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Abstract

We introduce the notion of complex chromatic number of signed graphs as fol-
lows: given the set Ck,l = {±1,±2, . . . ,±k} ∪ {±1i,±2i, . . . ,±li}, where i =

√
−1,

a signed graph (G, σ) is said to be (k, l)-colorable if there exists a mapping c of
vertices of G to Ck,l such that for every edge xy of G we have

c(x)c(y) 6= σ(xy)|c(x)2|.

The complex chromatic number of a signed graph (G, σ), denoted χcom(G, σ), is
defined to be the smallest order of Ck,l such that (G, σ) admits a (k, l)-coloring.

In this work, after providing an equivalent definition in the language of homo-
morphisms of signed graphs, we show that there are signed planar simple graphs
which are not 4-colorable. That is to say: there is a signed planar simple graph
which is neither (2, 0)-colorable, nor (1, 1)-colorable, nor (0, 2)-colorable. That ev-
ery signed planar simple graph is (2, 0)-colorable was the subject of a conjecture
by Máčajová, Raspaud and Škoviera which was recently disproved by Kardoš and
Narboni using a dual notion. We provide a direct approach and a short proof. That
every signed planar simple graph is (1, 1)-colorable is a recent conjecture of Jiang
and Zhu which we disprove in this work. Noting that (0, 2)-coloring of (G, σ) is
the same as (2, 0)-coloring of (G,−σ), this proves the existence of a signed planar
simple graph whose complex chromatic number is larger than 4.

Further developing the homomorphism approach, and as an analogue of the 5-
color theorem, we find three minimal signed graphs each on three vertices, without a
K±1 (a vertex with both a positive and a negative loop) and each having the property
of admitting a homomorphism from every signed planar simple graph. Finally we
identify several other problems of high interest in colorings and homomorphisms of
signed planar simple graphs.
Keywords: Signed graph; graph homomorphism; proper coloring
Mathematics Subject Classification (2020): 05C15; 05C22; 05C10

1 Introduction

A signed graph (G, σ) is a graph (allowing multi-edges and loops) together with an as-
signment σ of signs (i.e. + or −) to the edges of G. The sign of a structure in (G, σ)
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(such as a subgraph, a walk, etc.) is the product of the signs of all of its edges considering
multiplicity. Of particular importance are the signs of cycles and closed walks which are
invariant under the switching operation defined next.

A switching of a signed graph at a vertex x is the operation of multiplying the signs of
all edges incident with x by −. A switching of (G, σ) is a collection of switchings at each
of the elements of a given set X of vertices (which is equivalent to switching the signs
of all the edges in the edge-cut formed by X and its complement). If (G, σ′) is obtained
from (G, σ) by switching at some vertices, then we say they are switching equivalent.

A digon in a signed graph is a cycle of length 2 where one edge of this cycle is positive
and the other edge is negative. A loop is an edge whose two endpoints are the same. We
note that a switching at a vertex incident with a loop e is considered as switchings at both
ends of e, and, hence, does not change the sign of e. We use (G,+) (respectively, (G,−))
to denoted a signed graph on G where all edges are positive (negative). A signed graph
(G, σ) which is switching equivalent to (G,+) (respectively, (G,−)) is called balanced
(respectively, antibalanced).

Extending the notion of proper colorings of graphs, a notion of (proper) coloring of
signed graphs was introduced by T. Zaslavsky in [14]. That is a coloring c of vertices
where colors are (nonzero) integers such that c(x) 6= σ(xy)c(y) for each edge xy. Various
directions of study and extensions of this notion of proper coloring of signed graphs
have been recently introduced. Here we propose the following extension which has been
developed as a natural optimization problem from the study of homomorphisms of signed
graphs.

Definition 1. Given the set Ck,l = {±1,±2, . . . ,±k} ∪ {±1i,±2i, . . . ,±li}, where i =√
−1, a signed graph (G, σ) is said to be (k, l)-colorable if there exists a mapping c of the

vertices of G to Ck,l such that for every edge xy of G we have

c(x)c(y) 6= σ(xy)|c(x)2|.

A complex coloring of a signed graph is a (k, l)-coloring of it for a choice of k and l.

It is easily seen that c(x)c(y) 6= σ(xy)|c(x)2| if and only if c(x)c(y) 6= σ(xy)|c(y)2|, thus
condition in this definition is independent of the order of x and y. The case (k, 0)-coloring
is equivalent to the notion of 0-free coloring defined in [14] and also studied in [7].

Observe that a vertex with both a positive loop and a negative loop admits no complex
coloring. This is analogous to the fact that a graph with a loop does not admit a proper
coloring. For a signed graph (G, σ) which does not contain such a vertex, the complex
chromatic number of it, denoted χcom(G, σ), is defined to be the smallest order of a Ck,l

such that (G, σ) admits a (k, l)-coloring.
After defining the notion of homomorphism of graphs and signed graphs in the next

section, we will see that this is the most natural extension of the chromatic number of
graphs to chromatic number of signed graphs from a homomorphism point of view: both
are about finding the smallest homomorphic image in absence of a trivial mapping.

