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Abstract

A signed bipartite (simple) graph (G, σ) is said to be C−4-critical if it admits no
homomorphism to C−4 (a negative 4-cycle) but each of its proper subgraphs does.
To motivate the study of C−4-critical signed graphs, we show that the notion of
4-coloring of graphs and signed graphs is captured, through simple graph opera-
tions, by the notion of homomorphism to C−4. In particular, the 4-color theorem is
equivalent to: Given a planar graph G, the signed bipartite graph obtained from G
by replacing each edge with a negative path of length 2 maps to C−4.

We prove that, except for one particular signed bipartite graph on 7 vertices and
9 edges, any C−4-critical signed graph on n vertices must have at least d4n3 e edges.
Moreover, we show that for each value of n ≥ 9 there exists a C−4-critical signed
graph on n vertices with either d4n3 e or d4n3 e+ 1 many edges.

As an application, we conclude that all signed bipartite planar graphs of negative
girth at least 8 map to C−4. Furthermore, we show that there exists an example of
a signed bipartite planar graph of girth 6 which does not map to C−4, showing 8 is
the best possible and disproving a conjecture of Naserasr, Rollova and Sopena.

1 Introduction

A homomorphism of a graph G to a graph H is a mapping of the vertices of G
to the vertices of H such that adjacencies are preserved. The theory of graph
homomorphism is a natural extension of the notion of proper coloring where a proper
k-coloring (of a graph G) can be viewed as a homomorphism (of G) to Kk. One of
the key concepts in the study of proper coloring is the notion of k-critical graphs.
A k-critical graph is defined as a graph of chromatic number k all whose proper
subgraphs are (k − 1)-colorable. An extension of the notion to homomorphism was
proposed in 1980’s by Catlin [3], but the concept had not drawn much attention
until recently. Given a graph H, a graph G is said to be H-critical, if G does not
admit a homomorphism to H but each of its proper subgraphs does.

Next to the complete graphs, the most studied graphs in the theory of homomor-
phism are odd cycles. It is a folklore fact that the C2k+1-coloring problem captures
the (2k + 1)-coloring problem via a basic graph operation: Given a graph G, let
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T ′2k−1(G) be the graph obtained from G by subdividing each edge into a path of
length 2k − 1. Then T ′2k−1(G) admits a homomorphism to C2k+1 if and only if G is
properly (2k + 1)-colorable (see [7]).

One of the key directions of the study of k-critical graphs is to bound from below
the number of edges as a function of k and n (the number of vertices). Kostochka
and Yancey gave a nearly tight lower bound in [10], almost settling a conjecture of
Gallai. Observing that being a 4-critical graph is the same as being a C3-critical
graph, it follows from the special case presented in [9] that any C3-critical graph
on n vertices has at least d5n−23 e edges. Their approach is extended to the study
of C5-critical graphs in [6] and to C7-critical graphs in [17]. In [6], it is proved that
any C5-critical graph on n vertices has at least d5n−24 e edges and they conjecture
that the bound can be improved to d14n−911 e. Similarly, in [17], it is proved that any
C7-critical graph on n vertices has at least d17n−215 e edges and they conjecture that
the bound can be improved to d27n−2023 e.

In this work, based on recent development of the theory of homomorphisms of
signed graphs, we show that by replacing odd cycles with negative cycles we can fill
the parity gap in this study. Then focusing on C−4-critical signed graphs, we show
that any such signed graph on n vertices must have at least d4n3 e edges with a sole
exception of a signed bipartite graph on 7 vertices which has only 9 edges.

In the next section, we present the necessary terminology and the relation be-
tween colorings of graphs and homomorphisms of signed graphs to negative cycles.
In Section 3, we prove our main result which is on the minimum number of edges
of C−4-critical signed graphs. In Section 4 we introduce some techniques to build
C−4-critical signed graphs of low edge-density which we use to conclude the tightness
of our bound. Finally, in Section 5, we consider applications to the planar case and
the relation to a bipartite analogue of Jaeger-Zhang conjecture, and discuss further
directions of study.

2 Signed graphs and homomorphisms

A signed graph (G, σ) is a graph G together with an assignment σ of signs (i.e. +
or −) to the edges of G. The assignment σ is referred to as the signature. When
the signature is not of high importance, we may write Ĝ in place of (G, σ). When
all edges are positive (resp. negative) we write (G,+) (respectively (G,−)). When
drawing a signed graph, we use solid or blue lines to represent positive edges and
dashed or red lines to represent negative edges. For underlying graphs (with no
signature) we use the color gray. A signed graph (H,σ′) is said to be a subgraph
(an induced subgraph) of (G, σ) if H is a subgraph (an induced subgraph) of G and
σ′ is a signature on H such that for every e ∈ E(H), we have that σ′(e) = σ(e).
For simplicity and with a little abuse of notation, we may write (H,σ) in place of
(H,σ′).

A switching of a signed graph (G, σ) at a vertex x is the operation of multiplying
the signs of all edges incident to x by a −. A switching of (G, σ) is a collection of
switchings at each of the elements of a given set X of vertices. That is equivalent
to switching the signs of all edges in the edge-cut (X,V \ X). Two signatures σ1
and σ2 on a graph G are said to be equivalent if one can be obtained from the other
by a switching, in which case we say (G, σ1) is switching equivalent to (G, σ2).

The sign of a structure in (G, σ) is the product of the signs of the edges in the
given structure, counting multiplicity. The sign of some structures (such as a cycle
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or a closed walk) is invariant under a switching, while for some other structures,
such as a path, the sign may change (e.g., if a switching is done in one of the two
ends of a path). Thus we may relax or restrict our use accordingly. For example,
when speaking of sign of a cycle, we may refer to any equivalent signature, but when
speaking of sign of a path, we are restricted to the signature at hand. In particular,
any signed cycle of length l with an even number of negative edges will simply be
referred to as C+l and when there are an odd number of negative edges it will be
denoted by C−l. As C−4 is the primary subject of this work, we will use the labeling
of Figure 1 when referring to this signed graph on its own, but as a subgraph of
another signed graph it will have an induced labeling.

u4

u3u2

u1

Figure 1: C−4

One of the preliminary facts in the study of signed graphs is that two signatures
on a graph G are equivalent if and only if they induce the same set of negative cycles
(see [19]). Thus, when a class of switching equivalent signed graphs on a graph G
is to be considered, one may refer to a partition of cycles, or, more generally, closed
walks, of G into two sets: positive and negative (see [15] for more). Thus we have
two natural definitions of homomorphisms of signed graphs.

A (switching) homomorphism of a signed graph (G, σ) to a signed graph (H,π)
is a mapping of V (G) and E(G) respectively to V (H) and E(H) that preserves
the adjacencies, the incidences and the signs of closed walks. When there exists a
homomorphism of (G, σ) to (H,π), we may write (G, σ) → (H,π). We may also,
equivalently, say (G, σ) is (H,π)-colorable.

An edge-sign preserving homomorphism of a signed graph (G, σ) to a signed
graph (H,π) is a mapping of V (G) and E(G) respectively to V (H) and E(H)
that preserves the adjacencies, the incidences, and the signs of edges. When there
exists an edge-sign preserving homomorphism of (G, σ) to (H,π), we may write

(G, σ)
s.p.−→ (H,π).

We note that an edge-sign preserving homomorphism is equivalent to what is
known as a homomorphism of 2-edge-colored graphs in the literature.

The two notions of homomorphisms are connected through the following obser-
vation.

Observation 2.1. Given signed graphs (G, σ) and (H,π), we have (G, σ)→ (H,π)

if and only if there exists an equivalent signature σ′ of σ such that (G, σ′)
s.p.−→ (H,π).

