. Because G is vertex
transitive, every vertex of K must be adjacent to a vertex not in Kj. On the
other hand, by Lemma 6, the subgraph induced by V(G)\V (K}) is connected.
Thus if we contract all the edges in this subgraph, we will obtain K, as a
minor of G.

Theorem 8 Let F be a set of 2-connected graphs and let C be the class of all
graphs with no minor in F. If C contains a maximum, then every mazimum
must be homomorphically equivalent to a complete graph.

Proof. Let H be a maximum of C with the minimum number of vertices
(therefore H is connected). It will be enough to prove that H is a complete
graph because, then, any other maximum must be homomorphically equivalent
to H. We first claim H must be vertex transitive. Let H; and Hy be two disjoint
copies of H and let x and y be two distinct vertices of H. Form a new graph
H' from H; and H, by identifying the copy of x in H; and the copy of y in



Hs.

Note that H' is also in C because it does not contain any member of F as
a minor (if F € F is a minor of H’, then F, which is a 2-connected graph,
is either a minor of H; or Hy). Now, since H is a maximum of C, there is a
homomorphism f : H — H. By the minimality of H, the restriction f; of f to
H; (and, similarly, the restriction f5 of f to Hs) is an isomorphism. Obviously,
fi(x) = foly). Hence f{'f, is an isomorphism that maps y to .

Now, let k£ be the order of the largest complete graph in C. Since H is a
maximum of C, Ky — H and, therefore H, contains K} as a subgraph. If
H is not isomorphic to Ky, then it contains K} as a proper subgraph. Then,
by Corollary 7, H (and, therefore, C) contains K1 as a minor, which is a
contradiction. O

We should remark that this theorem, in particular, implies (without using the
four colour theorem) that if the class P of planar graphs contains a maximum,
then K, is a maximum of P. This is an old result of P. Hell and our methods
in proving Theorem 8 are an extension of the methods of [4].

We would like to end this article by introducing yet another reformulation of
Hadwiger’s conjecture.

Conjecture 9 Let G be a graph and let Hy and Hy be two minors of G. Then
there is a graph H € |G| that bounds {Hy, Ha}.

It is clear that Hadwiger’s conjecture implies Conjecture 9. To see that this
conjecture also implies Hadwiger’s conjecture, note that it assures the ex-

istence of a maximum for every principal ideal and, therefore, we can use
Theorem 4.

Remark We have just been informed that Theorem 5 has been discovered
independently (with a similar proof) by J. Nesetiil and P. Ossona de Mendez.
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