We remark two important properties of the complex chromatic number of signed
graphs. The first one is that it is independent of a switching. More precisely, if φ is
a (k, l)-coloring of (G, σ) and (G, σ′) is obtained from (G, σ) after a switching at a vertex
x, then by changing the color of x to −φ(x), while keeping all other colors the same, we
have a (k, l)-coloring of (G, σ′). The second one is the following observation:
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Observation 2. A signed graph (G, σ) is (k, l)-colorable if and only if (G,−σ) is (l, k)-
colorable.

More precisely, if φ is a (k, l)-coloring of (G, σ), then iφ is an (l, k)-coloring of (G,−σ).

2 Homomorphisms and coloring

Given two signed graphs (G, σ) and (H, π), a homomorphism of (G, σ) to (H, π), some-
times referred to as (H, π)-coloring, is a mapping f which maps the vertices and the edges
of G to the vertices and the edges of H (respectively) with the property that all incidences
and adjacencies are preserved and, moreover, signs of closed walks are preserved as well.
An edge-sign preserving homomorphism of (G, σ) to (H, π) is a mapping f which maps
the vertices and the edges of G to that of H in such a way that incidences, adjacencies and
signs of edges are preserved. The following theorem shows a strong connection between
these two notions (see [9] for a proof and more on homomorphisms of signed graphs).

Theorem 3. A signed graph (G, σ) admits a homomorphism to a signed graph (H, π) (i.e
(G, σ) → (H, π)) if and only if there is a switching σ′ of σ and an edge-sign preserving
homomorphism of (G, σ′) to (H, π).

This shows that the notion of homomorphisms of signed graphs extends the notion of
homomorphisms of graphs because a homomorphism of (G,+) to (H,+) is the same as
a homomorphism of G to H. One may easily observe that the chromatic number of a
graph without a loop is the number of vertices in a smallest homomorphic image without
a loop. Let (K±1 ) be the signed graph on one vertex whose edge set consists of one positive
and one negative loop. Observing that every signed graph admits a homomorphism to
(K±1 ), and that this is the only minimal signed graph with this property, we propose the
following natural definitions.

Given a signed graph which does not contain (K±1 ), we define the homomorphic chro-
matic number of a signed graph (G, σ), denoted χhom(G, σ), to be the smallest number
of the vertices in a homomorphic image of (G, σ) which does not contain (K±1 ). We show
next that the homomorphic chromatic number and the complex chromatic are almost the
same concepts. But first we give the following definition.

Definition 4. The complete complex signed graph Kk−,l+ is the signed graph on a set
X ∪ Y of k+ l vertices where X = {x1, . . . , xk} is a set of order k and Y = {y1, . . . , yl} is
a set of order l. The edge set of Kk−,l+ consists of three types of edges: a negative loop
at every vertex of X, a positive loop at every vertex of Y , a digon connecting any pair of
distinct vertices.

Theorem 5. For any signed graph without a (K±1 ) we have χcom(G, σ) = 2χhom(G, σ).

Proof. We claim that a (k, l)-coloring of (G, σ) is equivalent to a homomorphism of (G, σ)
to Kk−,l+. Given a (k, l)-coloring φ of (G, σ), if a vertex v is colored +p, then we map
v to the vertex xp, if a vertex u is colored −p, then we first apply a switching at u and
then map it to xp. Similarly, we map the vertices colored qi or −qi to yq. It is easily
verified that this is a one to one correspondence between (k, l)-colorings of (G, σ) and
homomorphisms of (G, σ) to Kk−,l+.
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The claim of the theorem now follows: suppose χcom(G) = 2(k + l) and that (G, σ)
admits a (k, l)-coloring. Then Kk−,l+ is a signed graph on k + l vertices with no (K±1 ) to
which (G, σ) admits a homomorphism, therefore, χcom(G, σ) = 2(k + l) ≥ 2χhom(G, σ).

On the other hand, let (H, π) be a homomorphic image of (G, σ) with the smallest
possible number of vertices and assume |v(H)| = p. Then, observing that parallel edges
of the same sign are of no importance, one may add edges to (H, π) without creating
a (K±1 ) until it becomes a Kk−,l+ for a choice of k and l (thus p = k + l). Then the
given homomorphism of (G, σ) to (H, π) can now be viewed as a homomorphism of (G, σ)
to Kk−,l+, proving that (G, σ) admits a (k, l)-coloring. Hence, χcom(G, σ) ≤ 2(k + l) =
2χhom(G, σ). �

In particular, a signed graph with no (K±1 ) has complex chromatic number at most 4
if and only if it admits a homomorphism to one of the three signed graphs of Figure 1.
(In Figures of this work a blue or solid edge represents a positive edge and a red or dotted
edge represents a negative edge). More precisely, the digon with two negative loops
D− (left) corresponds to (2, 0)-coloring, the digon with two positive loops D+ (middle)
corresponds to (0, 2)-coloring and the one with one positive and one negative loop D+−

(right) corresponds to (1, 1)-coloring.

x

y

D−

x

y

D+

x

y

D+−

Figure 1: The homomorphism targets for complex 4-coloring

A comprehensive study of the complex chromatic number then is under way in a
joint work with Weiqiang Yu. In this work, we have a look at the maximum possible
complex chromatic number of signed planar simple graphs. That all signed planar simple
graphs are (2, 0)-colorable was the subject of a conjecture by Máčajová, Raspaud and
Škoviera [7]. Kardoš and Narboni [4], based on the notion of dual, provided an edge-
coloring interpretation of this conjecture, and then, using examples of non-Hamiltonian
cubic bridgeless planar graphs, disproved the conjecture. Here, we give a direct approach
to the problem. Our proof becomes simpler because of the choice of the signature on the
gadgets and it leads to families of counterexamples.