While closely related, the two notions are also fundamentally different. In par-
ticular, for our main target C−4, while deciding if a signed graph (G, σ) admits a
homomorphism to it is an NP-complete problem [5], the analogue edge-sign preserv-
ing problem becomes polynomial time through a duality presented in Theorem 3.1.

In practice, we will take the condition of Observation 2.1 as the definition. Thus
a homomorphism φ of (G, σ) to (H,π) consists of three parts: φ1 : V (G)→ {+,−},
which decides for each vertex v whether a switching is done at v, φ2 : V (G)→ V (H)
which decides to which vertex of H the vertex v is mapped to, and φ3 : E(G) →
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E(H) which decides the image of each edge. However, as we will consider only
simple graphs in this work, φ3 is induced by φ2 and, therefore, the mapping φ is
composed of φ1 and φ2, i.e. φ = (φ1, φ2). We note that since switching at X is the
same as switching at V \X, the two mappings (φ1, φ2) and (−φ1, φ2) are identical.

Each of these notions leads to a corresponding notion of isomorphism, that is
a homomorphism φ where φ2 and φ3 are one-to-one and onto. This, furthermore,
leads to two notions of automorphism. Thus, for example, the signed graph C−4, as
a 2-edge-colored graph, has only one non-trivial automorphism which is u1 ↔ u4,
u2 ↔ u3. However, it is both vertex-transitive and edge-transitive with respect
to the notion of (switching) homomorphism. It will be clear from the context
which notion of isomorphism or automorphism we refer to. Following this notion of
(switching) isomorphism, if (H,σ′) is a subgraph of (G, σ′), then we may also refer
to (H,σ′) as a subgraph of (G, σ) whenever (G, σ) is equivalent to (G, σ′).

Given a signed graph (G, σ) and an element ij ∈ Z2
2, we define gij(G, σ) to be

the length of a shortest closed walk W whose number of negative edges modulo 2 is
i and whose length modulo 2 is j. When there exists no such closed walk, we define
gij(G, σ) = ∞. The smaller of g10(G, σ) and g11(G, σ) is the length of a shortest
negative cycle of (G, σ) and is called the negative girth of (G, σ).

By the definition of homomorphisms of signed graphs, we have the following
no-homomorphism lemma.

Lemma 2.2. [The no-homomorphism lemma] If (G, σ)→ (H,π), then

gij(G, σ) ≥ gij(H,π)

for each ij ∈ Z2
2.

We note that, algorithmically, it is not difficult to determine gij(G, σ). We refer
to [15] and [4] for more on this.

We may now define the main notion of study in this work.

2.1 (H, π)-critical signed graphs

Given a signed graph (H,π), a signed graph (G, σ) is said to be (H,π)-critical if
the followings are satisfied:

• gij(G, σ) ≥ gij(H,π) for each ij ∈ Z2
2, (conditions of the no-homomorphism

lemma),

• (G, σ) 6→ (H,π),

• (G′, σ)→ (H,π) for every proper subgraph G′ of G.

This notion captures and extends the notion of k-critical graphs as follows: a
graph G is k-critical if the signed graph (G,−) is (Kk−1,−)-critical. Here the
condition of the no-homomorphism lemma implies that G has no loop. The notion
of H-critical graph is also captured by viewing H as the signed graph (H,−) but
with a minor revision. If G is an H-critical graph in the sense of [3] and it has an
odd cycle C2k+1, where odd-girth(H) > 2k + 1, then G is the odd cycle C2k+1. Our
first condition then eliminates these trivial cases.

For the particular case when (H,π) = C−l, we identify two cases based on the
parity of l:
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• l = 2k + 1. We recall that g10(C−l) = g01(C−l) = ∞. Thus if a signed graph
(G, σ) satisfies the conditions of the no-homomorphism lemma, then it must
be switching equivalent to (G,−). After a switching of (G, σ) to (G,−) and
C−l to (C2k+1,−), the problem is then reduced to the study of C2k+1-critical
graphs (of odd-girth at least 2k + 1).

• l = 2k. As g01(C−l) = g11(C−l) =∞, in order for (G, σ) to satisfy the conditions
of the no-homomorphism lemma, G must, in particular, be bipartite. This is
the case of main interest in this work.

We note that in the first case, to determine if (G, σ) is switching equivalent to
(G,−) can be done in polynomial time and quite efficiently, but to determine if
G → C2k+1 is an NP-complete problem. In contrast, in the second case, to find an
equivalent signature under which we can map (G, σ) to C−2k is the hard part, and
given a fixed signature, we can determine, in polynomial time, if there exists an
edge-sign preserving homomorphism (see Theorem 3.1 and [4]).

2.2 l-coloring and C−l-coloring

Given a signed graph (G, σ), we define Tl(G, σ) to be the signed graph (Gl, π) where
Gl is obtained from G by subdividing each edge so to become a path of length l and
π is an assignment of signs on the edges of Gl so that the sign of the u − v path,
corresponding to the edge uv ∈ E(G), is the same as −σ(uv).

The following lemma then shows the importance of the study of C−l-coloring.

Lemma 2.3. A graph G is l-colorable if and only if Tl−2(G,+) is C−l-colorable.
Moreover, G is (l + 1)-critical if and only if Tl−2(G,+) is C−l-critical.

Proof. For the first part we consider two cases based on the parity of l. If l is an
odd number, then in Tl−2(G,+) a cycle is negative if and only if it is of odd length.
Thus, this signed graph is switching equivalent to (Gl−2,−). Then, the problem
of mapping Tl−2(G,+) to C−l is reduced to a graph homomorphism problem of
mapping Gl−2 to Cl. The equivalence then can be easily checked and we refer to [7]
for a proof.

We now assume that l = 2k is an even number, in which case Tl−2(G,+) is a
signed bipartite graph.

We first show that if Tl−2(G,+) → C−l, then G is l-colorable. Since this can
be done independently on each connected component of G, we may assume G is
connected. Observe that, as a signed graph equipped with switching, C−l is both
vertex-transitive and edge-transitive. Let x1, x2, . . . x2k be the vertices of C−l in the
cyclic order. Let X1 = {x1, x3, . . . x2k−1} and X2 = {x2, x4, . . . x2k} be the two
parts of C−l. Let φ be a homomorphism of Tl−2(G,+) to C−l. Observe that as G
(and therefore Tl−2(G,+)) is connected, the mapping φ preserves the bipartition
of Tl−2(G,+). Thus we may assume, without loss of generality, that the vertices
of Tl−2(G,+) which correspond to the vertices of G map to the vertices in X1.
Furthermore, recall that the homomorphism φ consists of two components φ1 :
V (Tl−2(G,+))→ {+,−}, and φ2 : V (Tl−2(G,+))→ X1 ∪X2. Thus the restriction
of φ onto V (G) is a mapping to the set {+,−} × X1 which is of order 2k. We
claim that φ is a proper coloring of G. That is simply because if φ maps two
adjacent vertices to the same element of {+,−}×X1, the negative (l−2)-path that
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is connecting them in Tl−2(G,+) is mapped to a negative closed walk of length at
most l − 2, but that contradicts the no-homomorphism lemma.

The converse then is easier. Assume χ(G) ≤ 2k and let ψ be a 2k-coloring of
G where {+,−} × X1 is the color set. Therefore the coloring ψ can be viewed as
ψ = (ψ1, ψ2) where ψ1 : V (G) → {+,−} and ψ2 : V (G) → X1. We claim that ψ
can be extended as a homomorphism of Tl−2(G,+) to C−l. For any edge uv in G,
noting that ψ(u) = ψ(v) is not possible because ψ is a proper coloring, we consider
two possibilities:

• (ψ1(u), ψ2(u)) = (−ψ1(v), ψ2(v)). The mapping ψ then has applied a switching
only in one end of the u − v path, and thus switches it to a positive (even)
path. After identifying its end points the resulting positive even cycle can be
mapped to just an edge of any sign.