Jiang and Zhu [3] conjectured that every signed planar simple graph is (1, 1)-colorable.
Indeed they have the first step toward introducing the notion of complex coloring of
signed graphs. We disprove this conjecture by building a counterexample using similar
techniques.
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Combined together, these results can be viewed as an existence of a signed planar
simple graph whose vertices cannot be partitioned into two parts, each part inducing
either a balanced subgraph or an antibalanced subgraph.

Thus, turning our attention to signed graphs on three vertices, we identify three min-
imal signed graphs on at most three vertices to which every signed planar simple graph
admits a homomorphism. This answers the question of “whether a given signed graph
(B, π) on at most three vertices bounds the class of signed planar simple graphs” for all
but essentially one choice of (B, π) (see Figure 15).

One of the main tools in our constructions is the dual of what is known as the Tutte
fragment. Considering the classic relation between vertex-coloring and edge-coloring of
planar graphs (first shown by Tait in 1890), using the dual of Tutte fragment in coloring
problems is not a surprise. For a recent use of this gadget, we refer to [6] and for one of
the earliest use of it we refer to the work of Wegner in [13]. We note, furthermore, that a
strong connection between (2, 0)-coloring and special types of 4-list coloring is established
in [15].

3 The gadgets

The construction of the counterexamples is based on several gadgets. We first provide
small gadgets to force three vertices of a facial triangle to be multicolored.

Observe that in any {2, 0}-coloring, the vertices of (K3,−) can all be colored with the
same color. However, if a face of a planar graph is a (K3,−), then by adding a planar
structure inside the face, as shown in Figure 2, we may avoid the possibility that the three
vertices are colored the same.

Lemma 6. In any {2, 0}-coloring of the graph of Figure 2, the three vertices x, y and z
cannot all receive the same color.

x

y z

uv

w

Figure 2: (2, 0)-coloring a negative triangle

Proof. If ϕ(x) = ϕ(y) = ϕ(z) = 1 (or ϕ(x) = ϕ(y) = ϕ(z) = −1), then none of u, v and
w can be colored +1 or −1. Thus only two colors ±2 can be used on them, but they must
receive pairwise distinct colors, a contradiction. �

If instead of (2, 0)-coloring, we consider {1, 1}-coloring, not only the vertices of (K3,−)
can all be colored with the same color (e.g.,+1) but also the vertices of (K3,+) can all
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be colored with the same color (e.g.,+i). But similar to the previous lemma, as a face of
a signed planar graph, we can prevent this by completing the face to the corresponding
configuration of Figure 3 or Figure 4.

Lemma 7. In any {1, 1}-coloring of the graph of Figure 3 (or Figure 4), the three vertices
x, y and z cannot all receive the same color.

x

y z

uv

w

Figure 3: (1, 1)-coloring a negative triangle

x

y z

uv

w

Figure 4: (1, 1)-coloring a positive triangle

Proof. We will prove that for any (1, 1)-coloring, the three vertices x, y and z of the
graph of Figure 3 cannot all receive the same color. The proof for the graph Figure 4 is
proceeded similarly.

Since xyz is a negative triangle, x, y, z cannot all receive the same color a ∈ {i,−i}.
If ϕ(x) = ϕ(y) = ϕ(z) = 1 (or ϕ(x) = ϕ(y) = ϕ(z) = −1), then none of u, v and w can be
colored +1 or −1. Thus only two colors ±i can be used on them, but uvw is a negative
triangle, a contradiction. �

Remark 8. In any (2, 0)-coloring, considering possible switchings of the signed graph of
Figure 2, a general statement is to say that vertices x, y and z cannot all receive colors
with the same absolute value. It is immediate from the definition that in any (2, 0)-
coloring, three vertices of any positive facial triangle cannot all receive colors with the
same absolute value.

Remark 9. Applying the statement of Lemma 7 to possible switchings of a triangle, we
may conclude that in any (1, 1)-coloring of a facial triangle, one may prevent the use of
colors {a,−a} on all three vertices.

Thus from here on, whether we are working on a (2, 0)-coloring or a (1, 1)-coloring, we
may assume that the vertices of a facial triangle are not all colored by two colors a and
−a. We will refer to this as the triangle property.

Next we build our main gadgets which are based on the signed graph of Figure 5.

Lemma 10. In a (2, 0)-coloring c of the graph of Figure 5 which satisfies the triangle
property, we cannot have c(u) = −c(v).

Proof. Observe that there are two negative faces in this graph, they are: ux1x2 and vx3x4.
Toward a contradiction, assume c is (2, 0)-coloring of this graph where on each of these
two negative faces both absolutes values 1 and 2 are used and suppose, without loss of
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x3 x4
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v

−

−

Figure 5: A gadget to forbid opposite colors on two vertices

generality, c(u) = 1 and c(v) = −1. We then consider the list of available colors at each
vertex. At z and t the only available colors are ±2, at xi, for i = 1, 4, 5, the list of available
colors is {−1,±2} and at xi, i = 2, 3, the list of available colors is {+1,±2}.

Currently all colors are available at w, but we claim that its color cannot be ±1. If
w is colored −1 then the positive triangle x4x5t must be properly colored using only ±2,
and if w is colored +1, then the positive triangle x2x3z will face the same problem.

Thus w has to be colored by ±2. As none of the two colors are used yet, and by sym-
metry among the two colors, assume w is colored −2. Then on the 5-cycle x1x2x3x4x5
each vertex has a list of two available colors: +2 together with either +1 or −1. Further-
more, on the edge x1x2 color +2 must be used (at least) once because of the negative face
ux1x2 (recall that u is colored 1). Similarly, because of the negative face on the edge x3x4,
the color +2 must be used once. Thus colors ±1 cannot appear on an edge of the 5-cycle,
and, therefore, the coloring |c| induces a proper 2-coloring of this 5-cycle, a contradiction.
�

Remark 11. We have presented the simplest form of a signature and used symmetric
presentation in our proof. However, one can modify this gadget and still have a similar
property. For example, one may change the sign of one of the edges tx4 or tx5 and then
add the gadget of Figure 2 inside x4x5t to get the same result. Similarly, if we change the
sign of ux1 and apply the triangle property to the face ux1x5 instead of ux1x2, then we
have a similar property.

In any (k, l)-coloring c of (G, σ), and for a color a ∈ Ck,l we define an a-monochromatic
subgraph to be a subgraph induced by a set of vertices that are colored a or −a.

A crucial but straightforward fact is that:

Observation 12. In any (k, l)-coloring c of (G, σ) an a-monochromatic subgraph cannot
contain a negative even closed walk.

Lemma 13. Given a (1, 1)-coloring c of the signed graph H1 of Figure 6 satisfying the
triangle property, if an a-monochromatic subgraph (H ′, σ) contains both u and v, then it
contains a positive 5-cycle with uv as one of its edges.

Proof. Consider a (1, 1)-coloring c of the graph H1 which satisfies the triangle property.
Furthermore, assume c(u), c(v) ∈ A = {a,−a} and let B = {b,−b} be the other two
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Figure 6: The signed graph H1

w

x1

x2

x3 x4

x5

z t

u

v

Figure 7: The signed graph H2

colors in C1,1. Applying the triangle property on the faces utv and uzv, we have c(t) ∈ B
and c(z) ∈ B.

Depending on whether c(w) ∈ A or c(w) ∈ B we consider two cases:

• c(w) ∈ A. By the triangle property on the face zx2x3 we have either c(x2) ∈ A or
c(x3) ∈ A.

Case c(x2) ∈ A. As ux2wx5 is a negative 4-cycle in which three of its vertices are
in a-monochromatic subgraph, c(x5) ∈ B. If c(x4) ∈ A, then ux2wx4v is a positive
5-cycle in the a-monochromatic subgraph. Thus c(x4) ∈ B, but then tx4x5 is a
b-monochromatic facial triangle which violates the triangle property.

Case c(x2) ∈ B. Then c(x3) ∈ A because of the triangle property on the face
zx2x3. Hence c(x4) ∈ B because of the triangle property on the face wx3x4, and
c(x5) ∈ B because of the positive 5-cycle ux5wx3v. But then the face tx4x5 violates
the triangle property.

• c(w) ∈ B. By the triangle property on the face ux1x2 we either have c(x1) ∈ B or
c(x2) ∈ B.

Case c(x1) ∈ B. Then c(x2), c(x5) ∈ A because of the triangle property on the faces
wx1x2 and wx1x5. Now considering the negative 4-cycle ux2x3v, and by Observa-
tion 12, we have c(x3) ∈ B and similarly, because of the negative 4-cycle ux5x4v,
we have c(x4) ∈ B, but then the face wx3x4 violates the triangle property.

Case c(x2) ∈ B. Then c(x1), c(x3) ∈ A because of the triangle property on the
faces wx1x2 and wx2x3. This in turn implies that c(x4), c(x5) ∈ B because of the
triangle property on the faces ux1x5 and vx3x4. But then the facial triangle tx4x5
violates the triangle property.

This concludes the proof of the lemma. �

The gadget H2 of the Figure 7 holds a similar property, however, as its proof is quite
similar to the proof of the previous one, we omit the details.

Lemma 14. Given a (1, 1)-coloring c of the signed graph H2 of Figure 7 satisfying the
triangle property, if an a-momochromatic subgraph (H ′, σ) contains both u and v, then it
contains a negative 5-cycle with uv as one of its edges.
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4 The complex chromatic number of signed planar

simple graphs

Using the gadgets we have introduced we may now build a signed planar simple graph
which is not (2, 0)-colorable, a signed planar simple graph which is not (1, 1)-colorable
and a signed planar simple graph which is not (2, 0)-colorable. Putting disjoint copies of
them together we get a signed planar simple graph whose complex chromatic number is
strictly larger than 4.

4.1 A signed planar simple graph which is not (2, 0)-colorable

Using the gadget in Lemma 10, one can transform a given signed planar graph which
has no loop, but may contain digons, and accepts no (2, 0)-coloring into a signed planar
simple graph which is not (2, 0)-colorable.