• ψ2(u) 6= ψ2(v). The two ψ2(u) − ψ2(v) paths in C−l are even, exactly one is
negative, and each has length at most l − 2. The u − v path then can be
mapped to the path of the same sign where the sign is taken after applying
possible switching by ψ1 at its end points.

For the moreover part, first we assume G is (l + 1)-critical. We need to show that
Tl−2(G,+) is C−l-critical. Let e be an edge of Tl−2(G,+) and assume it is on the
path corresponding to the edge uv of G. Then since G is critical, G − uv admits
an l-coloring which can be transformed into a mapping of Tl−2(G − uv,+) to C−l.
This mapping could then be extended to the remaining vertices of the corresponding
uv-path. Conversely, assuming Tl−2(G,+) is C−l-critical, we need to show that G is
(l+1)-critical. This follows from the fact that Tl−2(G−uv,+) is a proper subgraph
of Tl−2(G,+) for any edge uv and the first part of the theorem.

Corollary 2.4. A graph G is 4-colorable if and only if T2(G,+) maps to C−4.

In particular, the 4-Color Theorem can be restated as:

Theorem 2.5. [The 4CT restated] For any planar graph G, the signed bipartite
planar graph T2(G,+) maps to C−4.

Observing that, for a graph G, the shortest (negative) cycle in T2(G,+) is of
length at least 6, (corresponding to a triangle of G), and introducing the bipartite
analogue of Jaeger-Zhang conjecture, Naserasr, Rollova and Sopena [14] conjectured
that any signed bipartite planar graph whose negative girth is at least 6 maps to
C−4. In section 5, we disprove this conjecture. However, as an application of our
work we prove that if the condition on negative girth is increased to 8, then the
result holds.

3 C−4-critical signed graphs

It follows from Corollary 2.4 that the C−4-coloring problem is an NP-complete prob-
lem (see [1], and [2], for more on this subject). However, when edge-sign preserving
homomorphisms are considered, we have a simple duality theorem (given in [4] and
based on Figure 2) that makes it rather easy to determine the existence of an edge-
sign preserving homomorphism to C−4. This duality notion will be used in our
proofs.
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Sign Preserving

u4

u3u2

u1

Figure 2: C−4 and its edge-sign preserving dual

Theorem 3.1. [4] Given a signed bipartite graph (G, σ), we have (G, σ)
s.p.−→ C−4 if

and only if (P4, π)
s.p.

6−→ (G, σ) where (P4, π) is the signed path of length 3 given in
Figure 2.

Combined with Observation 2.1, this theorem says that in order to map a signed
bipartite graph (G, σ) to C−4 it is necessary and sufficient to find a switching (G, σ′)
of (G, σ) where no positive edge is adjacent to a negative edge at each end of it.

It can be easily verified that any signed bipartite graph with at most two vertices
on one of the two parts maps to C−4. Thus the first example of C−4-critical signed
graph must have at least six vertices. Let Γ be the signed graph obtained from K4

by subdividing two nonadjacent edges, each once, with a signature assigned in such
a way that each triangle of the K4 become a negative 4-cycle (see Figure 3). It is
not hard to see that Γ is an example of a C−4-critical signed graph on six vertices.
In fact, up to switching, it is the unique C−4-critical signed graph on six vertices.
We further note that Γ has 8 = 4

3 × 6 edges.

Figure 3: The smallest C−4-critical signed graph Γ

An example of higher interest, which is also a signed graph on a subdivision of
K4, is the signed graph Ŵ of Figure 4 which is depicted in two different ways. This
signed graph is proved in [4] to have smallest maximum average degree among all
signed bipartite graphs that does not map to C−4, that is an average degree of 18

7 .
Using the extended notion of critical signed graphs we introduced here, we will prove
Ŵ to be the sole exception among the signed bipartite graphs of average degree less
than 8

3 .

x2 x3

x4

y1

y2

y3

x1

x1 x2 x3 x4

y1 y2 y3

Figure 4: C−4-critical signed graph Ŵ depicted in two ways

We give two different proofs for the fact that Ŵ does not map to C−4. Each
proof takes advantage of one of the presentations in Figure 4, and leads to different
development of ideas.
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Proposition 3.2. The signed graph Ŵ of Figure 4 does not map to C−4. Moreover,
up to a switching equivalence, this is the only signature on this graph with this
property.

Proof. Based on the presentation on the left side, if Ŵ maps to C−4, then the outer
6-cycle, as it is a negative cycle, must map surjectively to C−4. It then follows that
x1 must be identified with one of x2, x3, x4, thus creating a negative cycle of length
2 and, therefore, contradicting the no-homomorphism lemma.

The equivalence class of signatures on this graph is determined by the signs of
its three facial 4-cycles as depicted in the left side of the figure. If one of these facial
4-cycles is positive, then a degree 2 vertex on this face can be mapped to x1, after
a switching if needed. The resulting image then easily maps to C−4.

An alternative proof. Based on the presentation on the right side, observe
that each pair among y1, y2, y3 is connected by a positive 2-path (through x1) and
by a negative 2-path. Thus identifying any two of them would create C−2. In other
words, in any homomorphic image of Ŵ which is a signed simple graph, the vertices
y1, y2 and y3 must have distinct images.

For the moreover part, given a signature on W we may switch it so that x1y1,
x1y2, and x1y3 are positive edges. After such a switching, if each of x2, x3, and
x4 is incident to one positive and one negative edge, then we have a (switching)
isomorphic copy of Ŵ . Otherwise, one of the vertices x2, x3, and x4 can map to
x1. After such a mapping, we have a signed bipartite graph on six vertices. If this
signed graph does not map to C−4, then it must contain Γ as a subgraph. However,
Γ has eight edges while our six-vertex graph has only seven edges. �

Our goal here is to study the edge-density of C−4-critical signed graphs. We
show that, with the exception of Ŵ , every such signed graph has edge density at
least 4

3 . In our proof then not only Ŵ but some constructions based on Ŵ will be
of importance.

Automorphisms of Ŵ split its vertices to three orbits: {x1}, {y1, y2, y3} and
{x2, x3, x4} and split its edges to two orbits: those incident to x1 and those on the
outer 6-cycle. We will need to consider two signed graphs obtained from Ŵ by
subdividing one of its edges twice and then assigning a signature on the edges of
this path so that the sign of the path is the same as the sign of the edge it has
replaced. Since there are two orbits of the edges on Ŵ , essentially we have only
two signed graphs obtained in this way. Presentations of these two signed graphs,
each after a switching, are given in Figures 5 and 6. The signed graph of Figure 5,
Ω1, is obtained from Ŵ by subdividing the edge x1y3 twice (where all three edges
are assigned positive signs) and then switching at the vertex set {x2, x3, y3}. The
signed graph of Figure 6, Ω2, is obtained from Ŵ by subdividing the edge x4y1
twice (where all three edges are assigned positive signs) and then switching at the
vertex set {x2, x4, y2}.

x1 x2 x3 x4x0

y1 y2 y3y0

Figure 5: Ω1

x0 x1 x2 x3 x4

y0 y1 y2 y3

Figure 6: Ω2
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It is easily observed that each of the two signed graphs with the signature pre-
sented in the Figures 5 and 6 satisfies the conditions of Theorem 3.1, and, therefore,
each of them maps to C−4. In the next two lemmas, we show that one cannot make
either of these two signed graphs C−4-critical by only adding a vertex of degree 2.