Definition 15. Let (G, σ) be a signed planar (multi)graph with no loops. Define F (G, σ)
to be the following simple signed graph. For each pair u, v of vertices, if they are adjacent
with more than one edge of the same sign, delete all but one of them. If u and v are
adjacent with one positive and one negative edge, then delete the negative uv-edge, and
add to the graph a copy Fuv of the graph of Figure 5, where each of the two negative
triangles are completed by (a switched copy of) the configuration of Figure 2.

Using Lemma 10, we immediately have the following.

Proposition 16. Given a signed planar (multi)graph (G, σ) with no loop, (G, σ) is (2, 0)-
colorable if and only if the signed planar simple graph F (G, σ) is (2, 0)-colorable.

Thus, to build a signed planar simple graph which is not (2, 0)-colorable, it would be
enough to build signed planar graph (G, σ) with no loop, but allowing digons, such that
(G, σ) is not (2, 0)-colorable. Then F (G, σ) is a signed planar simple graph which is not
(2, 0)-colorable.

The smallest signed (multi)graph without a loop which is not (2, 0)-colorable is the
signed graph obtained from the triangle by replacing each edge with a digon (see Figure 8).
Observe that this signed graph is indeed planar. The signed planar simple graph obtained
from this three vertices graph by replacing each negative edge with a gadget of the Figure 5
has 45 vertices. However, there is a face of size 6 in this graph where all edges are positive.
One may identify three vertices of this cycle to get an example of signed planar simple
graph on 43 vertices which is not (2, 0)-colorable.

One may build an example with fewer vertices using the signed graph on the right side
of Figure 9. After minimizing the facial cycle of the resulting graph, we have examples
on 39 vertices. This is the same order as the smallest graph given in [4], but we note that
first of all there is no proof given for the smaller example in [4], and, secondly, that our
construction gives several non isomorphic copies, depending on two factors: The possible
signature we choose on our gadget, and the choices we have for a vertex of a digon to be
the vertex u of the gadget or the vertex v of it.

Proposition 17. Let B be the signed graph on the right of Figure 9 where inside each
of the two negative faces vx3x4 and vx1x5 are completed by the configuration of Figure 2.
Then B is not (2, 0)-colorable.
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Figure 8: Smallest not (2, 0)-colorable graph without a loop
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Figure 9: The graph B

Proof. By contradiction, suppose B has a (2, 0)-coloring c. Observe that in a (2, 0)-
coloring of a digon two colors of different absolute values must be used. Using this fact,
and with a focus on the subgraph presented on the left, we show that u and v cannot
receive colors of the same absolute value. By the symmetry of colors, it is enough to
consider two cases:

• c(u) = c(v) = 1. In this case, x4 and x5 can only use colors ±2, but they form a
digon.

• c(u) = 1 and c(v) = −1. In this case, x2 and x3 can only use colors ±2, but they
also form a digon.

Thus, without loss of generality, we may assume c(u) = 1 and c(v) = 2. We now claim
that on each of the (positive) edges of the 5-cycle x1x2x3x4x5 the coloring c must use two
different absolute values, but this would result in a 2-coloring of this odd-cycle, which is
not possible. Observe that all these five vertices are adjacent to u by a positive edge thus
none of them can be colored 1. Hence, to prove our claim, it would be enough to show
that none of the five edges receive colors +2 and −2. This is the case for edges x2x3 and
x4x5 because they are part of a digon. Edges x1x5 and x3x4 each together with v form
the configuration of Figure 2, and as c(v) = 2, this is the claim of Lemma 6. For the last
edge, x1x2, since each end is adjacent to v by a positive edge, there can be no color +2
on these two vertices. �
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4.2 A signed planar simple graph which is not (1, 1)-colorable

Let H be the signed planar graph obtained from disjoint copies of H1 of Figure 6 and H2

of Figure 7 by identifying the vertices labeled u together, vertices labeled v together and
edge uv together. The result then is a signed planar simple graph that has the following
property.

Lemma 18. In any (1, 1)-coloring c of the signed graph H, either c(u) ∈ {+1,−1} and
c(v) ∈ {i,−i} or c(v) ∈ {+1,−1} and c(u) ∈ {i,−i}.

Proof. Otherwise, c(u), c(v) ∈ {a,−a} for a = 1 or a = i. Then by Lemma 13, we
have an a-monochromatic positive 5-cycle in H1 part of H which contains uv and, by
Lemma 14, we have an a-monochromatic negative 5-cycle in H2 part of H which contains
uv. Combined together, and after removing the edge uv, we get an a-monochromatic
negative 8-cycle, contradicting Obervation 12. �

A signed planar simple graph which is not (1, 1)-colorable can now be built by replacing
the three edges of a triangle each with a copy of H. To calculate the order of the graph
that is constructed, we note that for the gadget Hi (i = 1, 2) to work we need eleven of its
faces to have the triangle property. Thus each Hi has 43 vertices, and H has 84 vertices.
The final graph then has 249 vertices. One can get an example with a few less vertices
by identifying some vertices, but it would be of interest to build a substantially smaller
example.

Remark 19. An independent construction of a signed planar simple graph which is not
(1, 1)-colorable is given in [5], thus refuting the conjecture of Jiang and Zhu.

5 Minimal homomorphism bounds

It follows from the definition of complex coloring that given a (k, l)-partial coloring c of
a signed graph (G, σ), the color c(v) of a neighbor v of a vertex u forbids only one color
on u. Thus, it follows that if G is d-degenerate for d < 2(k + l), then (G, σ) admits a
(k, l)-coloring. In particular, every signed planar simple graph admits a (3, 0)-coloring, a
(2, 1)-coloring, a (1, 2)-coloring and a (0, 3)-coloring.

These claims can be regarded as an analogue of the 6-color theorem for planar graphs
and can be strengthened to what one might think of as an analogue of the 5-color theorem
for planar graphs. We will give a short proof using a strong result of Borodin [2] that
every planar graph is acyclically 5-colorable. But we will point out in Section 6 that one
may prove the results directly using techniques similar to the known proofs of the 5-color
theorem.

Given a signed planar simple graph (G, σ), we consider an acyclic 5-coloring of G and
let V1, V2, V3, V4 and V5 be the color classes. Since V1 ∪ V2 induces a forest, one may
apply a switching on this subset of vertices to have all induced edges of the same sign (of
our choice) and then map all vertices to a vertex with one loop. After doing the same
to V3 ∪ V4, one may map vertices in V5 to a single vertex (with no loop). This implies
that each of the three graphs of Figure 10 is a homomorphism bound for the class of
signed planar simple graphs, or even for the larger class of signed simple graphs whose
underlying graph admits a 5-acyclic coloring.
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Figure 10: Three minimal homomorphism bounds of signed planar simple graphs

We claim here that each of the three signed graphs of Figure 10 is a minimal homo-
morphism bound for the class SP of signed planar simple graphs.

To see that, observe that if we remove one of the vertices, we either get one of the
graphs of Figure 1 or a subgraph of one of them which we have already shown cannot
bound SP . If in T−− or T++ we delete any of the edges that is not a loop, or delete an edge
incident with z in T+−, the result then maps to one of the three graphs of Figure 1 and
we have already seen that they cannot bound the class of all signed planar simple graphs.
Thus, up to symmetries and isomorphism, we have two remaining cases to consider. The
first case is when we remove one of the loops, thus we have the graph T− of Figure 11,
we will build a signed planar simple graph (G, σ) which does not map to T− and we note
that if we have a positive loop instead, then (G,−σ) works. The second case is the signed
graph T ′ depicted in Figure 12. It is obtained from T+− by removing one of the two xy
edges. Note that the two resulting signed graphs are switching equivalent. We will also
build an example of a signed planar simple graph that does not map to T ′.

5.1 Mapping to T−

Let T− be the signed graph obtained from the signed graph on the left of Figure 10
by removing the loop on the vertex y. It is not difficult to show that a signed graph
(G, σ) maps to T− if and only if (G, σ) admits a coloring by the elements of Z4 satisfying
c(x) − σ(xy)c(y) 6= 0 where the operations are taken (mod 4). Disproving a conjecture
of Kang and Steffen, Zhu [15] built a signed planar simple graph which does not admit a
Z4-coloring. However, since we have already built the main gadgets, and to highlight the
homomorphism properties of T−, we give the following construction.

Observe that if a signed graph (G, σ) maps to T−, then V (G) can be partitioned into
two sets V1 and V2 such that V1 (the set of the vertices that are mapped to x) induces
an antibalanced signed graph and V2 (the set of the vertices that are mapped to y or z)
induces a signed bipartite graph.

Thus to build a signed planar simple graph which does not map to T− it would be
enough to build one for which in any 2-coloring of vertices we have:

• either a monochromatic positive odd cycle, or

• a monochromatic negative odd cycle in each color, or

• a monochromatic negative even cycle in each color.

12
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Figure 11: T− does not bound SP

Toward building an example which satisfies the property, we may again use the gadget
of Figure 2 to assume that in every 2-coloring of our signed planar simple graphs the
triangle property holds, otherwise we would have a monochromatic positive triangle, but
T− has no positive loop.

We then consider the following variation of Lemma 13 which is easily verified by
modifying the proof:

Lemma 20. Given a 2-coloring c of the signed graph H1 of Figure 6 satisfying the triangle
property, if c induces no monochromatic positive odd cycle and if c(u) = c(v) = a, then
the color a induces a monochromatic negative even cycle.

We may now build a signed planar simple graph (G, σ) which does not map to T−.
Start with a planar embedding of (K4,+) and for each edge xy of it add a copy of H1

where x is identified with u, y is identified with v and xy is replaced by the edge uv. Let
c be a 2-coloring of (G, σ). We claim that one of the three following conditions will hold.
If three vertices of the original K4 are colored the same, then we already have a positive
triangle. Else, of the four vertices two are colored a and the other two are colored b.
Applying Lemma 20 on the copy of H1 corresponding to two vertices colored a, we get a
negative even cycle all whose vertices are colored a. Applying it on the other two vertices,
we get a negative even cycle all whose vertices are colored b. This completes the proof of
our claim.

5.2 Mapping to T ′

Let T ′ be the signed graph obtained from T+− by removing the negative xy-edge, see
Figure 12 for a depiction. We will use the fact that the remaining xy-edge in T ′ is a
positive edge and build a signed planar simple graph (G, σ) which does not map to it.
We note that a switching at x would change the sign of the xy-edge to negative and thus
our example would also not map to T+− − e if e was the positive xy-edge.