Lemma 3.3. Let Ω1 be the signed graph of Figure 5. If we add a vertex v to one
part of Ω1 and connect it with two vertices in the other part (with any signature),
the resulting signed graph admits a homomorphism to C−4.

Proof. Let Ω1 be the signed bipartite graph of Figure 5 consisting of a bipartition
(X,Y ) where X = {x0, x1, x2, x3, x4} and Y = {y0, y1, y2, y3}.

If the two edges incident to the new vertex v are of the same sign, by switching
at that new vertex, if needed, we consider them both positive. The resulting signed
graph has a signature satisfying Theorem 3.1, therefore, maps to C−4. Hence we
assume that the two edges incident to v are of different signs and consider two cases
depending on to which part the vertex v belongs.
Case 1. v is added to the X part. We consider three possibilities.

• v is adjacent to y3. By switching at v, if necessary, we assume that vy3 is
negative. The only possible problem against Theorem 3.1 is by the positive
edge vy2. In that case, to resolve the issue, we apply a switching at x2.

• v is not adjacent to y3 but v is adjacent to y2. We consider vy2 to be negative
and we are done.

• v is adjacent to both of y0 and y1. We take vy1 as a negative edge and we are
done after a switching at x2.

Case 2. v is added to the Y part. We consider three possibilities.

• v is adjacent to one or both of x0 and x2. We switch at one of x0 and x2, one
which is adjacent to v. Then by a switching at v (if needed) we have both
edges incident to v of positive signs. The resulting signed graph satisfies the
conditions of Theorem 3.1.

• v is adjacent to x3 but not adjacent to x0 and x2. We assume vx3 is a negative
edge. We switch at x3 and the conditions of Theorem 3.1 are satisfied.

• v is adjacent to both of x1 and x4. Similarly, we assume vx4 is negative. We
switch at x0 and we are done.

Lemma 3.4. Let Ω2 be the signed graph of Figure 6. If we add a vertex v to one
part of Ω2 and connect it with two vertices in the other part (with any signature), the
resulting signed graph either contains Ŵ and maps to it or admits a homomorphism
to C−4.

Proof. Let Ω2 be the signed bipartite graph of Figure 6 consisting of a bipartition
(X,Y ) where X = {x0, x1, x2, x3, x4} and Y = {y0, y1, y2, y3}.

As in the previous lemma, we can assume that of the two edges incident to v
exactly one is negative. Again, we consider two cases depending on to which part v
belongs.
Case 1. v is added to the X part. We consider three possibilities.

• v is adjacent to y2. By a switching at v, if needed, we assume vy2 is negative.
The only reason Theorem 3.1 may not work is by the positive edge vy0. This
can be taken care of by switching at y0.
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• v is adjacent to y0 but not adjacent to y2. By considering vy0 as the nega-
tive edge incident to v, the resulting signed graph satisfies the condition of
Theorem 3.1.

• v is adjacent to both y1 and y3. We may assume vy3 is a negative edge. The
subgraph induced by x1, x2, x3, y1, y2, y3 and v is (switching) isomorphic to Ŵ .
To see this isomorphism, using labeling of W as in the Figure 4, it is enough
to switch at x2 and y2, and relabel v as x4 while keeping all other labels the
same. Finally, to see that the full graph of this case maps to Ŵ , it is enough
to extend the previous isomorphism (which we name ψ) to a mapping. This
is done, for example, by setting ψ(x0) = (+, x1) and ψ(y0) = (+, y2) and
ψ(x4) = (+, x3).

Case 2. v is added to the Y part. We consider four possibilities.

• v is adjacent to x1. We choose vx1 to be negative. The only obstacle against
Theorem 3.1 then can come from the positive edge vx4, but we can switch at
y0 to resolve this issue.

• v is adjacent to x4 but not adjacent to x1. We choose vx4 to be negative.
Then we already have a signature satisfying conditions of Theorem 3.1.

• v is adjacent to x0 but to neither of x1 and x4. Assuming that vx0 is negative,
we can switch at y0 to apply Theorem 3.1.

• v is adjacent to both x2 and x3. We assume vx3 is negative. The subgraph
induced by x1, x2, x3, y1, y2, y3 and v is (switching) isomorphic to Ŵ . One such
isomorphism φ is defined as follows: φ(x1) = (−, y2), φ(x2) = (+, y1), φ(x3) =
(+, y3), φ(y1) = (−, x2), φ(y2) = (+, x1), φ(y3) = (+, x3), φ(v) = (+, x4). To
complete this isomorphism to a homomorphism of the full graph to Ŵ we map
x0, x4 and y0 as follows: φ(x0) = (−, y2), φ(x4) = (+, y3), φ(y0) = (−, x1).

We note that for a better correspondence we have used same or similar labels
for vertices of the graphs. In the mappings ψ and φ thus the vertices of the domains
are those of the graphs we work with but the images are those of Ŵ as labeled in
Figure 4.

Some general structural properties of a C−4-critical signed graph are as follows.

Lemma 3.5. Every C−4-critical signed graph is 2-connected.

Proof. This is an easy consequence of the fact that C−4 is vertex transitive and we
leave the details as an exercise.

We say a path P of length k in Ĝ is a k-thread if all of its k− 1 internal vertices
are of degree 2 in G. It is easily observed that the maximum length of a thread in
an (H,π)-critical graph is bounded by a function of (H,π). For C−4-critical signed
graphs, we have:

Lemma 3.6. A C−4-critical signed graph Ĝ does not contain a 3-thread.

Proof. Assume to the contrary that G has a 3-thread P = x0x1x2x3. Recall that
a C−4-critical signed graph is bipartite. As x0 and x3 are connected by a path of
length 3, they are in different parts of G. Since Ĝ is C−4-critical, the signed graph
Ĝ′ = Ĝ − {x1, x2} maps to C−4. Let ϕ be such a mapping. Observe that, by
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Lemma 3.5, Ĝ′ is connected, thus ϕ preserves the bipartition of G′. In particular,
ϕ(x0) and ϕ(x3) are in two different parts of C−4 and thus adjacent. We note
that ϕ has possibly applied switchings on some vertices of G′. Working with the
resulting signature obtained from the same switching on Ĝ, we let P̂ be the signed
graph induced on P . If P̂ has the same sign as the edge ϕ(x0)ϕ(x3), then ϕ can
be extended by mapping P̂ to this edge as well. Otherwise, ϕ can be extended by
mapping P̂ to the rest of the C−4 (that is C−4 − ϕ(x0)ϕ(x3)).

In this lemma, length 3 for a forbidden thread is the best one can do. We
have already seen examples of C−4-critical signed graphs with vertices of degree 2,
that correspond to 2-threads. However, we may still apply some restriction on such
threads:

Observation 3.7. Given a C−4-critical signed graph, a vertex of degree 2 cannot be
on a C+4.

In fact, this is generally true for every (H,π)-critical signed graph and also for
any signed graph which admits no homomorphism to a subgraph of itself.

We are now ready to state and prove our main result on the structure of C−4-
critical signed graphs.

3.1 Edge-density of C−4-critical signed graphs

We will use the notion of potential developed in [9] (and then further used in [6]
and [17]) to prove the following.

Theorem 3.8. If Ĝ is a C−4-critical signed graph that is not isomorphic to Ŵ , then

|E(G)| ≥ 4|V (G)|
3

.

Thus the natural potential function of graphs we may work with is:

p(G) = 4|V (G)| − 3|E(G)|.

We note that the potential of a signed graph is the potential of its underlying
graph.

Observation 3.9. We have p(K1) = 4, p(K2) = 5, p(P3) = 6 and p(C4) = 4. Thus
any signed bipartite graph on at most 4 vertices has potential at least 4.

In the rest of this section, we let Ĝ = (G, σ) be a minimum counterexample
to Theorem 3.8. That is to say, Ĝ is a C−4-critical signed graph which is not
isomorphic to Ŵ , it satisfies p(Ĝ) ≥ 1, and for any signed graph Ĥ, Ĥ 6= Ŵ , with
|V (Ĥ)| < |V (Ĝ)| satisfying p(Ĥ) ≥ 1, Ĥ admits a homomorphism to C−4.

Given a signed graph Ĥ, we denote a signed graph obtained from Ĥ by adding
a new vertex and joining it to two vertices of Ĥ (where the signs of the two new
edges are arbitrary) by P2(Ĥ). The notation P2(Ĥ) here follows previous works
([6], [17])) where 2 denotes the length of the path. To denote a path as a graph we
use Pn where n is the number of the vertices.

In the following lemma, we list the plausible potential of the subgraphs of the
minimum counterexample Ĝ.
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Lemma 3.10. Let Ĝ = (G, σ) be a minimum counterexample to Theorem 3.8 and
let Ĥ be a subgraph of Ĝ. Then

1. p(Ĥ) ≥ 1 if Ĝ = Ĥ;

2. p(Ĥ) ≥ 3 if Ĝ = P2(Ĥ);

3. p(Ĥ) ≥ 4 otherwise.

Proof. The first claim is our assumption on Ĝ. If Ĝ = P2(Ĥ), then p(Ĝ) = p(Ĥ) +
4× 1− 3× 2, and then, since p(Ĝ) ≥ 1, we have p(Ĥ) ≥ 3. We now prove that for
any other subgraph of Ĝ, p(Ĥ) ≥ 4.

Suppose to the contrary that Ĝ contains a proper subgraph Ĥ which does not
satisfy Ĝ = P2(Ĥ), and satisfies p(Ĥ) ≤ 3. Among all such subgraphs, let Ĥ be
chosen so that |V (Ĥ)| + |E(Ĥ)| is maximized. As adding an edge to a graph only
decreases the potential, the assumption of the maximality implies that Ĥ is an
induced subgraph of Ĝ.

By Observation 3.9, |V (Ĥ)| ≥ 5. As Ĝ is C−4-critical and Ĥ is a proper subgraph,
there is a homomorphism ϕ of Ĥ to C−4. Since C−4 is vertex transitive, we may
assume that ϕ preserves the bipartition of Ĥ induced by the bipartition of Ĝ. This
is automatic if H is connected, but important if H is not connected.

Observe that the mapping ϕ may have applied switching on some vertices of Ĥ.
Applying switching on the same set of vertices of Ĝ, we get a switching equivalent
signed graph. For simplicity, and without loss of generality, we may assume that Ĝ
was given with this signature already. In other words, we may assume, without loss
of generality, that ϕ1(x) = + for every vertex x of Ĥ (recall that ϕ = (ϕ1, ϕ2)).

Define Ĝ1 to be a signed (multi)graph obtained from Ĝ by first identifying
vertices of Ĥ which are mapped to the same vertex of C−4 under ϕ, and then
identifying all parallel edges of the same sign. Observe that Ĝ1 is a homomorphic
image of Ĝ and that ϕ(Ĥ) is (isomorphic to) the image of Ĥ in this mapping.
Recall that in the mapping of Ĝ to Ĝ1 the bipartition is preserved. Therefore, Ĝ1

is bipartite. Since homomorphism is an associative relation, and since Ĝ 6→ C−4, we
have Ĝ1 6→ C−4. This can only be for one of two reasons: Either Ĝ1 contains a C−2,
or Ĝ1 contains a C−4-critical subgraph. We consider the two cases separately:

Case 1. Ĝ1 contains a C−2.
This implies that Ĝ contains a negative path P̂ of length 2 with both endpoints

in Ĥ and with its internal vertex in V (Ĝ) \ V (Ĥ). We have that

p(Ĥ + P̂ ) = p(Ĥ) + 4× 1− 3× 2 = p(Ĥ)− 2 < p(Ĥ). (1)

Recall that Ĥ is a maximum proper subgraph satisfying that Ĝ 6= P2(Ĥ) and
p(Ĥ) ≤ 3. Noting that Ĥ ( Ĥ + P̂ and Ĥ + P̂ is a subgraph of Ĝ, and by the
maximality of Ĥ, there are two possibilities: either Ĥ + P̂ is not a proper subgraph
of Ĝ, i.e., Ĝ = Ĥ + P̂ , or Ĝ = P2(Ĥ + P̂ ). The former case is impossible as
Ĝ 6= P2(Ĥ). So Ĝ = P2(Ĥ + P̂ ) and then

p(Ĥ + P̂ ) = p(Ĝ)− 4× 1 + 3× 2 ≥ 1− 4 + 6 = 3 ≥ p(Ĥ), (2)

which is in contradiction with (1).
Case 2. Ĝ1 contains a C−4-critical subgraph Ĝ2.
We classify the vertices of Ĝ2 into two parts: Those of the images of V (Ĥ),

and the remaining vertices. We denote the former set by X1, more precisely X1 =
ϕ(V (Ĥ)) ∩ V (Ĝ2), and the latter set by A, more precisely A = V (Ĝ2) \ X1. The
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subgraph induced by X1 is denoted by X̂, in other words X̂ = ϕ(Ĥ)∩ Ĝ2. Observe
that since Ĝ2 6→ C−4 and ϕ(Ĥ) ⊂ C−4, A 6= ∅.

Since |V (Ĥ)| ≥ 5 and ϕ is a mapping of Ĥ to C−4, at least two vertices are
identified and, therefore, |V (Ĝ2)| ≤ |V (Ĝ1)| < |V (Ĝ)|. As Ĝ is a minimum coun-
terexample to Theorem 3.8, we have either p(Ĝ2) ≤ 0 or Ĝ2 = Ŵ . Since p(Ŵ ) = 1,
in all cases we have p(Ĝ2) ≤ 1.

We now define a subgraph Ĝ3 of Ĝ as follows: Vertices of Ĝ3 are those vertices
of Ĝ each of which is either a vertex of Ĝ2 or a vertex of Ĥ. That is to say
V (Ĝ3) = A ∪ V (Ĥ) = {V (Ĝ2) ∪ V (Ĥ)} \X1. To give the edge set of Ĝ3, we first
choose a set E′ of the edges of Ĝ as follows: If a vertex u ∈ A is adjacent to a
vertex v ∈ X1, then we choose a vertex v′ ∈ V (Ĥ) such that first of all ϕ(v′) = v,
second of all uv′ ∈ E(G). From the construction of Ĝ1, it is clear that there is such
a vertex v′. We note that, there might be more than one choice for v′, in which
case we select exactly one at random, and then let uv′ be an edge in E′. The edge
set of Ĝ3 is then defined to be the set of edges of Ĝ that are either induced by A,
or by V (H) or edges in E′, with signature induced from the fixed signature of Ĝ.
In other words, E(Ĝ3) = E(Ĝ2 − X̂) + E(Ĥ) + E′. Since each connection between
the vertices of X̂ and Ĝ2− X̂ has a unique corresponding edge in E′, it follows that
|E(Ĝ3)| = |E(Ĝ2)|− |E(X̂)|+ |E(Ĥ)| and, therefore, p(Ĝ3) = p(Ĝ2)−p(X̂)+p(Ĥ).