The following observation is the key tool in building a signed planar simple graph
which does not map to T ′.

Lemma 21. A signed positive triangle admits an edge-sign preserving homomorphism to
the subgraph of T ′ induced by {x, y} if and only if all its edges are positive.

Proof. That is because there are two essentially different signatures on a positive triangle.
Either all the edges are positive in which case we must map two of the vertices to y and

13



x

y z

Figure 12: T+− − (xy)− does not bound SP

the third is free to map to x or y. Or there are two negative edges, in this case, as the
only negative edge on the subgraph induced by x and y is the negative loop on x, all
vertices must be mapped to x, but that would create a positive loop at x. �

s

t r
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w

Figure 13: (G, σ) 6→ T ′ − z
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Figure 14: (G, σ)∗

To build a signed planar simple graph which does not map to T ′, we first consider the
signed outer planar graph (G, σ) of Figure 13. We show that:

Lemma 22. The signed outer planar graph (G, σ) of Figure 13 does not map to T ′ − z.

Proof. Assume to the contrary that (G, σ) maps to T ′ − z. Then there is a switching σ′

of σ under which (G, σ′) admits an edge-sign preserving mapping to T ′ − z. In such a
signature, by Lemma 21, each of the positive triangles suv, tvw and rwu must consist of
only positive edges, but then the triangle vuw is a positive triangle in (G, σ′), however as
it is a negative triangle in (G, σ), σ′ cannot be a switching of σ. �

In other words, in any mapping of (G, σ) to T ′ at least one vertex should be mapped
to z. Let (G, σ)∗ be the signed graph obtained from (G, σ) by adding a twin copy s′, t′, r′

of s, t, r (respectively) and adding edges ss′, tt′ and rr′, see Figure 14. Observe that, in
a mapping of (G, σ)∗ of T ′, of the pair s, s′ at most one can be mapped to z. If none of
u, v, w is mapped to z, then we will have a copy of (G, σ) which is mapped to T ′ − z,
contradicting Lemma 22.

To complete the construction, we may now consider a planar embedding of (K4,−)
and for each edge uv of it, add two new vertices suv and s′uv. Then connect both of them
to one of u and v with positive edges, and to the other with negative edges. Finally,
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connect suv to s′uv (of any sign, but say with a positive sign to have isomorphic copies of
Figure 14). Observe that, on each triangle of (K4,−) we have built a copy of (G, σ)∗. We
claim that this signed planar simple graph does not map to T ′. That is because at most
one of the four vertices of K4 can map to z, hence, there is a triangle of (K4,−) none of
whose vertices is mapped to z, the subgraph isomorphic to (G, σ)∗ built on this triangle
then would lead to a contradiction. The example then is on 16 vertices.

5.3 Remaining signed graphs on three vertices

Based on the previous discussion for all but two signed graphs on three vertices we know
whether they bound the class of signed planar simple graphs. These two are depicted in
Figure 15 and Figure 16. Here, strengthening constructions of Section 4, we show that the
signed graph T2 of Figure 16 also does not bound the class SP , leaving only one unsolved
case among signed graphs on 3 vertices.

x

y z

Figure 15: Does T1 bound SP?

x

y z

Figure 16: T2 does not bound SP?

Theorem 23. There exists a signed planar simple graph which does not map to the signed
graph T2 of Figure 16.

To prove this theorem, we will view a T2-coloring of a signed graph (G, σ) as a 2-
coloring, using colors c1 and c2 where vertices mapped to x are colored c1 and vertices
mapped to y or z are colored c2. This coloring has the property that vertices colored c1
induce an antibalanced subgraph and vertices colored c2 induce a subgraph each of whose
connected component is either balanced or antibalanced. It is not hard to check that the
existence of such a 2-coloring of vertices of (G, σ) is equivalent to mapping (G, σ) to T2.
Such a 2-coloring c can be equivalently regarded as a 2-coloring where the color class c1
induces neither a positive odd cycle, nor a negative even cycle and the color class c2 does
not induce a negative even closed walk.

Let (G, σ) be a planar graph and assume that it admits a T2-coloring. Let c be the
corresponding 2-coloring. Then applying the gadget of Figure 4 on each of the positive
facial triangles of (G, σ) we either build a sign planar simple graph which does not map
to T2, or we are assured that no facial positive triangle of (G, σ) is monochromatic under
c. To obtain a similar conclusion of facial negative triangles we need an extension of our
gadgets depicted in Figure 17.

Lemma 24. In a 2-coloring c of the graph of Figure 17 which corresponds to a T2-coloring
of this graph, vertices u, v and w cannot be monochromatic.
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Figure 17: T2-coloring a negative triangle

Proof. We consider the two cases separately. Suppose u, v and w are colored c1 (i.e.,
they are mapped to the vertex x in the given T2-coloring). Then, since uvs is a positive
triangle, s, and similarly r and t, are colored c2. But then we have a monochromatic
positive triangle on which we have the construction of Figure 4.