Since Ĝ and Ĝ2 are both C−4-critical signed graphs, Ĝ2 is not a subgraph of Ĝ,
that is to say X̂ 6= ∅. As X̂ is a subgraph of C−4, by Observation 3.9, p(X̂) ≥ 4.
Then we obtain that

p(Ĝ3) = p(Ĝ2)− p(X̂) + p(Ĥ) ≤ 1− 4 + p(Ĥ) = p(Ĥ)− 3 ≤ 0. (3)

Since Ĝ3 is a subgraph of Ĝ and Ĥ ( Ĝ3 (because A 6= ∅), by the maximality of
Ĥ and noting that p(Ĝ3) < p(Ĥ), either Ĝ = Ĝ3 or Ĝ = P2(Ĝ3). If Ĝ = Ĝ3, then
p(Ĝ3) ≥ 1; if Ĝ = P2(Ĝ3), then p(Ĝ3) ≥ 3, each of which is contradicting (3).

Towards proving Theorem 3.8, next we show that the underlying graph G of the
minimum counterexample Ĝ does not contain two 4-cycles sharing edges.

x1

x2

x3

x4x0

Figure 7: Θ1

x1x2

x4 x5

x3 x6

Figure 8: Θ2

Claim 3.11. Given a minimum counterexample Ĝ to Theorem 3.8, the underlying
graph G does not contain the graph Θ1 of Figure 7 as a subgraph.

Proof. By contradiction, assume Θ1 is a subgraph of G and let x0, x1, . . . , x4 be the
labeling of its vertices in G as well. Observe that p(Θ1) = 2. Thus, by Lemma 3.10,
G = (Θ1, σ) for some signature σ. We note that there are three 4-cycles in Θ1, of
which at least one must be a positive 4-cycle. By Observation 3.7 and as d(x0) =
d(x1) = d(x3) = 2, no signature on Θ1 would result in a C−4-critical signed graph.
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Claim 3.12. Given a minimum counterexample Ĝ to Theorem 3.8, the underlying
graph G does not contain the graph Θ2 of Figure 8 as a subgraph.

Proof. By contradiction, assume Θ2 is a subgraph of G and let x1, x2, . . . , x6 be
its vertices in G as well. Observe that p(Θ2) = 3, thus, by Lemma 3.10, either G
has only six vertices, or it has seven vertices and G = P2(Θ2). By Lemma 3.6, no
signature on Θ2 would result in a C−4-critical signed graph. If we add one or more
edges to Θ2, then we will have a graph on 6 vertices and at least 4

3 × 6 = 8 edges.
This cannot form a counterexample. We note that after adding an edge one may
assign a signature to get the only C−4-critical signed graph on six vertices Γ.

The remaining possibility is that G = P2(Θ2). Let w be the added vertex. If
w is not adjacent to one of x1 or x2, then we have a contradiction by Lemma 3.6.
Similarly, w must also be adjacent to one of x4 and x5. As G is bipartite and by
the symmetries of Θ2, we may assume that w is adjacent to x1 and x5. Thus the
underlying graph of G is the same as that of Ŵ , and by Proposition 3.2 it must be
(switching) isomorphic to Ŵ .

In the next lemma, we imply further structure on the neighborhood of a 2-thread.

Lemma 3.13. Let vv1u be a 2-thread in Ĝ. Suppose that v is a vertex of degree 3
and let v2, v3 be the other two neighbors of v. Then the path v2vv3 must be contained
in a negative 4-cycle in Ĝ.

Proof. Suppose to the contrary that the path v2vv3 is not contained in a negative
4-cycle. If needed, by switching at v2 or v3, we may assume that both vv2 and vv3
are of positive sign. Then by identifying v2 and v3 to a new vertex v0, we get a
homomorphic image Ĝ1 of Ĝ. Observe that, since v2 and v3 are in the same part
of G, G1 is also bipartite. Furthermore, by our assumption, Ĝ1 does not contain a
C−2 and, therefore, gij(Ĝ1) ≥ gij(C−4) for every ij ∈ Z2

2.
As Ĝ does not map to C−4, its homomorphic image, Ĝ1, does not map to it

either. Thus there must be a C−4-critical subgraph Ĝ2 of Ĝ1. By Lemmas 3.6
and 3.5, neither of the vertices v and v1 is a vertex of Ĝ2. On the other hand,
v0 ∈ V (Ĝ2), as otherwise Ĝ2 is a proper subgraph of Ĝ which does not map to C−4,
contradicting the fact that Ĝ is C−4-critical. Since Ĝ is a minimum counterexample
to the Theorem and |V (Ĝ2)| < |V (Ĝ)|, we have either p(Ĝ2) ≤ 0 or Ĝ2 = Ŵ in
which case p(Ĝ2) = 1.

Let Ĝ3 be the signed graph obtained from Ĝ2 by splitting v0 back to v2 and v3,
adding the vertex v and adding the positive edges vv2 and vv3 back. Note that Ĝ3

is a subgraph of Ĝ. We observe that

p(Ĝ3) = p(Ĝ2) + 4× 2− 3× 2 = p(Ĝ2) + 2 ≤ 3. (4)

Furthermore, the equality is only possible if Ĝ2 = Ŵ . As v1 6∈ V (Ĝ3), we know that
Ĝ3 6= Ĝ. By Lemma 3.10, we must have p(Ĝ3) = 3 and Ĝ = P2(Ĝ3). And since
equality in (4) must hold, we also have Ĝ2 = Ŵ .

As Ĝ2 = Ŵ , vertices of Ĝ2 are of degree 2 or 3, and, thus, the splitting operation
on v0 (that we considered in order to build Ĝ3) is the same as subdividing one of
its edges twice. Recall that there are two types of edges in Ŵ up to (switching)
isomorphism. Thus the subdivided signed graph Ĝ3 is one of the two signed graphs:
either Ω1 of Figure 5 or Ω2 of Figure 6. Thus either Ĝ = P2(Ω1) or Ĝ = P2(Ω2). In
the former case, by Lemma 3.3, Ĝ maps to C−4. In the latter case, by Lemma 3.4,
either Ĝ maps to C−4 or it contains Ŵ as a proper subgraph but this contradicts
the fact that Ĝ is C−4-critical.
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By combining Lemma 3.13 with Claims 3.11 and 3.12, we have our main forbid-
den configuration as follows:

Corollary 3.14. A vertex of degree 3 in the minimum counterexample Ĝ does not
have two neighbors of degree 2.

We are now ready to prove Theorem 3.8.

Proof. (Of Theorem 3.8) We will employ the discharging technique. We assign an
initial charge of c(v) = d(v) to each vertex of G. Observe that the total charge is
2|E(G)|. We apply the following discharging rule:

“Every vertex of degree 2 receives a charge of 1
3 from each of its neighbors.”

For each vertex v, let c′(v) be the charge of v after the discharging procedure.
Since there is no 3-thread in G, each degree 2 vertex v receives a total of 2

3 from its
two neighbors and thus c′(v) = 2 + 2

3 = 8
3 . Each degree 3 vertex u has at most one

neighbor of degree 2, so c′(u) ≥ 3 − 1
3 = 8

3 . Each vertex w of degree at least 4 has

charge c′(w) ≥ d(w) − d(w)
3 = 2d(w)

3 ≥ 8
3 . Thus the total charge is at least 8|V (G)|

3 .

That contradicts the assumption that p(Ĝ) = 4|V (G)| − 3|E(G)| ≥ 1.

Applying this result in terms of maximum average degree of the (underlying)
graph, denoted mad(G), we have the following.

Corollary 3.15. Given a signed bipartite (simple) graph Ĝ, if mad(G) < 8
3 and Ĝ

does not contain Ŵ as a subgraph, then Ĝ→ C−4.

4 Constructions of (sparse) C−4-critical signed

graphs

We have already seen that χ(G) ≤ k if and only if Tk−2(G,+) → C−k. Next
we extend this connection based on the notion of 0-free coloring of signed graphs
introduced by Zaslavsky in [18].

The notion of 0-free coloring of signed graphs is one of the most natural exten-
sions of the notion of proper coloring of graphs. Given the setX2k = {±1,±2, . . . ,±k},
a signed multigraph (G, σ) is said to be X2k-colorable if there exists an assignment
c : V (G) → X2k such that for each edge e with endpoints x and y (not necessarily
distinct), we have

c(x) 6= σ(e)c(y).

Furthermore, (G, σ) is said to be X2k-critical if it does not admit an X2k-coloring
but each of its proper subgraphs does.

Using this notion, Lemma 2.3 can be extended to the following theorem. A
proof of this theorem is also obtained by revising the proof of Lemma 2.3 given in
Section 2.2 and we leave the details to the reader.

Theorem 4.1. A signed multigraph Ĝ admits an X2k-coloring if and only if T2k−2(Ĝ)→
C−2k. Moreover, Ĝ is X2k-critical if and only if T2k−2(Ĝ) is C−2k-critical.

Given a graph G, let G̃ be the signed multigraph obtained from G by replacing
each edge of G with a pair of edges: one of positive sign, another of negative sign.
It is easily observed that:
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Observation 4.2. A graph G is k-colorable if and only if the signed multigraph G̃
is X2k-colorable.

Next we develop another technique to build C−2k-critical signed graphs.

Theorem 4.3. Given a graph G, we have χ(G) ≤ k if and only if T2k−2(G̃)→ C−2k.
Moreover, G is (k + 1)-critical if and only if T2k−2(G̃) is C−2k-critical.

Proof. The first part of the theorem follows from Theorem 4.1 and Observation 4.2.
For the moreover part, we first assume that T2k−2(G̃) is C−2k-critical and need

to show that G is (k + 1)-critical. For this it is enough to show that every proper
subgraph H of G is k-colorable. Since T2k−2(H̃) is a proper subgraph of T2k−2(G̃)
and any proper subgraph of T2k−2(G̃) maps to C−2k, by the first part of the theorem,
H is k-colorable.

Next we assume G is (k+ 1)-critical. Let e be an edge of T2k−2(G̃). Our goal is
to show that T2k−2(G̃)− e maps C−2k. Let uv be the edge in G which corresponds
to the thread (of T2k−2(G̃)) to which e belongs.

Let G′ = G/uv be the graph obtained from G by contracting the edge uv and let
H = G− uv. We observe that G′ is k-colorable because first of all H is k-colorable,
and, secondly, in any such coloring u and v must receive the same color.

Next we consider two signed graphs obtained from T2k−2(H̃): (1) The signed
graph T+

uv is obtained by identifying u and v. (2) The signed graph T−uv is obtained
by switching at u and then identifying u and v. One may easily observe that these
two signed graphs are (switching) isomorphic, and in fact each of them can be
regarded as T2k−2(G̃′). Since G′ is k-colorable, and by the first part of the theorem,
T2k−2(G̃′) maps to C−2k.

If e is deleted from the negative uv-thread, then we consider a mapping of T+
uv to

C−2k. This mapping can also be viewed as a mapping of T2k−2(H̃) to C−2k where u
and v are identified without any switching on them. As the positive uv-thread is of
even length 2k−2, this mapping can easily be extended to a mapping of T2k−2(G̃)−e
to C−2k. When e is on the positive uv-thread, we will consider a mapping of T−uv to
C−2k. We note that after switching at u, the negative path becomes positive. The
mapping can then be extended as in the previous case.

This theorem further emphasizes on the importance of the study of C−2k-critical
graphs, and, more generally, of homomorphisms of signed bipartite graphs. The op-
eration T ′2k−1 applied on graphs (as defined in the introduction) connects (2k + 1)-
coloring problem of graphs to C2k+1-coloring problem of graphs. Thus only odd
values of the chromatic number are captured by C2k+1-coloring problem. The oper-
ation T2k−2, when applied on signed multigraphs G̃, connects the k-coloring problem
of G to C−2k-coloring problem of signed graphs. Thus C−2k-coloring problem cap-
tures k-coloring problem for all the values of k. We note that T2(G̃) is the same as
S(G) defined in [14] and refer to this reference for more on the importance of the
homomorphisms of signed bipartite graphs.

By Theorem 4.3 and noting that odd cycles are the only 3-critical graphs, we have
T2(C̃2k+1) as an example of C−4-critical signed graph for each value of k. See Figures 9
and 10 for T2(C̃3) and T2(C̃5). The signed bipartite graph Ĝ2k+1 = T2(C̃2k+1) has
6k + 3 vertices and 8k + 4 edges. Thus T2(C̃2k+1) is an example of a C−4-critical
signed graph for which the bound of Theorem 3.8 is tight.

Let Ĝ′2k+1 be the signed (bipartite) graph obtained from Ĝ2k+1 by identifying two
vertices of degree 2 which are at distance 2 and their common neighbor is adjacent
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to both with positive edges. See Figure 11 for an illustration of Ĝ′5. Observe that
Ĝ′3 contains Ŵ as a proper subgraph and, thus, is not C−4-critical. For k ≥ 2, Ĝ′2k+1

does not map to C−4 because it is a homomorphic image of Ĝ2k+1. Moreover, it has

average degree of
8|V (G′2k+1)|+2

3|V (G′2k+1)|
, it does not contain Ŵ as a subgraph and any proper

subgraph of it has average degree strictly less than 8
3 . Thus, by Corollary 3.15, it

is a C−4-critical signed graph for which the bound of Theorem 3.8 is tight. Further
identification of vertices of degree 2 would lead to other examples for which the
bound of Theorem 3.8 is either tight or nearly tight.

Figure 9: T2(C̃3) Figure 10: T2(C̃5) Figure 11: Ĝ′5

Another method of building C−4-critical signed graphs is as follows. Let Ĝ1 and
Ĝ2 be two C−4-critical signed graphs each with a vertex of degree 2. Suppose u
is a vertex of degree 2 in Ĝ1 with u1 and u2 as its neighbors, and v is a vertex
of degree 2 in Ĝ2 with v1 and v2 as its neighbors. As Ĝ1 is a C−4-critical signed
graph, Ĝ1−u maps to C−4. But any such mapping must map u1 and u2 to the same
vertex of C−4 and must have applied a switching on Ĝ1 − u so that with the same
switching on Ĝ1, the path u1uu2 is negative. We consider Ĝ1 with this signature
and do the same on Ĝ2. We then build a signed graph F(Ĝ1, Ĝ2) = Ĝ from disjoint
union of Ĝ1 and Ĝ2 by deleting u and v, and adding a positive edge u1v1 and a
negative edge u2v2. We leave it to the reader to verify that the result is a C−4-
critical signed graph. In Figure 12, we have depicted the signed graph obtained
from this operation on two disjoint copies of Ŵ . We note that this is an example
of a C−4-critical signed graph on 12 vertices for which the bound of Theorem 3.8 is
tight. One may note that, furthermore, the same technique can be applied to build
a new C−2k-critical signed graph from two C−2k-critical signed graphs each having a
vertex of degree 2. Moreover, towards building a C−2k-critical signed graph of lower
edge-density, instead of connecting uivi directly, one may use paths of length k− 1,
one of positive sign, one of negative sign.

Figure 12: F(Ŵ , Ŵ ) Figure 13: H(Γ,Γ)

Analogue of Hajós construction. The Hajós construction of k-critical graphs
can be adapted to build C−4-critical signed graphs from two given C−4-critical signed
graphs. The general case will be addressed in a forthcoming work. Let Ĝ1 be a C−4-
critical signed graph and let x1y1 be a positive edge of Ĝ1. Then Ĝ1 − x1y1 admits
a homomorphism φ to C−4. Since C−4 is vertex transitive, and since (−φ1, φ2) is
the same as (φ1, φ2), we may consider only the mappings for which φ(x1) = (+, u2)
(where u2 refers to the labeling of C−4 in Figure 1). Then we must have φ1(y1) = −
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as otherwise, φ is also a mapping of Ĝ1 to C−4. Furthermore, for any other edge
e, if we take a mapping φ′ of Ĝ− e satisfying φ′(x1) = (+, u2), then we must have
φ(y1) = +. Similarly, consider a C−4-critical signed graph Ĝ2 with a negative edge
x2y2. Then by a similar argument, for any mapping ψ of Ĝ2 − x2y2 for which
ψ(x2) = (+, u2), we must have ψ(y2) = +.