Now suppose u, v and w are colored c2 (i.e., they are mapped to either y or z in
T2-coloring). Since they induce a connected subgraph, they all must map to the same
vertex of T2 and as they induce a negative triangle, they all must map to z. Then, by
similar arguments, vertices s, r and t all must be mapped to vertex x of T2, however they
induce a positive triangle. �

We now consider the gadgets H1 and H2 of Figure 6 and Figure 7 where each facial
triangle, depending on its sign, is either completed to a (possibly a switching equivalent)
copy of the signed graph of Figure 4, or Figure 17. This ensures that in any 2-coloring
corresponding to a T2-coloring of these graphs the triangle property can be enforced. The
construction of a signed planar simple graph that does not map to T2 is then completed
as in Section 4.2. The signed graph H obtained from H1 and H2 by identifying the uv
edge has property that in any 2-coloring satisfying the triangle property, if u and v are
colored the same, then there is a monochromatic negative even cycle. The construction
then is completed by using three copies of H where edges corresponding to uv form a
triangle.

6 Concluding remarks

In this work, we have first of all introduced the notions of complex-coloring and complex-
chromatic number of signed graphs which extend the notion of 0-free coloring of signed
graphs introduced by T. Zaslavsky [14]. We will show in forthcoming works that the
notion is of high interests on its own, for example we show that the problem of finding the
largest possible complex chromatic number on a given complete graph is strongly related
to the Ramsey numbers.

We have shown that the concept is a natural optimization problem from a homomor-
phism point of view. Then we showed that signed planar simple graphs may need more
than 4 colors. Here, we have only considered (k, l)-colorings which are extensions of 0-free
colorings. One could analogously allow 0 to be in the set of colors. In that case the set of
the vertices colored 0 must induce an independent set of the graph. This, similar to the
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work of [7], would allow for the complex chromatic number to be an odd integer as well.
That signed planar simple graphs are 5-colorable with this definition is already observed.

From a homomorphism point of view, we have determined three minimal graphs on
three vertices each of which bounds the class of signed planar simple graphs. In analogy
to the coloring of planar graphs (not signed), our results say that four colors are not
enough for coloring all signed planar simple graphs but five colors are enough. We have
used the fact that planar graphs are acyclically 5-colorable to prove that each of these
three signed graphs indeed bounds the class of signed planar simple graphs, but we would
like to point out that the techniques for proving the 5-color theorem works here as well
and one does not really need the acyclic coloring result. We give a bit more details for
mapping to T−−, the other two are similar.

To map a signed graph (G, σ) to T−−, one must find a switching σ′ of σ after which
(G, σ′) admits an edge-sign preserving mapping to T−−. However, if a vertex v is mapped
to z, then a switching at v would not affect the homomorphism properties. Thus for each
vertex v of (G, σ) we have five possibilities: 1. map it to z, 2. switch and map it to x
(we may then say it is mapped to −x), 3. do not switch and map it to x (or simply map
it to +x), 4. map it to −y, 5. map to +y. Then observe that in a partial mapping of
(G, σ) to T ′, each vertex that is already mapped forbids exactly one of the five options
from the list of availabilities at a neighboring vertex. For example, if u is mapped to z,
then it forbids z from being used on any of its neighbors. If u is mapped to −x and has a
positive connection to v, then it forbids the option of −x on v. One may then complete a
proof of the fact that T− bounds the class of signed planar simple graphs by either using
the Kempe chain argument or employing Thomassen’s list coloring proof.

Thus except for the signed graph T1 of Figure 15 and the signed graph T ′1, obtained
from T1 where the loop on the vertex x is positive, we have determined for each signed
graph on three vertices if it bounds the class of signed planar simple graphs.

A closely related problem is the following:

Problem 25. Can the vertices of every signed planar simple graph be partitioned into
two parts none of which induces a negative closed walk of even length?

It is not hard to check that the existence of such a partition for (G, σ) is equivalent
to a mapping of (G, σ) to the signed graph of Figure 18. For one direction, observe that
in such a mapping, the vertices mapped to x or t will form one part of the partition and
those mapped to y and z form the other part. For the opposite direction, as it is observed
in [9], a connected signed graph with no negative even closed walk is either balanced or
antibalanced. Therefore, each connected component, if (G, σ) admits a 2-partition none
of which induces a negative even closed walk, the subgraph induced on each part maps
to a graph on two vertices, one having a positive loop, the other having a negative loop.

A counterexample for this problem will also work as a common counterexample for
the three signed graphs of Figure 1 as it contains all three as a subgraph.

Among signed graphs of order five there are two, depicted in Figure 19, that are of
special interest. The problem of mapping signed planar simple graphs to the one on the
left is a restatement of Problem 7.6 in [12]. The problem of mapping signed planar simple
graphs to the one on the right is about bounding by 5 the circular chromatic number of
signed planar simple graphs in the sense of [10].

It is also natural to ask for a homomorphism bound which itself is a signed simple
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Figure 19: 5-vertices bound on SP?

graph. The existence of such a bound on 80 vertices, even in the stronger sense of edge-
sign preserving homomorphisms, follows from a result of Alon and Marshal [1]. This is
improved to 48 in [8] and to 40 in [11]. A lower bound of 10 is also given in [8]. It is shown
in [11], that, furthermore, if there is a bound on 10 vertices, it has to be the signed graph
obtained from the signed Paley graph on F9 by adding a universally positive vertex.
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