We now build a new C−4-critical signed graph Ĥ = H(Ĝ1, Ĝ2) as follows: Ĥ
is obtained from vertex disjoint copies of Ĝ1 and Ĝ2 by deleting x1y1, x2y2 and
identifying x1 with x2 to get a vertex x and y1 with y2 to get a vertex y. We
observe that if there exists a homomorphism ϕ of Ĥ to C−4, then, by symmetries,
we may assume ϕ(x) = (+, u2). Then the restriction on Ĝ1 implies ϕ1(y) = − and
the restriction on Ĝ2 implies ϕ1(y) = +, a contradiction, implying that Ĥ does not
map to C−4. Removing an edge from one part of Ĥ then leads in mappings of the
two different parts that can be merged together, which shows that Ĥ is C−4-critical.
An example of this construction, using two disjoint copies of the unique C−4-critical
signed graph Γ on six vertices (see Figure 3) is given in Figure 13.

The signed graph H(Ĝ1, Ĝ2) has |V (Ĝ1)| + |V (Ĝ2)| − 2 vertices. Using the
techniques mentioned above one can easily build C−4-critical signed graphs of orders
9, 10, 11, 12. Then applying Hajós construction to a previously built C−4-critical
signed graph and Γ (on 6 vertices), one can build a C−4-critical signed graph on any
number n of vertices for n ≥ 9.

Given positive integers k and n (n ≥ k+ 2), let f(n, k) be the minimum number
of edges of a k-critical graph on n vertices. We refer to [10] for an almost precise
value of f(n, k) and for historical background on the study of this function. We
similarly may define g(n, k) to be the minimum number of edges of a C−k-critical
signed graph on n vertices. As noted above, g(n, 4) is well-defined for n ≥ 9. It can
be similarly shown that g(n, k) is well-defined for n ≥ Nk where Nk is an integer
depending on k only.

Lemma 2.3 and Theorem 4.3 imply the following relations between f(n, k) and
g(n, k).

• By Lemma 2.3,

g(n+ (k − 3)f(n, k), k) ≤ (k − 2)f(n, k). (5)

• By Theorem 4.3,

g(n+ 2(l − 1)f(n, l), 2l) ≤ 2(l − 1)f(n, l). (6)

Authors of [6] and [17] suggest that for k = 5 and k = 7 the inequality (5) is
almost tight. Our work here shows that for C−4-critical signed graphs the inequality
of (6) provides a tight bound. For k = 6, the two inequalities provide similar bounds
where the only difference is in the constant (in the favor of inequality of (5)). For
other values of k = 2l the inequality of (5) provides a better bound than (6) and it is
tempting to suggest that (5) gives a nearly tight bound for g(n, k) for k ≥ 5. A point
of hesitation here is that, while the notion of k-critical graphs is widely studied and
the value and behavior of f(n, k) are almost determined, the notion of critical signed
graphs, aside from its relation to (2k + 1)-critical graphs (with no sign), is a new
notion and hardly anything is known about it. In particular, what can then be said
about the minimum number of edges of an X2k-critical signed graph? Constructions
other than G̃, combined with Theorem 4.1, may provide better bounds on g(n, 2k).
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5 Application to signed bipartite planar graphs

Introducing a bipartite analogue of Jaeger-Zhang conjecture, it was conjectured in
[14] that every signed bipartite planar graph, whose shortest negative cycles are of
length at least 4k − 2, maps to C−2k. In support of the conjecture, the claim is
proved, in [4], for a weaker condition when the negative girth is at least 8k − 2.
Here we use the folding Lemma of [13] to prove that every signed bipartite planar
graph whose negative girth is at least 8 maps to C−4 and we show that this bound
is tight, thus disproving the exact claim of the conjecture for the case k = 2.

Lemma 5.1. [13] Given a signed bipartite planar graph (G, σ) with an embedding
on the plane, if the length of the shortest negative cycles of (G, σ) is at least 2k and
a face F is not a negative cycle of length 2k, then there is a homomorphic image
of (G, σ) which identifies two vertices at distance 2 of F and such that its shortest
negative cycles are also of length at least 2k.

Observe that this identification preserves both planarity and bipartiteness. Thus,
repeatedly applying the lemma, we get a homomorphic image where all faces are
negative cycles of length 2k. Taking k = 4, starting from a signed bipartite planar
graph whose shortest negative cycles are of length at least 8, we get a homomorphic
image Ĝ with a planar embedding where all faces are (negative) 8-cycles. Applying
the Euler formula on this graph, we have |E(G)| ≤ 4

3(|V (G)| − 2). By taking Ĝ to
be a smallest signed bipartite planar graph which does not map to C−4 and whose
shortest negative cycle is of length 8, we conclude that on the one hand Ĝ must be
C−4-critical, and thus, by Theorem 3.8, has at least 4

3 |V (G)| edges, but on the other
hand, by the argument above, it has at most 4

3(|V (G)|−2) edges. This contradiction
is a proof that:

Theorem 5.2. Any signed bipartite planar graph of negative girth at least 8 maps
to C−4.

We now claim that the condition of shortest negative cycles being of length at
least 8 in this theorem is tight.

For this, it would be enough to build a signed planar (simple) graph (G, σ) which
is not {±1,±2}-colorable. Then, by Theorem 4.1, T2(G, σ) is a signed bipartite
planar graph which does not map to C−4. Furthermore, that G is simple implies
that T2(G, σ) has no cycle of length smaller than 6.

That every signed planar graph is {±1,±2}-colorable was conjectured in [11].
This conjecture was disproved in [8], we refer to [12] for a direct proof. Thus we
have:

Theorem 5.3. There exists a bipartite planar graph G of girth 6 with a signature
σ such that (G, σ) 6→ C−4.

The smallest examples we have built so far in this way have 150 vertices. How-
ever, such examples have the extra property that vertices on one part of the (bipar-
tite) graph are all of degree 2. Perhaps simpler examples can be built which do not
satisfy this property.

It is proved in [5] that C−4-coloring problem even when restricted to the class
of signed (bipartite) planar graphs remains an NP-complete problem. Thus, one
does not expect to find an efficient classification of signed bipartite planar graphs
which map to C−4. However, some strong sufficient conditions could be provided.
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One such condition is based on the restatement of the 4CT given in Theorem 2.5.
Another is Theorem 5.2 of this work that shows no negative cycle of length 2, 4, 6
is a sufficient condition. As a generalization of Theorem 2.5 (the 4CT) which also
captures essential cases of Theorem 5.2, we propose the following:

Conjecture 5.4. Let G be a bipartite planar graph of girth at least 6. Let σ be a
signature on G such that in (G, σ) all 6-cycles are of the same sign. Then (G, σ)→
C−4.

We note that, while one may use Lemma 5.1 to reduce facial 4-cycles of a signed
graph which is the subject of Theorem 5.2, there could be separating 4-cycles in
a signed bipartite planar graph to which this theorem may apply. Therefore, the
conjecture does not capture all cases to which Theorem 5.2 applies.

As a final remark, we would like to point out that some of the results in this
work can be restated using the language of the circular coloring of signed graphs
which is recently developed in [16].
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